一种电流畸变的识别方法与流程

文档序号:20367334发布日期:2020-04-14 12:36阅读:914来源:国知局
一种电流畸变的识别方法与流程

本发明涉及电源控制技术,尤其涉及一种电流畸变的识别方法。



背景技术:

目前电源领域内,为了避免电网受到污染,所有市电交流输入的单相或三相电源模块,对输入电流的多次谐波即(输入电流的ithd)都有严格的标准限值。为了保证模块的高质量的ithd性能,需要通过实时检测输入电流波形的畸变类型,根据不同的畸变类型确定环路控制算法,从而优化输入电流谐波的ithd。

当输入源发生变化时,导致输入源环路等效模型发生变化,导致输入电流发生不同类型的畸变。当输入电流发生畸变时,对电源模块的可靠性带来了极大的风险,同时对电网造成严重的污染。当输入电流的畸变频率处于人耳识别频率范围20hz~20khz之间时,会带了很大的噪声污染。

本发明提出一种电流畸变识别方法,能准确区分识别在交流输入电流的过零点处畸变,能区分识别输入电流峰值时存在的畸变;同时能区分识别输入电流全范围的高频和低频振荡。通过对输入电流的畸变类型的识别,能有效的推算出输入源的等效模型,我们可以通过调整相匹配的控制算法来解决电流畸变问题,极大的提升电源模块的可靠性和电流谐波ithd最优化设计。



技术实现要素:

本发明要解决的技术问题在于针对现有技术中的缺陷,提供一种电流畸变的识别方法。

本发明解决其技术问题所采用的技术方案是:一种电流畸变的识别方法,包括以下步骤:

1)实时采样电源模块的输入相电流值;采样频率为f;

2)初始化,令当前拍采样的输入电流值为ia;上一拍采样的输入电流值为ia1;当前拍采样的输入电流值和上一拍采样的输入电流值之差为δi;识别的输入电流畸变上升沿和下降沿的最大振幅为imax;电流畸变识别计数n;电流畸变的可设置次数判定值nset;检测电流上升次数计数cnt_up;检测电流下降次数计数cnt_down;累加上升的电流总上升幅值为iup;累加下降的电流总下降幅值为idown;basetime为计时器的时基;iset为可设的畸变电流识别幅值;

将变量ia、ia1、δi、imax、n、cnt_up、cnt_down、iup、idown、basetime全部清零;

3)计时器时基变量开始累加,计时开始,同时开始采样;判断计时器的时间,当时间大于3ms(交流输入工频周期20ms的1/6)时,将计时器时基变量清零,畸变计数n清零,imax最大振幅记录清零,然后返回继续计时;当时间小于3ms时,返回继续计时;

4)根据采样频率f,实时采样输入电流值ia;

5)将当前拍的采样电流值ia与上一拍的采样电流值ia1比较,识别判断当前拍电流处于上升沿或下降沿;

6)若当前拍电流处于上升沿,上升计数cnt_up加1,δi记录单次上升的幅值,iup累加单次上升的幅值;

当上升计数cnt_up大于等于3次时,识别当前拍电流处于下降沿且下一次识别当前拍电流处于上升沿之前,记录下降沿下降计数cnt_down的值,

如果cnt_down>=3,则判断电流出现一次完整的畸变波形,当识别到一次完整的畸变波形后,将计数电流畸变的最大值imax与当前累加上升的电流总上升幅值iup比较大小,若iup>imax,则更新计数电流畸变的最大值imax为iup;

如果cnt_down<3,则将下降计数cnt_down和下降沿振幅idown清零;返回继续识别输入电流采样值;

若当前拍电流处于下降沿,下降计数cnt_down加1,δi记录单次下降的幅值,idown累加单次下降的幅值;

当下降计数cnt_down大于等于3次时,识别判断当前拍电流处于上升沿且下一次识别当前拍电流在下降沿之前,记录上升沿电流上升次数cnt_up,

如果cnt_up>=3则判断电流出现一次完整的畸变波形,将计数电流畸变的最大值imax与当前累加下降的电流总下降幅值idown比较大小,若idown>imax,则更新计数电流畸变的最大值imax为idown;

如果cnt_up<3,则将上升计数cnt_up和上升沿振幅iup清零;返回继续识别输入电流采样值;

7)当识别到一次完整的畸变波形时,畸变计数n加1,判断畸变计数值n,当n<nset时,返回继续识别输入电流采样值;当n>=nset时,判断畸变波形保存的最大振幅imax,当imax<iset时,返回继续识别输入电流采样值,当imax>=iset时,判断电源模块输入电流发生畸变。

按上述方案,所述步骤1)中实时采样电源模块的输入相电流值是通过数字控制芯片的adc采样端口实时采样电源模块的输入相电流值。

按上述方案,所述步骤1)中电源模块为单相或三相电源模块。

按上述方案,所述步骤4)中采样周期t=1/f,采样周期设置小于33us,当设置的采样周期越短,识别畸变的精度越高。。

按上述方案,所述步骤6)判断电流出现完整的畸变波形后还包括判断电流畸变类型的步骤,具体如下:

判断电流出现完整的畸变波形后,根据电流畸变出现的正弦波的相位角判断电流畸变的类型:当电流畸变出现过零点相位附近时,识别成i类畸变-过零点电流畸变;当电流畸变出现在90度相位即电流峰值附近时,识别为ii类畸变-电流峰值处畸变。

按上述方案,所述步骤2)中畸变电流识别幅值iset根据电源模块的输入功率设置。

按上述方案,所述步骤2)中畸变电流识别幅值iset包括i类畸变电流识别幅值iseti和ii类畸变电流识别幅值isetii。

本发明产生的有益效果是:本发明通过实时检测输入电流的波形,并且在识别畸变电流上升沿和下降沿的同时,记录畸变电流波形的最大振幅,提高判断电源模块的输入电流波形畸变的准确性和真实性;在本发明方法的基础上通过调整相匹配的控制算法来解决电流畸变问题,可以极大的提升电源模块的可靠性和电流谐波ithd最优化设计。

附图说明

下面将结合附图及实施例对本发明作进一步说明,附图中:

图1是本发明实施例的方法流程图;

图2是本发明实施例的输入电流畸变检测示意图;

图3是本发明实施例的i类畸变示意图;

图4是本发明实施例的ii类畸变示意图;

图5是本发明实施例的iii类畸变示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

如图1所示,一种电流畸变的识别方法,包括以下步骤:

(1)电源模块上电,通过数字控制芯片的adc采样端口实时采样输入相电流值,数字控制芯片的adc采样并不是完全连续的,而是存在一个设计的采样频率f,数字芯片每个采样周期t(=1/f)会采样一次输入电流值;如图2所示;

(2)初始化,令当前拍采样的输入电流值为ia;上一拍采样的输入电流值为ia1;当前拍采样的输入电流值和上一拍采样的输入电流值之差为δi;识别的输入电流畸变上升沿和下降沿的最大振幅为imax;电流畸变识别计数n;电流畸变的可设置次数判定值nset;检测电流上升次数计数cnt_up;检测电流下降次数计数cnt_down;累加上升的电流总上升幅值为iup;累加下降的电流总下降幅值为idown;basetime为计时器的时基;iset为可设的畸变电流识别幅值;

将变量ia、ia1、δi、imax、n、cnt_up、cnt_down、iup、idown、basetime全部清零;

(3)模块起机运行后,计时器时基变量开始累加,计时开始;

(4)-(5):判断计时器的时间,当时间大于3ms(考虑工频周期的1/6)时,将计时器时基变量清零,畸变计数n清零,imax最大振幅记录清零,然后返回继续计时;当时间小于3ms时,返回继续计时;

(6)已采样频率f,实时采样输入电流值ia;

(7)识别当前排的采样电流值ia与上一拍的采样电流值ia1比较,用来判断电流的上升和下降;

(8)-(10)当ia>ia1时,模块识别为电流上升,上升计数cnt_up加1,δi记录单次上升的幅值,iup累加单次上升的幅值;

(11)-(13)当上升计数cnt_up小于3次时,返回继续识别输入电流采样值;

当上升计数cnt_up大于等于3次时,进入下一步识别在当前次上升沿之前,是否存在一个至少连续3次电流下降的下降沿(即判断cnt_down>=3),如果cnt_down>=3则判断为一次完整的畸变波形,如果cnt_down<3将下降计数cnt_down和下降沿振幅idown清零;返回继续识别输入电流采样值;

(14)当识别到一次完整的畸变波形后,imax与iup判断大小,imax计数电流畸变的最大值;

(15)-(17)当ia<ia1时,模块识别为电流下降,下降计数cnt_down加1,δi记录单次下降的幅值,idown累加单次下降的幅值;

(18)-(20)当下降计数cnt_down小于3次时,返回继续识别输入电流采样值;

当下降计数cnt_down大于等于3次时,进入下一步识别在当前次下降沿之前,是否存在一个至少连续3次电流上升的上升沿(即判断cnt_up>=3),如果cnt_up>=3则判断为一次完整的畸变波形,如果cnt_up<3将上升计数cnt_up和上升沿振幅iup清零;返回继续识别输入电流采样值;

(21)当识别到一次完整的畸变波形后,imax与idown判断大小,imax计数电流畸变的最大值;

(22)-(25)当识别到一次完整的畸变波形时,畸变计数n加1,判断畸变计数值n,当n<nset时,返回继续识别输入电流采样值;当n>=nset时,判断畸变波形保存的最大振幅imax,当imax<iset时,返回继续识别输入电流采样值,当imax>=iset时,判断电源模块输入电流发生畸变。

本发明通过数字控制芯片实时检测输入电流的波形,并且在识别畸变电流上升沿和下降沿的同时,记录畸变电流波形的最大振幅,用于判断电源模块的输入电流波形畸变的真实性。在识别电流畸变的同时,可通过电流畸变出现的正弦波的相位角判断电流畸变的类型。当电流畸变出现过零点相位附近时,识别成i类过零点电流畸变;当电流畸变出现在90度相位即电流峰值附近时,识别为ii类电流峰值处畸变。电源模块可通过不同的相位点出现的畸变类型,对应调整电源模块的控制策略。

当电源模块识别输入电流畸变时,设置的电流振幅比较值iset可根据输入电流畸变识别的位置进行切换,区分识别输入电流的过零点畸变和峰值电流处畸变。如图3至图5所示;

i类畸变:当电源模块的输入电流畸变处于过零点附近相位时,可切换到电流过零点的比较值iset;

ii类畸变:当电源模块的输入电流畸变处于峰值附近时,切换到峰值电流的比较值iset;

iii类畸变:同时包括i类畸变和ii类畸变。

本发明在实际应用中,可根据输入电流的识别畸变的需求,更改以下参数:

1、更改实际电流连续上升沿和连续下降沿的点数,示例中是用3次,为了保证电流畸变识别的精度,建议设计时大于等于3次。该值决定畸变最大频率的识别,当设计成n次时,能识别的最大畸变频率为输入电流采样频率f的1/2n倍;如果需要提高畸变的识别更高频率的电流畸变,可更改提高输入电流采样检测频率f;

2、更改记录的完整畸变波形次数的nset,该值决定识别电流畸变波形的个数;

3、更改输入电流畸变的最大振幅判断值iset,最大电流振幅的判断值可根据电源模块的输入功率动态调节,同时也可以通过正弦波电流的相位角动态调节,该值决定识别畸变电流的幅值大小;

4、更改检测的时基计数清零值(示例中为3ms,可根据实际电源模块最一定的调整)。

本发明提出的电流畸变的检测自识别策略,在具体策略中提到的变量设计值都可以自由调节,通过该识别方式可衍生出其他识别连续上升的上升沿和连续下降的下降沿之间组合计数,来识别输入电流畸变也属于本专利的保护范围。

应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1