一种高温管道周长在线监测系统及方法与流程

文档序号:19150269发布日期:2019-11-16 00:00阅读:546来源:国知局
一种高温管道周长在线监测系统及方法与流程

本发明涉及一种管道周长的在线监测系统及方法,具体涉及一种高温管道周长在线监测系统及方法。



背景技术:

电力、化工、石油、制药、航空等各类企业都不同程度地用到压力管道,各行各业使用的压力管道由于输送的介质不同,工作压力、温度不同,对安全技术的要求也不同。一般情况下,压力管道在内压作用下运行,管道会产生一定量的形变;在温度作用下,管道会产生一定量的热胀冷缩形变;对于高温管道在长期使用过程中还会产生蠕变;对于管道材质异常部位,可能还会出现额外形变。总的形变量达到一定程度时,管道的强度不能够满足承载要求将会发生失效。

火力发电企业大量使用高温承压部件,例如锅炉受热面管子、四大管道和各种导汽管等,随着超超临界发电技术的发展,机组容量和蒸汽参数均大幅度得到提升,对承压部件尤其是主蒸汽管道和再热蒸汽热段管道等的安全性要求大大提高。对于主蒸汽管道和再热热段管道等高温管道,是以蠕变持久强度作为主要设计参数,即考虑到的失效模式主要为蠕变损伤,蠕变是一种缓慢的变形过程,当蠕变损伤累积到一定程度时,即发生蠕变破坏。为确保管道的安全运行,dl/t438《火力发电厂金属技术监督规程》规定了高温管道的监督方法,以无损检测为主,利用机组检修期间对管道进行一定数量的抽检,并对蠕变测量进行了规定。早期,dl/t441《火力发电厂高温高压蒸汽管道蠕变监督规程》规定了机组停运状态下管道的蠕变测量方法,但测量结果受各种因素影响较大,难以获得准确的蠕变数据,甚至出现了蠕变量为负值的情况,使得蠕变测量失去应有的意义。因此,现在对管道的蠕变测量不作强制要求。但,蠕变仍然是高温管道的主要失效模式之一,包括蠕变变形在内的高温管道形变测量对于管道运行的健康状态监测是十分重要的。

通过在线测量管道的周向形变量,监测管道的健康状态意义重大,但截止到目前为止,对高温管道的周向形变在线监测没有一种行之有效的方法。鉴于现有测量手段的局限性,需要开发一种在高温运行状态下能够对管道周长进行在线测量的系统及方法,这将对测量高温管道的周向形变及高温管道健康状态的监测提供有力技术支持。



技术实现要素:

本发明的目的在于克服上述现有技术的缺点,提供一种高温管道周长在线监测系统及方法,该系统及方法能够快速、实时、准确的监测高温管道的周长。

为达到上述目的,本发明所述的高温管道周长在线监测系统包括上位机、超声模块、第一超声波换能器、第二超声波换能器及降温导波件。

上位机与超声模块相连接,超声模块的输出端与第一超声波换能器的相连接,第二超声波换能器与超声模块的输入端相连接,降温导波件的端部固定于待测管道上,第一超声波换能器发出的超声波经降温导波件一侧的表面、降温导波件与待测管道相连接位置的一侧、待测管道的一周表面、降温导波件与待测管道相连接位置的另一侧及降温导波件另一侧的表面进入到第二超声波换能器中。

所述降温导波件为平板结构。

待测管道与降温导波件之间通过熔焊的方式相连接,且连接位置为圆弧光滑过渡结构。

所述降温导波件包括导波板及小径管,导波板的一端固定于待测管道上,另一端固定于小径管上,第一超声波换能器及第二超声波换能器位于小径管上,第一超声波换能器发出的超声波经小径管一侧的表面、导波板一侧的表面、导波板与待测管道相连接位置一侧的表面、待测管道的一周表面、导波板与待测管道相连接位置另一侧的表面、导波板另一侧的表面及小径管另一侧的表面进入到第二超声波换能器中。

导波板与待测管道以及小径管之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。

所述降温导波件包括导波板及带有降温节的降温部件,导波板的一端固定于待测管道上,另一端固定在降温部件上,第一超声波换能器发出的超声波经降温部件一侧的表面、导波板一侧的表面、导波板与待测管道相连接位置一侧的表面、待测管道的一周表面、导波板与待测管道相连接位置另一侧的表面、导波板另一侧的表面及降温部件另一侧的表面进入到第二超声波换能器中。

导波板与待测管道以及降温节之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。

第一超声波换能器及第二超声波换能器均通过屏蔽线缆与超声模块相连接。

超声模块通过无线或者有线的方式与上位机相连接。上位机控制超声模块发射和接收脉冲信号,并能够实时采集、存储、显示和分析处理回波数据。

本发明所述的高温管道周长在线监测方法包括以下步骤:上位机控制超声模块产生脉冲信号,并将所述脉冲信号发送至第一超声波换能器中,第一超声波换能器将所述脉冲信号转换为超声波信号,所述超声波信号经降温导波件一侧的表面、降温导波件与待测管道相连接位置一侧的表面、待测管道的一周表面、降温导波件与待测管道相连接位置另一侧的表面及降温导波件另一侧的表面进入到第二超声波换能器中,并通过第二超声波换能器转换为电信号后发送至超声模块,上位机根据超声模块发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件的结构尺寸及超声波在其表面的传播时间,计算待测管道的周长。

本发明具有以下有益效果:

本发明所述的高温管道周长在线监测系统及方法具体操作时,将高温管道与第一超声波换能器及第二超声波换能器通过降温导波件隔离,避免温度对监测的影响,在监测时,第一超声波换能器发出的超声波信号经降温导波件一侧的表面、降温导波件与待测管道相连接位置一侧的表面、待测管道的一周表面、降温导波件与待测管道相连接位置另一侧的表面及降温导波件另一侧的表面进入到第二超声波换能器中,根据超声波信号传播的时间计算超声波信号传播的距离,并以此计算待测管道的周长,操作简单、方便,准确性较高。在停运状态下,可根据测得的周长数据计算蠕变变形量。在实际应用中,可以根据监测到的待测管道的周长对高温管道的健康状况进行评估,实用性极强。

附图说明

图1为实施例一的结构示意图;

图2为实施例二的结构示意图;

图3为实施例三的结构示意图。

其中,1为待测管道、2为降温导波件、21为导波板、22为小径管、23为降温节、24为降温部件、3为第一超声波换能器、4为第二超声波换能器、5为超声模块、6为上位机。

具体实施方式

下面结合附图对本发明做进一步详细描述,值得说明的是,实施例仅示出了与本发明相关的部分,本领域技术人员可以理解,图中示出的结构并不构成对系统的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。

实施例一

参考图1,本发明所述的高温管道周长在线监测系统包括上位机6、超声模块5、第一超声波换能器3、第二超声波换能器4及降温导波件2;上位机6与超声模块5相连接,超声模块5的输出端与第一超声波换能器3相连接,第二超声波换能器4与超声模块5的输入端相连接,降温导波件2的端部固定于待测管道1上,第一超声波换能器3发出的超声波经降温导波件2一侧的表面、降温导波件2与待测管道1相连接位置一侧的表面、待测管道1的一周表面、降温导波件2与待测管道1相连接位置另一侧的表面及降温导波件2另一侧的表面进入到第二超声波换能器4中。

其中,所述降温导波件2为平板结构;待测管道1与降温导波件2之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。

上位机6根据超声模块5发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件2的结构尺寸及超声波在其表面的传播时间,计算待测管道1的周长。

在实际应用时,可以根据当前测量得到的高温管道的周长与高温管道的原始周长和运行参数等计算高温管道的周向蠕变量,然后根据高温管道的周向蠕变量判断高温管道的健康状态,即当高温管道的周向蠕变量大于等于预设值时,则发生报警,避免事故的发生。

实施例二

参考图2,本所述的高温管道周长在线监测系统包括上位机6、超声模块5、第一超声波换能器3、第二超声波换能器4及降温导波件2;上位机6与超声模块5相连接,超声模块5的输出端与第一超声波换能器3相连接,第二超声波换能器4与超声模块5的输入端相连接,降温导波件2的端部固定于待测管道1上,第一超声波换能器3发出的超声波经降温导波件2一侧的表面、降温导波件2与待测管道1相连接位置的一侧的表面、待测管道1的一周表面、降温导波件2与待测管道1相连接位置另一侧的表面及降温导波件2另一侧的表面进入到第二超声波换能器4中。

其中,所述降温导波件2包括导波板21及小径管22,导波板21的一端固定于待测管道1上,另一端固定于小径管22上,第一超声波换能器3及第二超声波换能器4位于小径管22上,第一超声波换能器3发出的超声波经小径管22一侧的表面、导波板21一侧的表面、导波板21与待测管道1相连接位置一侧的表面、待测管道1的一周表面、导波板21与待测管道1相连接位置另一侧的表面、导波板21另一侧的表面及小径管22另一侧的表面进入到第二超声波换能器4中。

导波板21与待测管道1以及小径管22之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。

本实施例中,上位机6根据超声模块5发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件2的结构尺寸及超声波在其表面的传播时间,计算待测管道1的周长。

实施例三

参考图3,本发明所述的高温管道周长在线监测系统包括上位机6、超声模块5、第一超声波换能器3、第二超声波换能器4及降温导波件2;上位机6与超声模块5相连接,超声模块5的输出端与第一超声波换能器3相连接,第二超声波换能器4与超声模块5的输入端相连接,降温导波件2的端部固定于待测管道1上,第一超声波换能器3发出的超声波经降温导波件2一侧的表面、降温导波件2与待测管道1相连接位置一侧的表面、待测管道1的一周表面、降温导波件2与待测管道1相连接位置另一侧的表面及降温导波件2另一侧的表面进入到第二超声波换能器4中。

其中,降温导波件2包括导波板21及带有降温节23的降温部件24,导波板21的一端固定于待测管道1上,另一端固定于降温部件24,第一超声波换能器3发出的超声波经降温部件24一侧的表面、导波板21一侧的表面、导波板21与待测管道1相连接位置一侧的表面、待测管道1的一周表面、导波板21与待测管道1相连接位置另一侧的表面、导波板21另一侧的表面及降温部件24另一侧的表面进入到第二超声波换能器4中。

导波板21与待测管道1以及降温部件24之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。

本实施例中,上位机6根据超声模块5发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件2的结构尺寸及超声波在其表面的传播时间,计算待测管道1的周长。

需要说明的是,各实施例中,第一超声波换能器3及第二超声波换能器4均通过屏蔽线缆与超声模块5相连接;超声模块5通过无线或者有线的方式与上位机6相连接。上位机6控制超声模块5发射和接收脉冲信号,并能够实时采集、存储、显示和分析处理回波数据。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1