一种基于全新核磁共振回波机制的磁共振成像方法与流程

文档序号:14773461发布日期:2018-06-23 02:17阅读:636来源:国知局
一种基于全新核磁共振回波机制的磁共振成像方法与流程

本发明属于磁共振成像技术领域,特别涉及一种基于全新核磁共振回波机制的磁共振成像方法。



背景技术:

磁共振成像(magnetic resonance imaging,MRI)是目前唯一无损观测生物体以及人体内部任意深度流体行为(流动、扩散)的影像学模态。依据体内流体状态的诊断作为对于传统以固相信息(包括病理切片,X射线/CT/MRI结构像)为主的诊断的补充和完善,因其特异性和灵敏性在临床实践中越来越受到重视。尤其以ADC和DTI为代表的扩散成像,在肿瘤MRI诊断中已具有不可替代的价值,在脑科学的基础研究及临床应用中也起到重要作用。随着MRI方法学的不断进步,新涌现的DKI、DSI等技术在传统扩散成像基础上对肿瘤分级诊断、神经束跟踪具有更高的精准度。

MRI中通过施加两个强度相同极性相反的空间梯度磁场实现对流动和扩散信号的敏化,其中对扩散的敏化程度一般用集总参数b值来代表。加强扩散梯度以及加长两个扩散梯度的间隔(称为扩散时间)都可以提高b值。为了更为精细的刻画微尺度下的流体行为,新发展的DKI、DSI等技术都需要施加很高的b值来放大扩散效应。由于梯度系统硬件的限制以及对人体的保护防止外周神经刺激,梯度强度不能无限提高,现有的临床机器一般都已经用到了极限,要进一步提高b值只能加长扩散时间。这就意味着从自旋被激发到信号被采集之间需要一段较长的准备时间(一般不低于50毫秒),在这么长的时间内如何最大可能的保持核磁信号减少衰减就成为扩散成像的关键问题之一。

MRI自旋被激发后即自由感应衰减,信号以指数形式快速下降至零。通过施加各种射频和梯度脉冲序列,人们可以将消失的MRI信号以各种回波的形式重现,例如梯度回波、自旋回波以及受激回波,其产生的物理机制各不相同,所含的弛豫权重也不一样。梯度回波为权重:自旋回波为T2权重:exp(-t/T2),受激回波将一部分时间T2权重代替为T1权重:其中t为从信号激发到k空间中心采集的时间,tm为受激回波序列中第二和第三射频脉冲间距一般称为混合时间。一般地:因此梯度回波不适合扩散成像;自旋回波目前在临床成像序列中应用最多,但是在长扩散时间下T2弛豫也会导致信号衰减很多。受激回波由于其中一段tm时间转为T1弛豫,可以减少信号的衰减,但是其只能回聚一半的自旋信号,因此并不是在任何情况下都优于自旋回波,而只有在满足时,受激回波强于自旋回波。



技术实现要素:

为了解决上述技术问题,本发明提供了一种基于全新核磁共振回波机制的磁共振成像方法。

本发明具体技术方案如下:

本发明提供了一种基于全新核磁共振回波机制的磁共振成像方法,包括如下步骤:

S1:用第一个90°的射频脉冲将磁化矢量激发到横平面,在第一自旋演化期的过程中,每个自旋均按照横向弛豫时间T2进行弛豫,同时由于磁场不均匀导致进动频率偏共振,累积形成相散,使所述自旋分散到整个横平面上;

S2:用第二个90°的射频脉冲将相散的所述自旋从所述横平面翻转到纵平面,在第二自旋演化期的过程中,所述自旋的纵向分量按照纵向弛豫时间T1进行弛豫,所述自旋的横向分量按照所述横向弛豫时间T2弛豫进行弛豫,同时所述横向分量在所述进动频率偏共振下形成相散,使所述横向分量的自旋分散到整个空间;

S3:用一个与所述90°的射频脉冲垂直的180°射频脉冲将所述自旋的纵向分量翻转至相反方向,再经过第三自旋演化期,使所有所述自旋沿与所述步骤S2中相反方向的相散路径回到所述纵平面内;

S4:用第三个90°射频脉冲将所有所述自旋从所述纵平面翻转回所述横平面,经过第四自旋演化期,将所述自旋沿与所述步骤S1中方向相反的相散路径回聚,形成回波信号。

进一步地,所述第一自旋演化期与所述第四自旋演化期的时长相等,所述第二自旋演化期与所述第三自旋演化期的时长相等。

进一步地,所述步骤S1包括如下步骤:

S1.1:初始状态自旋磁化矢量M0全部沿+z轴,选取其中一个偏共振频率为ω的自旋进行跟踪观察,此时所述自旋磁化矢量三分量如下:

S1.2:通过第一个与+x轴夹角为θ=90°的射频脉冲将所有所述自旋磁化矢量激发到+y轴方向,在射频激发同时加载选层梯度实现层面选择性激发,并在激发完成后加载相反极性半面积的选层回绕梯度将激发后的自旋磁化矢量相位归零,此时所述自旋磁化矢量三分量如下:

进一步地,所述步骤S2包括如下步骤:

S2.1:经过τ1时间的演化,所述自旋磁化矢量相位散开到整个xy横平面,其中包括由于磁场不均匀引起的相散ωτ1以及其它梯度场引起的相散并且所述自旋的所述横向分量受到T2弛豫,所述自旋的所述纵向分量受到T1弛豫,此时所述自旋磁化矢量三分量如下:

S2.2:通过第二个与+x轴夹角为θ=90°的射频脉冲将所有所述自旋磁化矢量翻转到xz纵平面,在射频翻转同时加载选层梯度实现层面选择性翻转,此时所述自旋磁化矢量三分量如下:

S2.3:经过τ2时间的演化,所述自旋磁化矢量由于相散ωτ2将散开到整个xyz空间,并且横向分量受到T2弛豫,纵向分量受到T1弛豫,此时所述自旋磁化矢量三分量如下:

进一步地,所述步骤S3包括如下步骤:

S3.1:通过与+y轴夹角为θ=180的射频脉冲将所有所述自旋磁化矢量的xz纵平面分量反向,在射频翻转的同时加载选层梯度实现层面选择性翻转,此时所述自旋磁化矢量三分量如下:

S3.2:经过τ2时间的演化,所述自旋磁化矢量的横向分量由于相散ωτ2将回到xz纵平面内,并且横向分量受到T2弛豫,纵向分量受到T1弛豫,此时所述自旋磁化矢量三分量为:

进一步地,所述步骤S4包括如下步骤:

S4.1:通过第三个与+x轴夹角为θ=90°的射频脉冲将所有所述自旋磁化矢量翻转回到xy横平面,在射频翻转同时加载选层梯度实现层面选择性翻转,此时所述自旋磁化矢量三分量为:

S4.2:经过τ1时间的演化,所述自旋磁化矢量横向矢量由于包括由于场不均匀引起的相散ωτ1以及其它梯度场如扩散梯度引起的相散的共同作用回聚到+y轴附近,并且横向分量受到T2弛豫,纵向分量受到T1弛豫,最终形成回波信号,此刻所述自旋磁化矢量三分量为:

最终得到的回波信号如下:

进一步地,所述磁场不均匀包括主磁场的残余不均匀以及样品磁化率引起的磁场不均匀。

进一步地,所述步骤S1和所述步骤S4中施加的梯度场的面积相同,所述步骤S2和所述步骤S3施加的梯度场的面积相同。

在S1阶段和S4阶段对等地施加面积相同的梯度场不会影响最终的回波形成;同样地,在S2阶段和S3阶段对等的施加面积相同的梯度场也不会影响最终的回波形成。

本发明的有益效果如下:本发明提供了一种基于全新核磁共振回波机制的磁共振成像方法,将散相的自旋翻转至纵向平面,用纵向弛豫代替横向弛豫,以减少信号弛豫衰减;结合全新的回波生成机制在横平面得到完全回聚的回波,最大可能保留了信号。本发明提供的回波序列代替自旋回波或者受激回波运用于扩散和流动成像,可以大幅提图像信噪比,从而为磁共振在体扩散和流动成像提供了更精确可靠的定量化测量方法;四阶段FRE射频脉冲序列可以与满足要求的任意梯度脉冲序列组合,形成完整的MRI脉冲序列,以实现各种功能,包括选层、扩散或者流动敏化、流动补偿,以及配合各种MRI信号采集方式,包括EP、Spiral、Radial、Propeller等,在生物医学研究以及临床诊断中有广阔的应用前景。

附图说明

图1为实施例1所述的一种磁共振成像方法中核磁共振回波序列的示意图;

图2为实施例1所述的一种磁共振成像方法中核磁共振回波序列的自旋演化路径图。

具体实施方式

下面结合附图和以下实施例对本发明作进一步详细说明。本发明将提供的回波序列命名为全回聚回波(Full Refocused Echo),如无特别说明,后文中均简称为FRE。

实施例1

如图1~2所示,本实施例提供了一种基于全新核磁共振回波机制的磁共振成像方法,包括如下步骤:

S1:如图2a所示,初始状态自旋磁化矢量M0全部沿+z轴,选取其中一个偏共振频率为ω的自旋进行跟踪观察,假设其拉莫尔进动频率全程不变,且忽略射频脉冲翻转过程中的弛豫和进动。此刻所述自旋磁化矢量三分量为:

通过第一个沿+x轴翻转角为θ=90°的射频脉冲将所有自旋磁化矢量激发到+y轴方向,在射频激发同时加载选层梯度实现层面选择性激发,并在激发完成后加载相反极性半面积的选层回绕梯度将激发后的自旋磁化矢量相位归零,如图2b所示,此刻所述自旋磁化矢量三分量为:

S2:经过τ1时间的演化,自旋磁化矢量相位散开到整个xy横平面,其中包括由于场不均匀引起的相散ωτ1以及其它梯度场如扩散梯度引起的相散并且横向分量受到T2弛豫,纵向分量受到T1弛豫,如图2c所示。此刻所述自旋磁化矢量三分量为:

第二个沿+x轴翻转角为θ=90°的射频脉冲将所有自旋磁化矢量翻转到xz纵平面,在射频翻转同时加载选层梯度实现层面选择性翻转,如图2d所示。此刻所述自旋磁化矢量三分量为:

经过τ2时间的演化,自旋磁化矢量由于相散ωτ2将散开到整个xyz空间,并且横向分量受到T2弛豫,纵向分量受到T1弛豫,如图2e所示。此刻所述自旋磁化矢量三分量为:

S3:通过沿+y轴翻转角为θ=180°的射频脉冲将所有自旋磁化矢量的xz纵平面分量反向,在射频翻转同时加载选层梯度实现层面选择性翻转,如图2f所示。此刻所述自旋磁化矢量三分量为:

经过τ2时间的演化,自旋磁化矢量的横向分量由于相散ωτ2将回到xz纵平面内,并且横向分量受到T2弛豫,纵向分量受到T1弛豫,如图2g所示。此刻所述自旋磁化矢量三分量为:

S4:第三个沿+x轴翻转角为θ=90°的射频脉冲将所有自旋磁化矢量翻转回到xy横平面,在射频翻转同时加载选层梯度实现层面选择性翻转,如图2h所示。此刻所述自旋磁化矢量三分量为:

经过τ1时间的演化,自旋磁化矢量横向矢量由于包括由于场不均匀引起的相散ωτ1以及其它梯度场如扩散梯度引起的相散的共同作用回聚到+y轴附近,并且横向分量受到T2弛豫,纵向分量受到T1弛豫,如图2i所示,最终形成FRE回波。此刻所述自旋磁化矢量三分量为:

最终的FRE回波信号为:

而同样自旋准备时间的自旋回波(SE)信号和受激回波(STE)信号分别为:

很明显,SFRE>SSTE;同时由于T1>T2,可知SFRE>S SE。因此,FRE回波在任何条件下都同时严格地优于自旋回波和受激回波。

实验例

向直径5cm的圆柱形试管内注满浓度为2.5mM的钆喷酸葡胺水溶液,其横向弛豫时间T2=75ms、纵向弛豫时间T1=116ms;检测时的自旋演化期设置为τ1=12ms,τ2=97ms,分别采用自旋回波(SE)、受激回波(STE)以及本发明提供的回波序列FRE进行测定成像,分别对三种回波成像的信号和噪声进行测定,并计算信噪比。结果如表1所示。

表1三种回波成像的信噪比

由表1可知,FRE成像的信噪比显著高于SE和STE。因此,使用本发明提供的回波序列代替自旋回波或者受激回波运用于扩散和流动成像,可以大幅提图像信噪比,从有效提高流动成像的精确性。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1