光学元件表面形貌及亚表面缺陷信息的检测方法及其装置与流程

文档序号:17979188发布日期:2019-06-21 23:59阅读:627来源:国知局
光学元件表面形貌及亚表面缺陷信息的检测方法及其装置与流程

本发明涉及一种光学元件表面形貌及亚表面缺陷信息的检测方法及其装置。



背景技术:

随着高功率固体激光系统能量的提升和不断的发展,其对于光学元件质量的要求越来越高。国内外在元件损伤机理上的大量研究表明,在光学元件磨削、抛光等加工过程中产生的亚表面缺陷是导致光学元件抗损伤能力下降的重要因素之一。因此如何有效地检测和评估光学元件不同深度尺寸、形貌特征的亚表面缺陷,从而指导元件加工,有效控制各个工序环节产生的亚表面缺陷已成为高阈值抗激光损伤光学元制造的道切要求。目前,主要采用两类方法检测元件亚表面缺陷:一类为将亚表面缺陷直接暴露出来观察的破坏性方法,即有损检测,如击坑法、酸刻法、磁流变楔角加工等等;另一类为非破坏性的,即无损检测,如散射法、全内反射显微(tirm)技术、共聚焦显微技术等。传统的现有的技术针对光学元件的亚表面缺陷的检测并不完善,比如元件内部缺陷的位置、深度信息等等。因此,如何有效检测亚表面缺陷的深度信息成为光学检测的一个重要方向。



技术实现要素:

本发明提供一种光学元件表面形貌及亚表面缺陷信息的检测方法及其装置,其利用波长信息测量距离,由光源射出一束宽光谱的复色光(呈白色),通过色散镜头发生光谱色散,形成不同波长的单色光。每一个波长的焦点都对应一个距离值;测量光射到物体表面被反射回来,只有满足共焦条件的单色光,可以通过小孔被光谱仪感测到,通过计算被感测的焦点的波长,换算获得距离值,利用两个光谱仪分别接收待测元件的表面以及内部缺陷的光波信息,从而同时得到光学元件的表面信息和内部缺陷的位置以及深度信息等。

为解决现有技术存在的问题,本发明的技术方案是:光学元件表面形貌及亚表面缺陷信息的检测方法,其特征在于:所述检测方法的步骤为:

步骤一:由光源射出一束宽光谱的复色光穿过小孔s,经过偏振片后,将普通光源转变为具有振动方向垂直于xoy平面的线偏振光,照射在色散镜头组上;

步骤二:光线经过色散镜头会聚后照射在待测物体上,色散镜头将波长为的单色光会聚在物体的表面上,将波长为的单色光会聚在物体内部的亚表面缺陷上,光线经过表面和亚表面缺陷散射,后向散射光将再次通过色散镜头;

步骤三:通过色散镜头收集的散射光经过呈45°的分光镜反射后,水平入射进入光阑,光阑为具有较大比值的矩形空间滤波器,长度方向垂直于xoy平面,经过光阑后表面散射光具有更大的偏振度;

步骤四:会聚到物体表面上波长为的散射光经过偏振分光棱镜后会聚在小孔s’上,到达光谱仪一;

步骤五:会聚到亚表面缺陷上波长为的散射光偏振态发生改变,经过偏振分光棱镜,其中一部分经过透射会聚到小孔s’上,到达光谱仪一,另一部分经过偏振分光棱镜会聚到小孔s’’上,到达光谱仪二;

步骤六:光谱仪一的光谱在和处出现峰值,由于表面散射信号远强于亚表面缺陷散射信号,因此得到表面会聚光的波长,根据波长与会聚点之间的关系确定出表面的位置信息;

步骤七:光谱仪二的光谱会聚到亚表面缺陷光的波长处出现峰值,根据波长与会聚点之间的关系得到亚表面缺陷的位置;

步骤八:由表面位置信息和亚表面缺陷位置信息得到亚表面缺陷的深度信息;

步骤九:在同一检测位置存在多个缺陷时,在光谱仪二的光谱上将出现多个峰值,确定检测位置处的亚表面缺陷分布;

步骤十:将探测系统在光学元件表面上二维平移,得到不同位置上的表面位置信息和亚表面缺陷信息三维重建,得到光学元件的表面形貌和亚表面缺陷信息。

所述的步骤一中的复色光呈白光。

用于检测光学元件表面形貌及亚表面缺陷信息的检测装置,白光点光源、偏振片、分光镜、色散镜头组、光阑、偏振分光棱镜、光谱仪一、光谱仪二、计算机;

所述的白光点光源、偏振片、分光镜和色散镜头组依次设置于光轴上,分光棱镜设置于分光镜的一侧,分光棱镜的前面设置有以入射面为中心,位于表面法线上的窄矩形光阑,光谱仪一和光谱仪二分别设置于分光棱镜两个相垂直光路上,光谱仪一与光谱仪二与计算机连接。

所述的分光镜的角度设置为45°。

与现有技术相比,本发明的优点如下:

1、本发明可以同时得到待测元件的表面信息和亚表面缺陷的深度信息,测量效率高,可以实现大视野、高速扫描;

2、本发明可以检测所有的光学材料(柔性、透明、镜面表面均可),有很高的测量能力;

3、本发明测量精度高。

附图说明

图1为本发明的检测装置示意图;

图2为光阑的左视图;

图中:1.白光点光源;2.偏振片;3.分光镜;4.色散镜头组;5.待测物体;6.光阑;7.分光棱镜;8.光谱仪一;9.光谱仪二;10.计算机。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

光学元件表面形貌及亚表面缺陷深度信息的检测方法步骤为:

步骤一:由光源射出一束宽光谱的复色光穿过小孔s,经过偏振片2后,将普通光源转变为具有振动方向垂直于xoy平面的线偏振光,照射在色散镜头组上;

步骤二:光线经过色散镜头发生光谱色散,从而把白光分散成不同波长的单色光,每一个波长的焦点都对应一个固定的距离值;然后光线经过会聚后照射在待测物体上,色散镜头将波长为的单色光会聚在物体的表面上,将波长为的单色光会聚在亚表面缺陷上,光线经过表面和亚表面缺陷散射,后向散射光将再次通过色散镜头。

步骤三:由于发生光谱色散后,空间中各个方向的光线需经过会聚然后照射在物体表面,而其他方向的光线会聚,也会在物体表面上产生这个方向的偏振,所以当散射光进入偏振分光棱镜(pbs)7时,入射的既不是s光也不是p光,而是两个方向都有分量,对于入射角来说,由于s光和p光的反射比不同,所以合成后光的振动方向会发生改变。为此,需要在pbs前加一个以入射面为中心,位于表面法线上的窄矩形光阑6;通过色散镜头收集的散射光经呈45°的分光镜反射后,水平入射进入光阑6,光阑6为具有较大比值的矩形空间滤波器,长度方向垂直于xoy平面,经过光阑后表面散射光具有更大的偏振度;

步骤四:照射在物体表面上的光由于完美聚焦在物体的表面上,所以物体表面上的散射光会保持原来的偏振态经过偏振分光棱镜后刚好会聚在小孔s’上,到达光谱仪一;

步骤五:会聚到亚表面缺陷上波长为的散射光偏振态会发生改变,经过偏振分光棱镜,其中一部分经过透射会聚到小孔s’上,到达光谱仪一,另一部分经过偏振分光棱镜会聚到小孔s’’上,到达光谱仪二;

步骤六:到达光谱仪一的会有两部分光,一部分是会聚到物体表面上波长为的散射光,一部分是会聚到亚表面缺陷上波长为的散射光,光谱仪一的光谱在和处出现峰值,由于表面散射信号远强于亚表面缺陷散射信号,可以得到表面会聚光的波长,根据波长与会聚点之间的关系确定出表面的位置信息,但的峰值远小于的峰值,以致不容易获得;

步骤七:光谱仪二的光谱在仅仅在会聚到亚表面缺陷光的波长处出现峰值,可以根据波长与会聚点之间的关系得到亚表面缺陷的位置;

步骤八:由表面位置信息和亚表面缺陷位置信息可以得到亚表面缺陷的深度信息;

步骤九:在同一检测位置存在多个缺陷时,在光谱仪二的光谱上将出现多个峰值,可以确定检测位置处的亚表面缺陷分布。

步骤十:将探测系统在光学元件表面上二维平移,将得到不同位置上的表面位置信息和亚表面缺陷信息三维重建,可以得到光学元件的表面形貌和亚表面缺陷信息。

上述复色光呈白光。

本发明还可检测一些特殊的物体,如果物体内部的缺陷不是一个点而是一定面积的一个小块,比如物体内部有一个小气泡,我们应用此方法也可以测得气泡的表面轮廓信息。复色光经过偏振片后,变成具有一定振动方向的线偏振光,照射在分光棱镜上,然后光线经过会聚,单色光刚好照射在物体表面,单色光和分别照射在气泡的上下表面;光线反射回去经过偏振分光棱镜后,被光谱仪一8识别得到物体表面信息;和被光谱仪二9识别,和对应不同的距离值,再根据折射率,则可以得到物体内部缺陷的深度。测得的光谱上会出现高低不同的几个波峰,根据不同波峰和对应的一个范围,再因折射率的不同可以绘制出一个灰度图,然后根据灰度图上不同亮暗情况判断缺陷的范围大小。亮的地方则代表散射回来的光很强,内部缺陷的不均匀性也很强,暗的地方则代表光比较弱,不均匀性也较弱,根据不均匀性则可以判断出缺陷的位置。

用于检测针对光学元件表面形貌及亚表面缺陷深度信息的检测装置(参见图1和图2)包括白光点光源1、偏振片2分光镜3、色散镜头组4、光阑6、偏振分光棱镜7、光谱仪一8、光谱仪二9、计算机10;

所述的白光点光源1、偏振片2、分光镜3和色散镜头组4依次设置于光轴上,分光棱镜7设置于分光镜3的一侧,分光棱镜7的前面设置有以入射面为中心,位于表面法线上的窄矩形光阑6,光谱仪一8和光谱仪二9分别设置于分光棱镜7两个相垂直光路上,光谱仪一8与光谱仪二9最终和计算机10连接。

上述分光镜3的角度为45°。

以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1