一种用于液体折射率测量的笔式布局的光学系统的制作方法

文档序号:21613243发布日期:2020-07-29 01:44阅读:117来源:国知局
一种用于液体折射率测量的笔式布局的光学系统的制作方法

本实用新型涉及测量技术领域,具体的说,是一种用于液体折射率测量的笔式布局的光学系统。



背景技术:

现有技术中,折射率是液体的重要光学参数之一,借助折射率能了解液体的光学性能、纯度、浓度以及色散等性质,其他的一些参数(如温度)也与折射率密切相关。因此,液体折射率的测量在化工、医药、食品、石油等等领域中都有重要的意义。特别是随着生活水平的提高和健康意识的增强,人们对食品安全和食品质量的要求也越来越高。液体折射率测量仪可以测量液体食品折射率,在大数据的支撑下,可以比对出液体食品的浓度,进而得知其含糖量,含酸量,脂肪含量等,对人们特别是亚健康人群的进食起到指导作用。针对特殊贵重易仿冒的液体饮料,如名酒等,还可以起到鉴别作用。在健康保健行业中,可以用于人类排泄物的浓度测量,监控健康指数。

全反射临界角成像法是一种常用的液体折射率的测量方法,是根据全反射原理,通过测量处于临界角光线的出射角,计算出待测量液体的折射率。如图1所示,一种典型的全反射临界角测量系统包括光源u1、棱镜u3、图像传感器u2,工作时,从光源u1发出的光束穿过棱镜u3到达被测液体x和棱镜u3的界面,在该界面分离成折射光和反射光,其中,反射光被图像传感器u2接收,生成如图中所示的明暗图像。在该明暗图像中,明的部分对应在被测液体x和棱镜u3的界面发生全反射的光线,暗的部分对应未发生全反射的光线,明暗分界线则对应发生全反射的临界角。由于被测溶液的折射率变化会导致发生全反射临界角的变化,因此通过测量该明暗分界线的位置,就可以求出全反射临界角,从而求出被测液体的折射率。

但是,传统的光学折射计体积大且操作繁琐,而数字折射计虽然可以一键测量,但是其成本高,体积还未达到便携式程度。这两种都不容易在普通人群中推广。



技术实现要素:

本实用新型的目的在于提供一种用于液体折射率测量的笔式布局的光学系统,将探头、光源、图像传感器等集成一体,形成小型化的光学系统,可用于进行液体的折射率测量;采用光束在工作面上聚集,使得有效区域很小,近似一点的工作模式而设计的探头,从而使得整个系统的体积能够被设计得更小。

本实用新型通过下述技术方案实现:一种用于液体折射率测量的笔式布局的光学系统,包括用以生成光束的光源、用以折射入射光束的探头本体和用以接收出射光图像的图像传感器,探头本体包括:

能够使光源生成的光束进入并形成出射光束的进光面,

将进光面出射的光束进行反射的第一反射面,

将第一反射面反射的光束汇聚在一起成一个点的工作面,且工作面接触被测液体时,汇集在该点的不同角度的光将发生透射和/或全反射,

将工作面全反射的光束再次进行反射的第二反射面,

将第二反射面反射的光束整形后出射到探头本体以外的出射面。

进一步的为更好地实现本实用新型,特别采用下述设置结构:在所述出射面的出射端与图像传感器之间还设置有偏折棱镜。

进一步的为更好地实现本实用新型,特别采用下述设置结构:在所述偏折棱镜和图像传感器之间还设置有目镜。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述目镜由两个光学非球面构成。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述工作面在进行光束的汇聚时,汇聚在工作面中心部位。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述工作面中心部位汇聚光束的大小为0~1mm。

进一步的为更好地实现本实用新型,特别采用下述设置结构:第二反射面反射的光束与进光面出射光束的光轴平行。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述第一反射面与第二反射面相对于探头本体中心线镜像对称设置。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述第一反射面与第二反射面采用全反射(全反射原理)或镜面反射(金属或介质反射膜)的平面反射镜。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述出射面为光学非球面透镜。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述工作面的折射率为1.52~1.70。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述进光面为光学非球面透镜。

进一步的为更好地实现本实用新型,特别采用下述设置结构:在探头本体上还设置有连接脚。

进一步的为更好地实现本实用新型,特别采用下述设置结构:所述探头本体采用一体成型结构。

特别需要说明的是,在本技术方案中,机械结构所涉及到的诸如“连接”“固定”、“设置”、“活动连接”“活动设置”等用语皆为机械领域内常规设置用的技术手段,只要能够达到固定或连接或活动设置等目的都可以采用,因此在文中不做具体的限定(比如用螺母、螺杆配合进行活动或固定连接,用插销活动或固定连接、设置,a物件与b物件之间通过卡接的方式实现可拆卸连接等)。

本实用新型与现有技术相比,具有以下优点及有益效果:

(1)本实用新型优选的将光源、探头、偏折棱镜、目镜和图像传感器等采用笔式布局(各器件均匀的分列在光学系统的中心轴线的两侧)集成一体,形成小型化的光学系统,可用于进行液体的折射率测量。

(2)本实用新型能够使得光束在工作面上聚集,使得有效区域很小,近似一点,从而使得整个探头的体积能够被设计得更小。

(3)本实用新型的探头采用树脂材料的模压成型工艺制作,将球面、非球面、平面同时集成为一体,使得光学系统的所有光学器件更加小型化,光学系统的光机尺寸精度更高。

(4)本实用新型的结构达到进一步微型化,同时可以应用到珍贵样品的测量中,减少被测液体的损耗。

(5)本实用新型中光学器件的集成化是产品小型化的基础,树脂材料的模压成型工艺使的光学器件的集成化成为可能。传统的玻璃光学器件受到加工工艺的限制,很难做到球面,非球面和平面同时集成在一个器件中,也很难将光学面和安装结构集成在一起。而树脂器件可以模压成型,可以使各种复杂光学面和装配结构集成在一个器件中。

(6)本实用新型采用非球面将面光源led的光进行汇聚和产生工作角度,传统的折射计使用平面对光源发出的光进行摄入。本实用新型可以小型化光路并且可以根据测量范围和精度的不同差异化的设计工作角度。使得设计更加模块化——在系统其它部分不变的情况下,改变进光面和反射面的设计可以实现不同精度和量程的测量。

(7)由于探头出射的光已经偏向系统一侧,如果没有偏折棱镜改变光路,系统的空间得不到充分的利用,无法继续小型化,因此本实用新型利用偏折棱镜对光学系统进行优化布局,进一步小型化处理。

(8)本实用新型采用目镜对光强进行成像和均化处理,得到优质的测量曲线。

(9)本实用新型可以将整个光学系统的直径控制在14mm以内。

附图说明

图1一种典型的全反射临界角测量系统图。

图2为本实用新型所述探头本体结构示意图。

图3为本实用新型的结构示意图。

图4为本实用新型在测量空气(折射率1.0)时的表象图。

图5为本实用新型在测量纯水(折射率1.333)时的表象图。

图6为本实用新型在测量中等折射率液体(n=1.38)时的表象图。

图7为本实用新型在测量高折射率液体(n=1.429)时的表象图。

其中,s1-进光面、s2-第一反射面、s3-工作面、s4-第二反射面、s5-出射面、s6-第一进光面、s7第二进光面、u1-光源、u2-图像传感器、u3-棱镜、u4-探头本体、u5-偏折棱镜、u6-目镜、x-被测液体、c1-连接脚。

具体实施方式

下面结合实施例对本实用新型作进一步地详细说明,但本实用新型的实施方式不限于此。

为使本实用新型实施方式的目的、技术方案和优点更加清楚,下面将结合本实用新型实施方式中的附图,对本实用新型实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本实用新型一部分实施方式,而不是全部的实施方式。基于本实用新型中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本实用新型保护的范围。因此,以下对在附图中提供的本实用新型的实施方式的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施方式。基于本实用新型中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本实用新型保护的范围。

在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。

在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。

值得注意的是:在本申请中,某些需要应用到本领域的公知技术或常规技术手段时,申请人可能存在没有在文中具体的阐述该公知技术或/和常规技术手段是一种什么样的技术手段,但不能以文中没有具体公布该技术手段,而认为本申请不符合专利法第二十六条第三款的情况。

实施例1:

本实用新型设计出一种用于液体折射率测量的笔式布局的光学系统,将探头、光源、图像传感器等集成一体,形成小型化的光学系统,可用于进行液体的折射率测量,采用光束在工作面上聚集,使得有效区域很小,近似一点的工作模式而设计的探头,从而使得整个系统的体积能够被设计得更小,如图2~3所示,特别采用下述设置结构:包括用以生成光束的光源u1、用以折射入射光束的探头本体u4和用以接收出射光图像的图像传感器u2,探头本体u4包括

能够使光源u1生成的光束进入并形成特定发散角度(优选的设置为-5°~5°)光的进光面s1,

将进光面s1生成的特定发散角度(优选的设置为-5°~5°)光进行反射的第一反射面s2,

将第一反射面s2反射的光束汇聚在一起成一个点的工作面s3,且工作面s3接触被测液体时,汇集在该点的不同角度的光将发生透射和/或全反射,

将工作面s3全反射的光束再次进行反射的第二反射面s4,

将第二反射面s4反射的光束整形后出射到探头本体u4以外的出射面s5。

作为优选的设置方案,该光学系统用于实现液体折射率的测量,包括用以生成光束的光源u1,采用led光源,能够发出单色光,形成光束并照射进探头本体u4中;

用以折射入射光束的探头本体u4和用以接收出射光图像的图像传感器u2,探头本体u4包括

用于摄入光源(led)u1一定夹角内的入射光的进光面s1,进光面s1优选采用非球面结构,与光源(led)u1同轴设置,其作用是摄入led一定夹角内的入射光到探头本体u4内部并形成特定角度(优选的设置为-5°~5°)的出射光,称为出射光1,且出射光1的总夹角与折射率测量的区间值有关,角度大,区间值就越大,反之就越小;

第一反射面s2,优选采用平面结构,出射光1在此第一反射面s2全反射或者镜面反射,形成反射光1,该反射光投射到工作面s3中。其中,第一反射面s2与工作面s3的倾斜角度决定了折射率测量的中心值,在不改变探头其他部分的情况下,改变此面的倾斜角度可以测量折射率的不同段;可以在保证精度不变的情况下,开发出不同测量范围的系列产品;

工作面s3,反射光1在工作面s3进行汇聚,将根据被测液体x的折射率的大小,部分光透射到被测液体x中,部分光全反射到第二反射面s4,做全反射的部分光成为反射光2。工作面s3有效区的减小降低了样品的测量体积,可以极大的将整个系统小型化;

第二反射面s4,反射光2在第二反射面s4发生全反射或者镜面反射,投射到出射面s5,这部分光成为反射光3。第二反射面s4和第一反射面s2优选设置为有相同的倾斜角度,从而保证反射光3和出射光1的轴线平行;

出射面s5,优选采用光学非球面,其光轴与探头轴平行,对反射光3进行整形(准直化处理),出射的光称为出射光2。

实施例2:

本实施例是在上述实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:在所述出射面s5的出射端与图像传感器u2之间还设置有偏折棱镜u5。

作为优选的设置方案,为了能够使得探头本体u4出射光的光轴移动到中心轴线上,设置了偏折棱镜u5。从偏折棱镜u5中出射的光其光轴和中心轴线重合,同时亦能够使得整个光学系统更加小型化;偏折棱镜u5出射的光束可以通过图像传感器u2形成光斑。

实施例3:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:在所述偏折棱镜u5和图像传感器u2之间还设置有目镜u6。

作为优选的设置方案,当偏折棱镜u5出射的光束可以利用目镜进一步进行成像和光强均化处理。

实施例4:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述目镜u6由两个光学非球面构成。

作为优选的设置方案,目镜u6采用光学非球面的目镜,进行成像和光强的均化处理,而后光线在图像传感器u2上形成亮度均匀的光斑。

实施例5:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述工作面s3在进行光束的汇聚时,汇聚在工作面s3中心部位,在设置时,工作面s3进行光束汇聚时汇聚于工作面s3中心部位,即工作面s3的轴心范围区域。

实施例6:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述工作面s3中心部位汇聚光束的大小为0~1mm,即将光束汇聚在工作面s3轴心0~1mm大小的圆内,优选为直径1mm大小的圆内。

实施例7:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:第二反射面s4反射的光束与进光面s1出射光束的光轴平行,即将第二反射面s4和第一反射面s2设置为相同的倾斜角度;第二反射面s4和第一反射面s2的倾斜角度相同,保证了光学系统的光轴平行,简化系统制造难度。第二反射面s4的倾斜角度也可以与第一反射面s2有差异,这样形成一个离轴光学系统,虽然增加了制造难度,但是可以减少系统器件。

实施例8:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述第一反射面s2与第二反射面s4相对于探头本体u4中心线镜像对称设置;即将第二反射面s4和第一反射面s2设置为相同的倾斜角度;第二反射面s4和第一反射面s2的倾斜角度相同,保证了光学系统的光轴平行,简化系统制造难度。第二反射面s4的倾斜角度也可以与第一反射面s2有差异,这样形成一个离轴光学系统,虽然增加了制造难度,但是可以减少系统器件。

实施例9:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述第一反射面s2与第二反射面s4采用全反射(全反射原理)或镜面反射(金属或介质反射膜)的平面反射镜。

实施例10:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述出射面s5为光学非球面透镜。

实施例11:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述工作面s3的折射率为1.52~1.70,工作面s3直接接触液体,对树脂材料的防腐蚀性能要求较高;根据被测液体折射率的范围,树脂材料的折射率要求在1.52-1.70之间;可以根据被测液体的情况选择不同级别的光学材料。

实施例12:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:所述进光面s1为光学非球面透镜。

实施例13:

本实施例是在上述任一实施例的基础上进一步优化,与前述技术方案中采用相同技术结构部位在此技术方案中将不再赘述,如图2、图3所示,进一步的为更好地实现本实用新型,特别采用下述设置结构:在探头本体u4上还设置有连接脚c1,在设置时,可以在探头本体u4的进光面s1和出射面s5处设置连接脚c1便于与别的后续部件(偏折棱镜u5)进行连接。

在设置时,出射面s5也可以设计成目镜(即不需要单独的偏折棱镜u5和目镜u6),直接成像到图像传感器u2上;也可以仅对反射光3进行整形,作为后续光学系统的输入端。

如图3所示,在使用时,led类光源u1出射的单色光(从左至右标记为h、m、l)进入探头本体u4的进光面(优选采用光学非球面)s1发生偏折,形成特定角度的出射光,而后在第一反射面s2上发生全反射或镜面反射汇聚在工作面s3上,工作面s3接触被测液体x;当被测液体x的折射率是低浓度时(低于l光线对应的临界值时),l、m和h三条光线在工作面s3均被全反射;当被测液体x折射率是中等浓度时,l和m光线出射到液体中,不再进入内部光学系统,只有h光线继续被全反射;当被测液体是高浓度时(高于h光线对应的临界值)l、m和h光线都被出射到被测液体x中。

在工作面s3被全反射的光在第二反射面s4继续发生全反射或镜面反射,然后在出射面s5(优选采用光学非球面)发生偏折,出射后进入偏折棱镜u5。由于经过出射面s5后光束的发散角变小,从而能够在尺寸有限的偏折棱镜u5中通过。从偏折棱镜u5中出射的光进入目镜u6进行成像和光强的均化处理,光线在图像传感器u2(优选采用cmos器件)上形成亮度均匀的光斑。

随着被测液体x折射率的增加,达到图像传感器u2的光斑从右到左逐渐消退,即明暗分界线从右向左移动。在实际应用时,图像传感器u2(cmos器件)可以将光信号转换为数字电信号,利用数字信号处理软件(此处为)可以分析出数字信号曲线下降沿的位置,进而计算出被测液体的折射率大小,但该部分技术由于不是该技术方案本身要保护和需要公开的内容,因此申请人在此仅给出技术构思(该技术构思即便采用现有图像处理技术亦可实现),因此具体技术细节不再赘述,但不能因没有公开具体技术细节而认为该申请所要保护的技术方案公开不充分,不符合专利法第二十六条第三款的情况。

本实用新型的特点在于系统的小型化,传统的折射计工作面有效区域比较大,该实用新型用进光面s1对光源的光进行汇聚处理,在缩小工作面s3的有效区域的同时还得到了设计需要的不同入射角度的光线。前者(进光面s1)是小型化的基础,后者(工作面s3)可以有效利用面光源led的光能量(传统折射计只利用了led中心的近似一个点的区域,而本实用新型可以利用led发光面面积的50%以上)。

偏折棱镜u5的使用使得目镜u6和cmos可以和探头本体u4同轴,使得光学系统的制造难度降低,空间布局匀称。由于偏折棱镜u5的尺寸较小且受制于其材料的光学折射率,探头本体u4出射的光则需要经过出射面s5的准直化处理(降低发散角)。

由于led的光强分布不均匀且光线经过多少次偏折和出射面s5的准直化处理,光强分布更加不均匀。如果不对光强进行均化处理,在图像传感器u2上的光强分布将会大幅度的波动,导致数值信号曲线上有多个等幅度的下降沿的产生,软件无法识别全反射临界角对应的下降沿,为此在偏折棱镜u5与图像传感器u2之间设置用于完成成像和均化光的目镜u6。

目镜u6的第一进光面s6(优选采用光学非球面)的引入将使得光线发散进而光强均化,第一出光面s7(优选采用光学非球面)对各工作角度的平行光进行聚焦成像,经过采用光学非球面的目镜u6后,在cmos上像点的光强是均匀的,均匀性能够达到80%以上。

测量空气(折射率1.0)的时候,数字信号曲线如图4所示;

当测量纯水(折射率1.333)的时候,数字信号曲线如图5所示;

当测量中等折射率液体(n=1.38)时,数字信号曲线如图6所示;

当测量高折射率液体(n=1.429)时,数字信号曲线如图7所示;

随着折射率的提高,曲线下降沿逐渐从右至左移动。

以上所述,仅是本实用新型的较佳实施例,并非对本实用新型做任何形式上的限制,凡是依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本实用新型的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1