一种基于雪崩光电探测器的光电检测模块的制作方法

文档序号:14949163发布日期:2018-07-17 22:09阅读:209来源:国知局
本发明涉及一种基于雪崩光电探测器的光电检测模块,属于光电子
技术领域

背景技术
:光电检测模块的主要器件是雪崩光电探测器和互阻放大器。雪崩光电探测器主要利用载流子的雪崩放大过程实现对光电流放大,提高对微弱信号光的检测灵敏度。互阻放大器将雪崩光电探测器的光电流信号转换成易于处理的电压信号。雪崩光电探测器的电流增益用倍增因子m表示,通常定义为倍增的光电流i1与不发生倍增效应时的光电流i0之比。倍增因子m可以表示为:其中,vb为击穿电压;v为反向偏置电压;n为1~3,取决于半导体材料、掺杂分布以及辐射波长。所以,当反向偏置电压v增加到接近vb时,m将趋近于无穷大,此时雪崩光电探测器将发生击穿。应用中,最佳工作电压不宜超过vb。而击穿电压vb与雪崩光电探测器环境温度t之间的关系为:vb(t)=vb(t0)[1+a(t-t0)](2)由公式(1)和公式(2)可知,雪崩光电探测器的增益是其反向偏置电压v和环境温度t的函数,二者共同决定雪崩光电探测器工作时的增益。光电检测模块的设计工作温度为-40℃-+50℃,在这么大的温度范围内,雪崩光电探测器放大增益的稳定性受环境温度变化影响严重,而增益不稳定会直接影响光电检测模块的输出信号的信噪比。当前的雪崩光电探测器增益稳定控制方法一般采用温度控制的方法,通过单级半导体制冷器对雪崩光电探测器进行恒温控制,光电检测模块的温度精度和极限工作温度有限,达不到设计要求。同时,由于雪崩光电探测器的信号增益小,必须在雪崩光电探测器后端连接互阻放大器,在对雪崩探测器输出弱电流信号进行放大的同时,对噪声信号加以限制,以获得高的信噪比。当前的雪崩探测器和互阻放大器是独立封装,互阻放大器的输入端的杂散电容较大,电磁干扰噪声严重,影响了光电检测模块的输出信号的信噪比,达不到设计要求。技术实现要素:本发明的技术解决问题是:克服现有技术的不足,提出一种基于雪崩光电探测器的光电检测模块,该模块能够大大提高光电检测的极限工作温度、温度精度和输出信号信噪比,满足设计要求。本发明的技术解决方案是:一种基于雪崩光电探测器的光电检测模块,该光电检测模块包括雪崩探测器apd、三级半导体制冷器tec、热敏电阻rt、互阻放大器u1、第一电阻r1、第二电阻r2、第一电容c1和第一屏蔽结构;其中,第二电阻r2和第一电容c1并联连接在互阻放大器u1的同相输入端和光电检测模块的地输入引脚gnd之间,第一电阻r1连接在互阻放大器u1的反向输入端和互阻放大器u1的输出端之间,互阻放大器u1的正电源端接光电检测模块的正电源输入引脚vcc,互阻放大器u1的负电源端接光电检测模块的负电源输入引脚vee,互阻放大器u1的输出端接光电检测模块的信号输出引脚vout;雪崩探测器apd的阳极apd+接互阻放大器u1的反向输入端,雪崩探测器apd的阴极接光电检测模块的偏置电压输入引脚apd-;热敏电阻rt连接在光电检测模块温敏正输出引脚tsence+和温敏负输出引脚tsence-之间;三级半导体制冷器tec连接在光电检测模块制冷正输入引脚tec+和制冷负输入引脚tec-之间;第一屏蔽结构是镀金的金属结构,将雪崩探测器apd、三级半导体制冷器tec、热敏电阻rt、互阻放大器u1、第一电阻r1、第二电阻r2、第一电容c1封装在该金属结构中,第一屏蔽结构与光电检测模块的地输入引脚gnd相连,与光电监测模块的其他输入输出引脚不相连。所述的热敏电阻rt为印刷型片式负温度系数热敏电阻。所述光电检测模块的雪崩探测器apd和热敏电阻rt并行安装在三级制冷器tec的第一级的中心位置,三级半导体制冷器tec的各级之间采用串联的工作方式和端面面积逐渐增大的结构,第二级的端面面积大于第一级,第三级的端面面积大于第二级。所述的光电检测模块的雪崩探测器apd与互阻放大器u1封装在第一屏蔽结构中,雪崩探测器apd的阳极apd+与互阻放大器u1的反向输入端之间的连接线trace1长度降低到1mm以内。所述三级半导体制冷器tec的总负载能力为qc,第一级负载能力为qc1,第二级负载能力为qc2,第三级负载能力为qc3,第一级的制冷系数为ε1,第二级的制冷系数为ε2,第一级的制冷系数为ε3,总负载能力qc表示为:qc=qc1+qc2+qc3(3)其中,第三级负载能力第二级负载能力qc1<qc2<qc3;则由公式(3)得第一级的制冷系数ε1为0.2,第二级的制冷系数ε2为0.3,第三级制冷系数ε3为0.4,第一级的负载能力为0.3w,通过公式(4)计算得:第二级的负载能力总负载能力qc=qc1+qc2+qc3=6.15w。所述互阻放大器u1电路的噪声等效模型为:噪声等效模型包括反向输入端的等效输入电阻r3,同相输入端的等效输入电阻r2,反馈电阻r1,r1、r2和r3的热噪声vr1、vr2和vr3,同相输入端的等效电压源vn+,同相输入端的等效电流源in+,反向输入端的等效电流源in-,等效反馈电容c2,等效输入总电容c3。vr3、r3和in-串联在一起,c3与vr3、r3、in-并联接入反相输入端;vr2、r2、vn+和in+串联在一起接入同相输入端;vr1和r1串联在一起,c2与vr1、r1并联在一起,c2一端接反相输入端,另一段接互阻放大器输出端。所述互阻放大器u1电路的噪声等效模型中,互阻放大器u1反向输入端的等效输入电阻为r3,同相输入端的等效输入电阻为r2,反馈电阻为r1,r1、r2和r3的热噪声为vr1、vr2和vr3,互阻放大器u1本身的等效噪声源包括同相输入端的等效电压源vn+、同相输入端的等效电流源in+和反向输入端的等效电流源in-,c2为等效反馈电容,c3为包括雪崩探测器电容、放大器输入电容和输入杂散电容的等效输入总电容。一种光电转换功能模块,包括光电检测模块和雪崩探测器偏置电压生成电路以及tec控制电路,且光电检测模块和雪崩探测器偏置电压生成电路以及tec控制电路封装在第二屏蔽结构中。第二屏蔽结构为金属结构。与现有技术相比,本发明产生的有益效果是:(1)通过设计合适的参数,三级半导体制冷器的负载能力远大于单级半导体制冷器,提高了光电检测模块的极限工作温度;三级半导体制冷器第一级的制冷系数和负载能力小于单级半导体制冷器,提高了光电检测模块的温控温度精度。本发明所述的光电检测模块的工作温度可达到-40℃-+50℃,温控温度精度可达±0.05℃。(2)本发明所述的光电检测模块大大降低了互阻放大器u1的输入杂散电容,也就大大降低了等效输入总电容c3,大大降低了互阻放大器u1噪声增益ng,基本消除了互阻放大器u1电路受到的电磁干扰,大大降低了互阻放大器u1的噪声水平,输出噪声由10mv降低到了2.5mv,光电检测模块的输出信号的信噪比提高到现有技术的4倍。本发明公开了一种基于雪崩探测器的光电检测模块,由雪崩探测器apd、三级半导体制冷器tec、热敏电阻rt、互阻放大器u1、第一电阻r1、第二电阻r2、第一电容c1和第一屏蔽结构组成。光电检测模块的雪崩探测器apd和热敏电阻rt并行安装在三级制冷器tec的第一级的中心位置。三级半导体制冷器tec的各级之间采用串联的工作方式和端面面积逐渐增大的结构,第二级的端面面积大于第一级,第三级的端面面积大于第二级。光电检测模块的雪崩探测器apd与互阻放大器u1封装在第一屏蔽结构中,雪崩探测器apd的阳极apd+与互阻放大器u1的反向输入端之间的连接线(trace1)长度降低到1mm。光电检测模块、雪崩探测器偏置电压生成电路和tec控制电路共同组成完整的光电转换功能模块,封装在第二屏蔽结构中。附图说明图1是本发明的光电检测模块组成结构示意图;图2是本发明的三级半导体制冷器tec组成结构示意图;图3是互阻放大器电路的噪声等效模型示意图;图4是本发明的光电检测模块内部结构实物图;图5是本发明的光电检测模块外部结构实物图;图6是本发明所述的光电检测模块和其他功能电路组成的完整的光电转换功能模块组成结构示意图;图7是本发明所述的光电检测模块和其他功能电路组成的完整的光电转换功能模块实物图。具体实施方式一种基于雪崩光电探测器的光电检测模块,该光电检测模块包括雪崩探测器apd、三级半导体制冷器tec、热敏电阻rt、互阻放大器u1、第一电阻r1、第二电阻r2、第一电容c1和第一屏蔽结构;其中,第二电阻r2和第一电容c1并联连接在互阻放大器u1的同相输入端和光电检测模块的地输入引脚gnd之间,第一电阻r1连接在互阻放大器u1的反向输入端和互阻放大器u1的输出端之间,互阻放大器u1的正电源端接光电检测模块的正电源输入引脚vcc,互阻放大器u1的负电源端接光电检测模块的负电源输入引脚vee,互阻放大器u1的输出端接光电检测模块的信号输出引脚vout;雪崩探测器apd的阳极apd+接互阻放大器u1的反向输入端,雪崩探测器apd的阴极接光电检测模块的偏置电压输入引脚apd-;热敏电阻rt连接在光电检测模块温敏正输出引脚tsence+和温敏负输出引脚tsence-之间;三级半导体制冷器tec连接在光电检测模块制冷正输入引脚tec+和制冷负输入引脚tec-之间;第一屏蔽结构是镀金的金属结构,将雪崩探测器apd、三级半导体制冷器tec、热敏电阻rt、互阻放大器u1、第一电阻r1、第二电阻r2、第一电容c1封装在结构中,第一屏蔽结构与光电检测模块的地输入引脚gnd相连,与光电监测模块的其他输入输出引脚不相连。所述的热敏电阻rt为印刷型片式负温度系数热敏电阻。所述光电检测模块的雪崩探测器apd和热敏电阻rt并行安装在三级制冷器tec的第一级的中心位置。三级半导体制冷器tec的各级之间采用串联的工作方式和端面面积逐渐增大的结构,第二级的端面面积大于第一级,第三级的端面面积大于第二级。所述的光电检测模块的雪崩探测器apd与互阻放大器u1封装在第一屏蔽结构中,雪崩探测器apd的阳极apd+与互阻放大器u1的反向输入端之间的连接线(trace1)长度降低到1mm。所述的光电检测模块、雪崩探测器偏置电压生成电路和tec控制电路共同组成完整的光电转换功能模块,封装在第二屏蔽结构中,进一步降低了电磁干扰噪声,提高了输出信号信噪比。为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。本发明公开了一种基于雪崩探测器的光电检测模块,如图1所示,包括雪崩探测器apd、三级半导体制冷器tec、热敏电阻rt、互阻放大器u1、第一电阻r1、第二电阻r2、第一电容c1和第一屏蔽结构;其中,第二电阻r2和第一电容c1并联连接在互阻放大器u1的同相输入端和光电检测模块的地输入引脚gnd之间,第一电阻r1连接在互阻放大器u1的反向输入端和互阻放大器u1的输出端之间,互阻放大器u1的正电源端接光电检测模块的正电源输入引脚vcc,互阻放大器u1的负电源端接光电检测模块的负电源输入引脚vee,互阻放大器u1的输出端接光电检测模块的信号输出引脚vout;雪崩探测器apd的阳极apd+接互阻放大器u1的反向输入端,雪崩探测器apd的阴极接光电检测模块的偏置电压输入引脚apd-;热敏电阻rt连接在光电检测模块温敏正输出引脚tsence+和温敏负输出引脚tsence-之间;三级半导体制冷器tec连接在光电检测模块制冷正输入引脚tec+和制冷负输入引脚tec-之间;第一屏蔽结构是镀金的金属结构,将整个光电检测模块封装在结构中,第一屏蔽结构与光电检测模块的地输入引脚gnd相连,与光电监测模块的其他输入输出引脚不相连。所述的热敏电阻rt为印刷型片式负温度系数热敏电阻。所述光电检测模块的雪崩探测器apd和热敏电阻rt并行安装在三级半导体制冷器tec的第一级的中心位置,如图2所示,三级半导体制冷器tec的各级之间采用串联的工作方式和端面面积逐渐增大的结构,第二级的端面面积大于第一级,第三级的端面面积大于第二级。保证第一级的能量能够快速传递到第三级。进一步的,所述三级半导体制冷器tec的总负载能力为qc,第一级负载能力为qc1,第二级负载能力为qc2,第三级负载能力为qc3。第一级的制冷系数为ε1,第二级的制冷系数为ε2,第一级的制冷系数为ε3。总负载能力qc可以表示为:qc=qc1+qc2+qc3(3)其中,第三级负载能力第二级负载能力qc1<qc2<qc3。则由公式(3)可得例如,第一级的制冷系数ε1为0.2,第二级的制冷系数ε2为0.3,第三级制冷系数ε3为0.4,第一级的负载能力为0.3w,通过公式(4)可以计算:总负载能力qc=qc1+qc2+qc3=6.15w。通过设计合适的参数,三级半导体制冷器的负载能力远大于单级半导体制冷器,提高了光电检测模块的极限工作温度;三级半导体制冷器第一级的制冷系数和负载能力小于单级半导体制冷器,提高了光电检测模块的温控温度精度。本发明所述的光电检测模块的工作温度可达到-40℃-+50℃,温控温度精度可达±0.05℃。进一步的,所述互阻放大器u1电路的噪声等效模型如图3所示。在噪声模型中,互阻放大器u1反向输入端的等效输入电阻为r3,同相输入端的等效输入电阻为r2,反馈电阻为r1。r1、r2和r3的热噪声为vr1、vr2和vr3。互阻放大器u1本身的等效噪声源包括同相输入端的等效电压源vn+、同相输入端的等效电流源in+和反向输入端的等效电流源in-。c2为等效反馈电容,c3为包括雪崩探测器电容、放大器输入电容和输入杂散电容的等效输入总电容。互阻放大器u1的输出噪声成分如表1所示:表1互阻放大器噪声源在输出噪声的贡献噪声源在输出噪声的贡献vn+vn+×ngin+(in+r2)×ngin-(in+r1)r1vr1r2vr2×ngr3vr3×(r1/r3)由表1可以得出,互阻放大器u1的噪声水平取决于互阻放大器u1噪声增益ng的大小。在低频段在高频段由于r1远小于r3,c2远小于c3,由此可得,噪声增益ng在低频段约为1,在高频段取决于等效输入电容c3的大小。在现有技术中,雪崩探测器apd的阳极apd+与互阻放大器u1的反向输入端之间的连接线trace1长度大于10mm,且未使用屏蔽结构进行静电屏蔽,输入杂散电容很大,互阻放大器u1电路受到的电磁干扰也比较严重,影响了光电检测模块的输出信号的信噪比。本发明所述的光电检测模块的雪崩探测器apd与互阻放大器u1封装在第一屏蔽结构中,雪崩探测器apd的阳极apd+与互阻放大器u1的反向输入端之间的连接线trace1长度降低到1mm,如图4和图5所示。本发明所述的光电检测模块大大降低了互阻放大器u1的输入杂散电容,也就大大降低了等效输入总电容c3,大大降低了互阻放大器u1噪声增益ng,基本消除了互阻放大器u1电路受到的电磁干扰,大大降低了互阻放大器u1的噪声水平,输出噪声由10mv降低到2.5mv,光电检测模块的输出信号的信噪比提高到现有技术的4倍。进一步的,由本发明所述的光电检测模块和其他功能电路组成的完整的光电转换功能模块如图6和图7所示,包括:雪崩探测器光电检测模块,用于将输入的光信号转换成电信号;雪崩探测器偏置电压生成电路,用于生成雪崩探测器正常工作所需要的偏置电压;tec控制电路,用于控制雪崩探测器的工作温度;第一屏蔽结构,用于封装雪崩探测器集成模块,对雪崩探测器模块进行静电屏蔽;第二屏蔽结构,用于封装整个光电检测模块,对整个光电检测模块进行静电屏蔽。光电转换功能模块有5个输入输出端口:雪崩探测器偏置电压调节端,用于调节雪崩探测器偏置电压的大小;vcc供电输入端,用于给光电检测模块提供正的工作电压;vee供电输入端,用于给光电检测模块提供负的工作电压;信号输出端,用于输出信号;接地端,与第二屏蔽结构连接在一起,接地。本发明未详细描述内容为本领域技术人员公知技术。以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1