一种基于基团光谱特征的海洋溢油乳化物遥感识别方法与流程

文档序号:15887985发布日期:2018-11-09 19:36阅读:203来源:国知局
一种基于基团光谱特征的海洋溢油乳化物遥感识别方法与流程

本发明涉及遥感海洋溢油监测技术领域,特别是涉及一种基于基团光谱特征的不同类型海洋溢油乳化物高光谱遥感识别与分类方法。

背景技术

据不完全估算,海洋溢油事件的47%来源于人类活动,发生在包括石油开采、加工、运输等诸多过程中,由此带来的溢油污染会严重危害海洋生态环境,引起巨大的经济损失。此外,在风、浪、流等因素的综合影响下,溢油污染还会对海水、海表大气、海底、海岸带等产生大范围、长时间的危害。如美国墨西哥湾2010年深海油井溢油事故、2010年中国大连新港溢油事件,都引起巨大的环境、经济损失。

海洋溢油事故发生时,在海洋动力作用下,溢油与水混合,会形成稳定或者不稳定的(油包水相或水包油相)的油水混合物(油水乳化物)。其中,油包水相溢油乳化物是指海水以小液滴的形式分散存在于连续的原油中。水包油相溢油乳化物是连续的海水中存在分散的原油小液滴。油包水乳化物一旦形成,则更加难以清除和回收,现有表面活性剂和溢油回收设备等都无法有效的发挥作用,其对海洋环境的危害更为显著。溢油乳化物在目视特征上表现为棕色、橘黄色或黄色的“巧克力冻”、“慕斯”条带状物质,这与海洋中马尾藻极其相似。在反射光谱形态上,马尾藻不是唯一能够抬升红边反射率的海洋有机物,海洋溢油乳化物也会导致近红外波段反射率的抬升,却不是由于红边效应;溢油乳化物与马尾藻目视特征和光谱特征的相似性进一步增加了两者识别和分类的难度。

高光谱遥感技术是20世纪90年代后期才趋于成熟的新型光学遥感前沿技术,高光谱遥感影像蕴含着近似连续的地物光谱信息,精细的光谱分辨率使其能够探测出诊断性光谱吸收特征,从而反映地物间的细微差异。不同类型溢油乳化物的基团和马尾藻的叶绿素、细胞壁等在其各自的光谱曲线中产生了独特的吸收特征,这些特征以峰谷的形式呈现,峰谷的位置和数值提供了足够的信息来探测识别不同目标物。因此,准确及时地识别不同类型的溢油乳化物并与马尾藻区分,应用于海洋溢油污染治理工作,对于海洋溢油污染监测具有重要的现实意义。



技术实现要素:

本发明要解决的技术问题是:针对溢油污染区域难以人为进入监测,水色背景噪声大,不同溢油乳化物与马尾藻目视特征相同、光谱形态相似、目前难以区分的问题,本发明结合高光谱遥感影像,通过对不同类型溢油乳化物或马尾藻各自独有基团的特征光谱检测,实现对其识别与分类(区分),对于海洋溢油污染监测具有重要意义。

为了解决以上技术问题,本发明提供的基于基团光谱特征的海洋溢油乳化物遥感识别方法,包括以下步骤:

步骤1、数据预处理

对高光谱遥感影像数据进行预处理,获得高光谱反射率数据;

步骤2、光谱信息增强

对高光谱反射率数据进行背景水体光谱差值计算,逐像元减去背景水体光谱,削弱背景水色的影响;对高光谱反射率数据进行归一化处理,得到归一化的反射率值;

步骤3、基团特征光谱检测

不同类型溢油乳化物与马尾藻的特征基团在高光谱曲线中是以不同的峰谷点分布模式的形式存在。高光谱曲线的峰谷信息是区分不同种类物质的指示性光谱特征,相同的物质具有相似的峰谷点分布模式,不同的物质峰谷点分布模式则差异明显。

针对每个像元,检测其光谱曲线的波峰和波谷作为基团特征点(利用两次差分计算,能够提取出光谱曲线中的峰谷点位置),基团特征点数据存储为[pos,pk,value],pos为所检测基团特征点的光谱波长,pk为峰谷标识,value为归一化的反射率值,每个像元的基团特征点数据构成该像元的特征光谱数据;

步骤4、计算相似匹配度阈值

选取溢油乳化物的多条典型特征光谱数据作为训练样本,所述溢油乳化物的典型特征光谱数据是指确定为溢油乳化物的光谱经过上述步骤1-3所获得的特征光谱数据,进一步利用[pos,pk,value]中的峰谷标识pk,将每条典型特征光谱数据分为波峰特征点光谱数据peak和波谷特征点光谱数据trough,

利用下述公式计算两两光谱特征数据之间的相似匹配度ε:

ε=|df(peakf,peakg)-df(troughf,troughg)|

式中,df(peakf,peakg)为两条特征光谱数据的波峰特征点光谱数据peakf和peakg之间的离散fréchet距离,df(troughf,troughg)为两条特征光谱数据的波谷特征点数据troughf和troughg之间的离散fréchet距离;离散fréchet距离考虑了曲线上点的数值和分布模式,能有效地计算出曲线之间的相似度,离散fréchet距离的计算模型涉及到参数m、n和q,其中,q=max(m,n);计算df(peakf,peakg)时,m,n分别为两条特征光谱曲线的波峰特征点数量;计算df(troughf,troughg)时,m,n分别为两条特征光谱曲线的波谷特征点数量;

计算得到的相似匹配度的最大值作为相似匹配度阈值ε0;

基于离散fréchet距离的相似匹配度计算方法区别于常见的相似度计算方法,会考虑曲线上点的数值和分布模式,不仅计算了数值的差异,也考虑了曲线间的形态相似性;在此基础上,本发明提出的基于离散fréchet距离的相似匹配度计算方法,还兼顾了峰点与谷点的差异(反射光谱曲线的峰谷形成原因不同)。

步骤5、溢油乳化物的识别与分类

计算待识别分类影像中每个像元的特征光谱数据与训练样本的平均光谱数据之间的相似匹配度,如果相似匹配度大于相似匹配度阈值,则该像元为海洋溢油乳化物,将判定为海洋溢油乳化物的像元进行合并,即得到识别结果。

本发明具有如下有益效果:

本发明借助高光谱影像包含的精细特征光谱信息,基于不同类型溢油乳化物各自独有的基团特征光谱,并区别于马尾藻的特征光谱,能够有效识别出不同类型溢油乳化物,并消除目视特征相同、光谱形态相似导致的误判现象。实际效果表明,本发明能够降低溢油区监测的时间、人力和物力成本,保证监测精度,提高实时监测效率。

本发明的应用实例也能进一步增强高光谱遥感技术在海洋溢油油膜污染监测应用的普及性和有效性,可以更好地服务于海洋环境监测、海洋溢油污染评估、海洋溢油量估算与溢油污染定损索赔等海洋应用行业。

附图说明

图1为本发明流程示意图。

图2为不同类型溢油乳化油区以及马尾藻区影像。

图3-a为马尾藻原始光谱。

图3-b为马尾藻背景水体差值光谱。

图3-c为马尾藻归一化光谱。

图4-a为水包油乳化物原始光谱。

图4-b为水包油乳化物归一化光谱。

图4-c为油包水乳化物原始光谱。

图4-d为油包水乳化物归一化光谱。

图5为本发明基团特征光谱检测结果示意图。

图6为本发明训练-识别的归一化相似度指数示意图。

图7为本发明溢油乳化物、马尾藻识别结果图。

图8为本发明不同类型溢油乳化物分类结果图。

具体实施方式

下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。

本实施例应用于4景aviris机载高光谱影像数据,光谱范围350-2400nm,光谱分辨率为10nm;区域1-3为不同类型溢油乳化物研究区,区域4为马尾藻研究区;对上述4景高光谱影像实施本发明,类间(溢油乳化物与马尾藻)区分识别、类内(两种类型溢油乳化物)区分识别效果均精确;基于本发明对马尾藻区给出区分结果图以说明本发明在不同溢油乳化物识别分类上不会误判为其他还要物质,说明其有效性和准确性;基于本发明识别方法对不同类型溢油乳化物实现分类,分类效果佳。

如图1所示,为本发明实施例基于基团光谱特征的不同类型海洋溢油乳化物高光谱遥感识别与分类方法流程示意图,包括以下步骤:

步骤1、aviris影像预处理。

影像预处理包括辐射定标、大气校正,获得高光谱反射率数据。在此基础上,去除水汽波段,并对像元光谱进行5点平滑,消除大气等细小误差。

如图2所示,为4景aviris研究区经步骤1预处理后的真彩色合成图像。

步骤2、光谱信息增强。

该步骤包括:对高光谱反射率数据进行背景水体光谱差值计算,逐像元减去背景水体光谱,削弱背景水色的影响。如图3-a所示,针对马尾藻受水色背景影响较大,先对其进行背景水体差值计算,获得差值光谱图3-b,再对其进行归一化处理,结果见图3-c。该步骤能够有效消除因辐射能量差异导致的计算反射率数值的偏差,增加同物质光谱形态的统一性和不同物质光谱形态的差异性。

采用下述公式对高光谱反射率数据进行归一化处理,得到归一化的反射率值βi:

βi=(αi-αmin)/(αmax-αmin)i=1,2,3,…,n

其中,n为经预处理后的波段数,i为高光谱数据中的波段号,αi代表波段i的反射率值,αmax和αmin分别代表一条光谱曲线中的反射率最大值与最小值。

如图4-a和图4-c所示,分别为两种溢油乳化物原始光谱,图4-b和图4-d为其对应的经光谱归一化处理后的光谱。步骤2能将同一类型物质的光谱特征集中同一,并且能够将不同物质的光谱特征有效区分且增大差异。

步骤3、基团特征光谱检测。

如图5所示,基团特征光谱检测结果示意图,溢油乳化物与马尾藻的基团特征光谱之间存在明显差异。在图5中示意出来。溢油乳化物与马尾藻所包含基团的位置和反射率数值都存在差异,如下表,为溢油乳化物检测出的基团位置和马尾藻检测出的基团位置。

表1乳化油和马尾藻所检测出的基团位置表

本发明利用乳化油和马尾藻所含有基团在不同波段反射率峰值或谷值的区别来实现。具体如下:

针对每个像元,检测其光谱曲线的波峰和波谷作为基团特征点。

光谱曲线的波峰和波谷通过以下方法进行检测:

εi=δi+4-δi,i=1,2,3,…,n-2

其中,i为高光谱数据中的波段号,βi和βi+4分别代表波段i和波段i+1的归一化反射率值,若εi=2,则表明该像元的光谱曲线在波段i处为波谷,若εi=-2,则表明该象元的光谱曲线在波段i处为波峰。

基团特征点数据存储为[pos,pk,value],pos为所检测基团特征点的光谱波长,pk为峰谷标识,pk=-2代表波峰,峰谷标识pk=2代表波谷。value为归一化的反射率值,每个像元的基团特征点数据构成该像元的特征光谱数据。

处理完成后,针对avris影像每个像元存储为上述的[pos,pk,value]数组。

步骤4、计算相似匹配度阈值。

选取溢油乳化物的多条典型特征光谱数据作为训练样本,所述溢油乳化物的典型特征光谱数据是指确定为溢油乳化物的光谱经过上述步骤1-3所获得的特征光谱数据,进一步利用[pos,pk,value]中的峰谷标识pk,将每条典型特征光谱数据分为波峰特征点光谱数据peak和波谷特征点光谱数据trough。

利用下述公式计算两两光谱特征数据之间的相似匹配度ε,计算得到的相似匹配度的最大值作为相似匹配度阈值ε0。

ε=|df(peakf,peakg)-df(troughf,troughg)|

式中,df(peakf,peakg)为两条特征光谱数据的波峰特征点光谱数据peakf和peakg之间的离散fréchet距离,df(troughf,troughg)为两条特征光谱数据的波谷特征点数据troughf和troughg之间的离散fréchet距离;

其中,计算两光谱数据离散fréchet距离的计算公式如下:

df(f,g)为光谱数据f和g之间的离散fréchet距离。离散fréchet距离的计算模型涉及到参数m、n和q,其中,q=max(m,n);计算df(peakf,peakg)时,m,n分别为两条特征光谱曲线的波峰特征点数量;计算df(troughf,troughg)时,m,n分别为两条特征光谱曲线的波谷特征点数量。

离散fréchet距离模型包含一个参数化过程(数学过程)。s为参数,属于[1,q],α,β是指向两条特征光谱曲线的波峰(或波谷)特征点的集合,f(α)和g(β)分别是α,β对应的波峰(或波谷)值;α∶[1,q]→[0,m],β∶[1,q]→[0,n],用s同时映射α和β表达一个同步过程;例如,s=2的时候,α,β分别取值3,4,则代表各自第3个和第4个波峰(或波谷),表示计算光谱数据f的第3个特征点f(3)和光谱数据g的第4个特征点g(4)的欧式距离。离散fréchet距离的数学模型可参见论文:eitert,mannilah.computingdiscretefrechetdistance[j].seealso,1994,64(3):636-637。

本发明将遥感光谱特征点数据与现有离散fréchet距离计算公式结合,即参数m、n和q是跟光谱特征点相关的,从而实现两光谱特征数据间的离散fréchet距离求取,以此来表达两条光谱曲线的相似度。

步骤5、溢油乳化物的识别与分类。

利用步骤4中的样本以及相似匹配度阈值,采用基于离散fréchet距离的相似匹配度计算方法对整景aviris进行识别,并应用归一化相似指数来增加识别目标,将大于相似匹配度阈值的像元记为识别结果。在识别结果的基础上,通过合并识别结果的方式生成分类结果。

其中,相似匹配度进行归一化处理通过下述公式实现:

εj′代表待识别影像的像元j的光谱特征数据与训练样本的平均光谱数据之间的相似匹配度,nεj′为归一化指数,如果nεj′大于nε0,则该像元j为海洋溢油乳化物。

本实施例中,归一化相似匹配度阈值nε0=0.7。

如图6所示,本发明步骤5中计算得到2景aviris影像的归一化相似度指数,每个像元的值为该像元被识别为目标物(溢油乳化物或马尾藻)的可能性,步骤5中的相似匹配度阈值(ε0=0.7)在统计直方图中标出;由统计直方图明显表明本发明在识别溢油乳化物和马尾藻中,有效将目标物与非目标物差异突出,识别效果较好。

如图7所示,4景aviris影像实施本发明的方法后的识别结果图。可见,目标物(溢油乳化物和马尾藻)有效地从背景以及其他地物中区别出来,本发明识别效果较好;

如图7所示,基于本发明的识别方法,对不同类型的溢油乳化物进行分类;以图8左侧两个光谱(wo乳化物与ow乳化物)为训练集,步骤3检测出来的两种的基团差异如图8(c);基于此应用本发明识别出wo乳化物和ow乳化物,再进行叠加,获得分类结果。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1