一种双步相移法结合相位编码的三维测量方法与流程

文档序号:20910081发布日期:2020-05-29 12:59阅读:398来源:国知局
一种双步相移法结合相位编码的三维测量方法与流程

本发明涉及一种关于相位编码条纹的三维测量方法,属于光电检测领域,尤其涉及一种双步相移法结合相位编码的三维测量方法。



背景技术:

条纹投影轮廓术因其高速、高精度、非接触、全场测量、快速信息获取等优点,在三维测量中有重要意义,已广泛应用于工业制造、文物保护、医疗等诸多领域。

通过对国内外研究现状及发展动向分析研究,传统的三维测量技术己经发展较为成熟,但多为静态测量,无法实现运动物体的三维测量和形貌重构。近年来高速、实时和高精度的三维测量在物体形变分析、工业自动检测、医学诊断、人脸识别等方面都有着广泛的应用,并且随着采集设备、投影设备、高速处理器的性能提升,高速、实时和高分辨率的三维测量方法成为研究的热点。因此,提高三维测量的精度成为一个亟待解决的问题。。

本发明提出一种双步相移法结合相位编码的三维测量方法,此方法需要投影6幅正弦条纹图获得包裹相位,虽然投影的图数增多了,但其精度得到了提升,且误差率大大减小,适用于那些对于精度和准确度要求高的场合。其次,本发明采用的直接融合两幅包裹相位图的相位信息融合方法比传统的相位融合方法更能准确的展开包裹相位,能有效的减少包裹相位图中的噪声或者不连续现象,使相位展开变得容易。

本发明所述的一种双步相移法结合相位编码的三维测量方法正是在这一背景下提出的。



技术实现要素:

本发明的目的在于提出一种双步相移法结合相位编码的三维测量方法,此方法较传统的正弦条纹加相位编码的三维测量方法,在测量精度上有了明显提高,适用于那些对于精度和准确度要求高的场合。

一种双步相移法结合相位编码的三维测量方法,包括以下步骤:

步骤一、利用计算机生成三幅初始相位为0的正弦条纹图、三幅初始相位为π/3的正弦条纹、三幅阶梯相位编码条纹图;

步骤二、将步骤一中所有条纹图通过投影仪投射依次到参考平面和物体上,再通过相机采集投影到参考平面和物体上的六幅正弦条纹图和三幅阶梯相位编码条纹图;

步骤三、利用六幅正弦条纹图得到物体的包裹相位,利用阶梯相位编码条纹图得到物体的条纹级次,进而求得参考平面和物体的连续相位;

步骤四、通过获得的连续相位并通过相位-高度公式求得物体表面每一点的高度信息。

所述步骤一的具体实施方式:

a、编写正弦条纹:

实际测量时先采用三步相移算法进行测量,则正弦条纹图可以表示为:

ii(x,y)=ia(x,y)+ib(x,y)cos[φ(x,y)+2πn/3](1)

其中,ia(x,y)背景光强,ib(x,y)是调制幅度,φ(x,y)是理想相位信息;

三步相移算法的相位误差函数可近似表示为:

δφ(x,y)≈c1sin[3φ(x,y)](2)

其中c1为一个常数;

若引入额外的初始相位设计好的正弦条纹图可以表示为:

上式中的正弦条纹图对应的理想相位分布变为根据ccd相机2采集到的正弦条纹图,可获得三步相移算法的实际包裹相位分布,则对于传统的三步相移算法,相位误差可近似表示为:

时,正弦条纹图未引入额外的初始相位,采用传统三步相移算法获取的实际相位分布对应的相位误差为δφ(x,y),此时实际包裹相位可表示为:

时,相位误差变为:

δφ'(x,y)≈-c2sin[3φ(x,y)+3×π/3]

=c2sin[3φ(x,y)]=-δφ(x,y)(6)

则此时实际包裹相位可以由两种形式表示:

由投影的两组正弦条纹图可以求得两组实际包裹相位信息φ′1和φ′2,可以削弱或去除三步相移算法对应的相位误差,以得到理想的正确相位φ(x,y);

b、进行相位融合:

直接融合两幅包裹相位图的相位信息融合,可以削弱或去除三步相移算法对应的相位误差,以得到理想的正确相位φ(x,y),根据两组包裹相位信息φ′1和φ′2之间的关系,直接融合两组包裹相位信息,方法如下式:

c、编写相位编码条纹:

相位编码方法的码字需预先设计好,首先设置初始相位,如下式:

其中,floor[·]表示不大于x的最大整数;mod(x,y)是x除以y所得的余数;s为投影仪的横向分辨率;p为条纹间距,即每个周期的像素数;n为设定码字的个数;

将相位归一化到[-π,π],相位归一化公式为:

将归一化相位嵌入相位编码条纹中,把每个像素的相位值代入正弦函数,以获得每个点的条纹强度值,条纹强度分布如下式所示:

an(x,y)=a(x,y)+b(x,y)cos[φs(x,y)+2π(k-1)/3](12)

其中,a(x,y)为平均亮度,b(x,y)是调制亮度,φs(x,y)为待求相位。生成a1(x,y)、a2(x,y)、a3(x,y)三幅阶梯相位编码条纹图。

所述步骤三的具体实施方式为:

通过反正切三步相移算法计算阶梯相位:

根据a结果,由三步相移法计算得到包裹相位φ′1和φ′2:

根据b结果,融合得到φ(x,y),

根据公式(12)和(14),获得阶梯相位φs(x,y),确定条纹级次k,

k(x,y)=round[n(φ(x,y)+π)/2π](15)

其中,round[]为确定最接近的整数;

根据下式将包裹相位φ(x,y)转换为绝对相位φ(x,y):

φ(x,y)=φ(x,y)+2π×k(x,y)(16)

进行相位解包裹,分别得到参考面的连续相位值α和带物体的连续相位值β。

所述步骤四的具体实施方式为:

通过公式:

得到物体的连续相位差,从而利用相位-高度公式:

其中d为投影仪与相机之间的距离,l0为投影仪与相机到参考平面的距离为,f0为参考平面上的正弦条纹频率,最后得到物体表面每一点的高度信息。

本发明的优点是:

(1)与传统的相移算法相比,双步相移算法能够更大地减少测量误差,且能较好用于实际测量;

(2)直接融合两幅包裹相位图的相位信息,只需对一幅包裹相位图进行相位展开,一定程度上减少了出错率;

(3)与基于强度编码的方法相比,相位编码的方法对表面对比度、环境光和相机噪声不敏感,具有较强的鲁棒性。

附图说明

图1为本发明的三维测量系统示意图。

图2为本发明的两组正弦条纹图。

图3为本发明的经过相位融合后的包裹相位图。

图4为本发明的三幅相位条纹图。

图5为本发明的包裹相位和条纹级次。

具体实施方式

以下结合附图说明对本发明的实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。

本发明的一种双步相移法结合相位编码的三维测量方法的三维测量系统如图1所示,包括dlp投影仪1、ccd相机2、计算机3、测量支架4、参考平面5和待测物体6;dlp投影仪1和ccd相机2放在测量支架4上;dlp投影仪1、ccd相机2分别通过数据线连接计算机3;待测物体6放在参考平面5上;计算机3内包含图像采集卡、投影软件、测量软件。dlp投影仪1光轴和ccd相机2光轴相交于o点。dlp投影仪1和ccd相机2为同一高度,它们之间的距离为d,它们到参考平面的距离为l0。

一种双步相移法结合相位编码的三维测量方法,包括以下步骤:

(一)编写正弦条纹

实际测量时先采用三步相移算法进行测量,则正弦条纹图可以表示为:

ii(x,y)=ia(x,y)+ib(x,y)cos[φ(x,y)+2πn/3](1)

其中,ia(x,y)背景光强,ib(x,y)是调制幅度,φ(x,y)是理想相位信息。

三步相移算法的相位误差函数可近似表示为:

δφ(x,y)≈c1sin[3φ(x,y)](2)

其中c1为一个常数。

若引入额外的初始相位设计好的正弦条纹图可以表示为:

上式中的正弦条纹图对应的理想相位分布变为根据ccd相机2采集到的正弦条纹图,可获得三步相移算法的实际包裹相位分布。则对于传统的三步相移算法,相位误差可近似表示为:

时,正弦条纹图未引入额外的初始相位,采用传统三步相移算法获取的实际相位分布对应的相位误差为δφ(x,y),此时实际包裹相位可表示为:

时,相位误差变为:

δφ'(x,y)≈-c2sin[3φ(x,y)+3×π/3]

=c2sin[3φ(x,y)]=-δφ(x,y)(6)

则此时实际包裹相位可以由两种形式表示:

由投影的两组正弦条纹图可以求得两组实际包裹相位信息φ′1和φ′2,可以削弱或去除三步相移算法对应的相位误差,以得到理想的正确相位φ(x,y)。需投影的两组三幅正弦条纹图如图2所示。

(二)进行相位融合

直接融合两幅包裹相位图的相位信息融合,可以削弱或去除三步相移算法对应的相位误差,以得到理想的正确相位φ(x,y)。根据两组包裹相位信息φ′1和φ′2之间的关系,直接融合两组包裹相位信息,方法如下式:

(三)编写相位编码条纹

相位编码方法的码字需预先设计好,首先设置初始相位,如下式:

其中,floor[·]表示不大于x的最大整数;mod(x,y)是x除以y所得的余数;s为dlp投影仪1的横向分辨率;p为条纹间距,即每个周期的像素数;n为设定码字的个数。

将相位归一化到[-π,π],相位归一化公式为:

将归一化相位嵌入相位编码条纹中,把每个像素的相位值代入正弦函数,以获得每个点的条纹强度值,条纹强度分布如下式所示:

an(x,y)=a(x,y)+b(x,y)cos[φs(x,y)+2π(k-1)/3](12)

其中,a(x,y)为平均亮度,b(x,y)是调制亮度,φs(x,y)为待求相位。生成a1(x,y)、a2(x,y)、a3(x,y)三幅阶梯相位编码条纹图,如图4所示。

通过反正切三步相移算法计算阶梯相位:

(四)采集图片

用投影仪依次投射上述生成的正弦条纹和相位相位编码条纹于参考平面5和待测物体6上,用ccd相机2采集这三组条纹图,将结果送入计算机3中。

(五)三维重建

根据(一)结果,由三步相移法计算得到包裹相位φ′1和φ′2:

根据(二)结果,融合得到φ(x,y)。

根据公式(12)和(14),获得阶梯相位φs(x,y),确定条纹级次k,如图3所示:

k(x,y)=round[n(φ(x,y)+π)/2π](15)

其中,round[]为确定最接近的整数。

根据下式将包裹相位φ(x,y)转换为绝对相位φ(x,y):

φ(x,y)=φ(x,y)+2π×k(x,y)(16)

进行相位解包裹,分别得到参考平面5的连续相位值α和待测物体6的连续相位值β。

通过公式:

得到待测物体6的连续相位差,从而利用相位-高度公式:

其中dlp投影仪1与ccd相机2之间的距离为d,dlp投影仪1与ccd相机2到参考平面的距离为l0,f0为参考平面5上的正弦条纹频率,最后得到待测物体6表面每一点的高度信息。

不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1