一种光纤光栅畸变光谱解调方法与流程

文档序号:17151744发布日期:2019-03-19 23:30阅读:456来源:国知局
一种光纤光栅畸变光谱解调方法与流程

本发明涉及光纤光栅领域,特别是一种光纤光栅畸变光谱解调方法。



背景技术:

光纤光栅(fiberbragggrating,fbg)传感作为近年来迅速发展的一项新型传感技术,以其抗电磁干扰、线性传感、便于复用组网等优点,被应用于多种工程领域的传感监测中,尤其在结构健康监测领域具有巨大的应用价值。

随着结构健康监测系统的结构形式和功能控制呈现复杂化、多样化和智能化发展趋势,作为监测系统最首要的前端输入,fbg传感网络的长期可靠性和稳定性对系统监测性能起到至关重要的作用。在结构健康监测系统中,fbg传感网络的实际工程应用一般具有分布面积大、使用期限长、材料属性复杂等特点,虽然fbg具有较长的使用寿命,但是在长期的循环荷载和环境侵蚀的双重作用下,加上施工技术和结构设计的局限,fbg传感器不可避免出现不同程度的性能退化现象。当fbg传感器出现性能衰退或断裂,将会直接对结构健康监测系统造成不利影响:一方面,局部fbg的失效,导致传感器网络无法准确采集测量数据,严重影响后续监测评判结果,造成监测系统对结构健康状况的故障误报和漏报;另一方面,fbg传感器通常是以网络形式大规模埋嵌到结构中,若更换单个fbg传感器需要破坏整个结构,甚至需要更换整条光缆,势必会造成巨大的经济损失。因此,fbg性能退化影响传感网络的可靠性问题开始引起人们的高度重视。

fbg性能退化会出现不同程度的光谱畸变、光强衰减、光谱重叠等现象,这些退化光谱难以被解调,从而使fbg失去了传感能力。



技术实现要素:

有鉴于此,本发明的目的是提出一种光纤光栅畸变光谱解调方法,既能够保证对正常光谱的高精度解调,又能够最大限度地对畸变光谱进行自适应解调。

本发明采用以下方案实现:一种光纤光栅畸变光谱解调方法,具体包括以下步骤:

步骤s1:得到采样光谱;

步骤s2:采用具有不对称性质的类超高斯函数构造畸变光谱理论模型,运用基于反射光谱重构的解调原理,设计应对畸变光谱的自适应解调模型;

步骤s3:利用粒子群算法实现该应对畸变光谱的自适应解调模型,对采样光谱进行寻优,寻得fbg的中心波长与畸变参数,解决因fbg光谱畸变而难以解调的情况。

进一步地,步骤s1具体为:将fbg的反射光谱通过3db光耦合器送入光谱采样设备,所得到采样数据交由电脑进行数据处理,得到采样光谱。

进一步地,步骤s2中,所述畸变光谱理论模型为:

式中,λ为采集到的采样光谱的波长,λb是中心波长;ε是衰减因子,衡量对光强ir的影响,反映光谱衰减程度,ε值小于1,ε的值越小,光谱衰减越严重,光谱峰值越低;τ是展宽参数,τ值越大主峰展宽越大;α是控制波形不对称的参数,α值越大光谱波形左右差异越大,波形越不对称。

进一步地,步骤s2中,所述自适应解调模型为:

式中,λb、ε、τ、α分别表示中心波长、衰减因子、展宽参数以及控制波形不对称的参数,均为待求的决策变量,r0(λ)为实际需要解调的fbg传感网络光谱数据。

进一步地,步骤s3具体包括以下步骤:

步骤s31:在采集到的采样光谱的波长λ的范围内随机生成中心波长λb,在三个畸变参数的范围内随机生成ε、τ、α,从而构成每个粒子的初始位置x(λb,ε,τ,α),利用步骤s2所设计的畸变光谱理论模型得出每个粒子的r(λ,λb,ε,τ,α),并初始化速度v;

步骤s32:计算各个粒子的适应度函数值即求出各个粒子构造的拟合光谱r与实际采样光谱r0之间的差值;利用最小化差异度的原理,找到各个粒子的历史最小值和整个粒子群的全局最小值;

步骤s33:更新粒子的速度v和每个粒子的中心波长λb,衰减因子ε,展宽参数τ,波形不对称参数α,以确定粒子更新后的位置x(λb,ε,τ,α);

步骤s34:判断是否达到终止条件,若否,则返回步骤s32,若是,则迭代结束,进入步骤s35:

步骤s35:粒子群算法输出最优解,得到采样光谱的中心波长值λb与三个畸变参数ε、τ、α。

与现有技术相比,本发明有以下有益效果:本发明即能够保证对正常光谱的高精度解调,又能够最大限度地对畸变光谱进行自适应解调。

附图说明

图1为本发明实施例的布拉格光纤光栅典型畸变光谱图。

图2为本发明实施例的布拉格光纤光栅传感器畸变光谱解调系统示意图。

具体实施方式

下面结合附图及实施例对本发明做进一步说明。

应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

本实施例提供了一种光纤光栅畸变光谱解调方法,首先,需要分析fbg节点性能退化的光谱特性。如图1所示为典型的fbg退化光谱图。由fbg性能退化而引起的光谱畸变可以大致分为四种类型:主峰展宽变大,峰顶变平;光谱波形不对称,中心波长向左或向右偏移;光强变弱,当光强低于现有解调仪阈值的时候,中心波长将不能被识别;旁瓣增加,当相邻两个工作区域的fbg光谱相互靠近的时候,旁瓣会发生叠加产生附加峰。

本实施例具体包括以下步骤:

步骤s1:得到采样光谱;

步骤s2:采用具有不对称性质的类超高斯函数构造畸变光谱理论模型,运用基于反射光谱重构的解调原理,设计应对畸变光谱的自适应解调模型;

步骤s3:利用粒子群算法实现该应对畸变光谱的自适应解调模型,对采样光谱进行寻优,寻得fbg的中心波长与畸变参数,解决因fbg光谱畸变而难以解调的情况。

在本实施例中,步骤s1具体为:将fbg的反射光谱通过3db光耦合器送入光谱采样设备(光谱分析仪(osa)),所得到采样数据交由电脑进行数据处理,得到采样光谱。

在本实施例中,步骤s2中,所述畸变光谱理论模型为:

式中,λ为采集到的采样光谱的波长,λb是中心波长;ε是衰减因子,衡量对光强ir的影响,反映光谱衰减程度,ε值小于1,ε的值越小,光谱衰减越严重,光谱峰值越低;τ是展宽参数,理论上是大于0的偶数,τ值越大主峰展宽越大;α是控制波形不对称的参数,理论上是大于1的数,α值越大光谱波形左右差异越大,波形越不对称。

在本实施例中,步骤s2中,所述自适应解调模型为:

式中,λb、ε、τ、α分别表示中心波长、衰减因子、展宽参数以及控制波形不对称的参数,均为待求的决策变量,r0(λ)为实际需要解调的fbg传感网络光谱数据。在求解该解调模型的同时,还需要辨识出ε、τ、α这三个畸变参数。

在本实施例中,步骤s3具体包括以下步骤:

步骤s31:在采集到的采样光谱的波长λ的范围内随机生成中心波长λb,在三个畸变参数的范围内随机生成ε、τ、α,从而构成每个粒子的初始位置x(λb,ε,τ,α),利用步骤s2所设计的畸变光谱理论模型得出每个粒子的r(λ,λb,ε,τ,α),并初始化速度v;

步骤s32:计算各个粒子的适应度函数值即求出各个粒子构造的拟合光谱r与实际采样光谱r0之间的差值;利用最小化差异度的原理,找到各个粒子的历史最小值和整个粒子群的全局最小值;

步骤s33:更新粒子的速度v和每个粒子的中心波长λb,衰减因子ε,展宽参数τ,波形不对称参数α,以确定粒子更新后的位置x(λb,ε,τ,α);

步骤s34:判断是否达到终止条件,若否,则返回步骤s32,若是,则迭代结束,进入步骤s35:

步骤s35:粒子群算法输出最优解,得到采样光谱的中心波长值λb与三个畸变参数ε、τ、α。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1