一种光谱测量方法及装置与流程

文档序号:32378846发布日期:2022-11-30 01:15阅读:94来源:国知局
一种光谱测量方法及装置与流程

1.本技术涉及光谱检测领域,尤其涉及一种光谱测量方法及装置。


背景技术:

2.光谱分析是自然科学分析的重要手段,可以用来检测物体的物理结构、化学成分等指标。光谱分析主要通过被测物体自发光或者与光源的相互作用来获得被测物体的光谱信息,从而实现检测分析。
3.一般在实验室中进行光谱分析使用的光谱仪等设备体型较大,而光谱分析可以在生活中实现很多应用,因此光谱仪小型化是当前的重要趋势,例如,将小型化点光谱乃至高光谱成像装置向端侧(如手机、手表、大屏等)集成,可以获取更多维度的信息。
4.使用小型化光谱仪进行非接触式(光谱仪和被测物体之间存在距离)的光谱测量时,环境光会对光谱测量造成干扰,因而获得的反射光谱受干扰大,导致光谱测量准确度不高。


技术实现要素:

5.本技术实施例提供一种光谱测量方法及装置,通过对调制方式进行更新,使得获得的原始回波信号的信噪比均大于或等于信噪比阈值,可以减少反射光谱受到的干扰,从而提高光谱测量的准确度。
6.第一方面,本技术实施例提供一种光谱测量方法,该光谱测量方法可以包括:
7.获取调制回波信号,该调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,该光源发出的光包括至少一个波长的光;
8.然后,获取对该调制回波信号进行解调后得到的,该至少一个波长中每个波长对应的原始回波信号,该解调所采用的解调方式与该目标调制方式对应;
9.进一步的,获取该至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
10.确定该至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
11.若是,则获取该第一信噪比对应的原始回波信号,并基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新,直到该至少一个原始回波信号对应的至少一个信噪比均大于或等于该信噪比阈值,输出与更新后的目标调制方式关联的反射光谱,该反射光谱是基于该光源包括的该至少一个波长中每个波长的光的信号强度和该更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
12.通过实施本技术实施例,基于采用目标调制方式对光源发出的光进行调制后得到的入射信号,获取光源包括的至少一个波长对应的至少一个原始信号中每个原始回波信号的信噪比,若确定该至少一个信噪比中存在小于信噪比阈值的第一信噪比,则基于该第一信噪比对应的原始回波信号对目标调制方式进行更新,直到满足信噪比条件(均大于或等
于信噪比阈值),获得反射光谱。即在原始回波信号的信噪比较小时更新目标调制方式,利用更新后的调制方式对光源发出的光进行处理使得获得的原始回波信号的信噪比提高,从而减少了反射光谱受到的干扰,提高了光谱测量的准确度。
13.在一种可能的实施方式中,该基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新,包括:
14.基于该第一信噪比对应的原始回波信号,获得二维图像,该二维图像是通过至少两个该第一信噪比对应的至少两个原始回波信号拼接得到的;
15.采用神经网络模型对该二维图像进行自适应算法处理,获得更新后的目标调制方式。
16.通过实施该实施例,可以根据第一信噪比对应的原始回波信号和神经网络模型,获得更新后的目标调制方式,使得基于更新后的调制方式能获得信噪比更大的原始回波信号,从而更好的抵抗环境光的干扰,提高光谱测量的准确度。
17.在一种可能的实施方式中,该获取调制回波信号之前,还包括:
18.采用该目标调制方式对该光源发出的光进行调制,获得该入射信号。
19.通过实施该实施例,可以通过对光源发出的光进行调制,来抵抗环境光对光谱测量的干扰。
20.在一种可能的实施方式中,该光源包括的至少一个波长的光在空间中相互交叠,该更新后的目标调制方式包括一种调制方式;该基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新之后,该采用该目标调制方式对该光源发出的光进行调制,包括:
21.采用该更新后的目标调制方式对该光源发出的该至少一个波长中每个波长的光进行调制。
22.通过实施该实施例,可以针对发出至少一个波长的光且这些波长的光在空间中相互交叠的光源,在使用该光源进行光谱测量的过程中,更新目标调制方式后对该光源包括的所有波长的光重新进行调制,使得获得的原始回波信号的信噪比提高,从而增强抗干扰效果,提高光谱测量的准确度。
23.在一种可能的实施方式中,该光源包括的至少一个波长的光在空间中相互分离,该更新后的调制方式包括n种调制方式,该n为至少一个信噪比中小于该信噪比阈值的该第一信噪比的数量,该n为正整数,一种调制方式对应一个第一波长,该第一波长为该第一信噪比所关联的波长;该基于该第一信噪比对应的原始回波信号对该目标调制方式进行更新之后,该采用该目标调制方式对该光源发出的光进行调制,包括:
24.针对该n种调制方式中的每种调制方式,采用该调制方式对该光源发出的光中与该调制方式对应的第一波长的光进行调制。
25.通过实施该实施例,可以针对发出至少一个波长的光且这些波长的光在空间中相互分离的光源,在使用该光源进行光谱测量的过程中,更新目标调制方式后得到n种调制方式,对光源发出的与特定调制方式对应的第一波长的光用该特定调制方式进行重新调制,实现对不同波长的光分别采用相应的调制方式,从而保证能以尽量少的目标调制方式更新次数,来提高获得的原始回波信号的信噪比以满足信噪比条件,在提高光谱测量的准确度的同时提高了测量速度。
26.在一种可能的实施方式中,该方法还包括:
27.采用更新前的该目标调制方式,对该光源发出的至少一个波长的光中除该n种调制方式对应的n个第一波长之外的波长的光进行调制。
28.通过实施该实施例,可以针对发出至少一个波长的光且这些波长的光在空间中相互分离的光源,在使用该光源进行光谱测量的过程中,更新目标调制方式后对于之前对应的信噪比已经大于或等于信噪比阈值的波长的光,仍采用更新前的目标调制方式对其进行调制,从而避免增加处理成本,影响测量效率。
29.在一种可能的实施方式中,该更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
30.通过实施该实施例,可以采用不同的调制方式对光源发出的光进行调制,从而增强抗干扰效果,提高光谱测量的准确度。
31.在一种可能的实施方式中,该神经网络模型包括卷积神经网络模型。
32.第二方面,本技术实施例提供一种光谱测量装置,所述装置包括:
33.第一获取单元,用于获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光;
34.第二获取单元,用于获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应;
35.第三获取单元,用于获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
36.确定单元,用于确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
37.更新单元,用于若确定所述至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值;
38.输出单元,用于输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
39.在一种可能的设计中,所述更新单元具体用于:
40.第一处理单元,用于基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
41.第二处理单元,用于采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
42.在一种可能的设计中,所述装置还包括:
43.第一调制单元,用于采用所述目标调制方式对所述光源发出的光进行调制,获得所述入射信号。
44.在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始
回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
45.采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
46.在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括n种调制方式,所述n为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述n为正整数,一种调制方式对应一个第一波长,所述第一波长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
47.针对所述n种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
48.在一种可能的设计中,所述装置还包括:
49.第二调制单元,用于采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述n种调制方式对应的n个第一波长之外的波长的光进行调制。
50.在一种可能的设计中,所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
51.在一种可能的设计中,所述神经网络模型包括卷积神经网络模型。
52.第三方面,本技术实施例提供了一种光谱测量装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
53.第四方面,本技术实施例提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面的方法。
54.在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本技术实施例对处理器及各种电路的具体实现方式不做限定。
55.第五方面,本技术实施例提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面的方法。
56.可选地,所述处理器为一个或多个,所述存储器为一个或多个。
57.可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
58.在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,rom),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本技术实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
59.上述第五方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以
通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
60.第六方面,本技术实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面的方法。
61.第七方面,本技术实施例提供了一种可读存储介质,所述可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得上述第一方面方法被实现。
62.第八方面,提供了一种芯片系统,该芯片系统包括处理器和接口电路,处理器用于从存储器中调用并运行存储器中存储的计算机程序(也可以称为代码,或指令),以实现第一方面所涉及的功能,在一种可能的设计中,该芯片系统还包括存储器,存储器用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
63.下面对本技术实施例用到的附图进行介绍。
64.图1是本技术实施例提供的一种光谱测量方法的流程图;
65.图2是本技术实施例提供的一种光谱测量的过程示意图;
66.图3是本技术实施例提供的一种卷积神经网络模型的结构图;
67.图4a是本技术实施例提供的一种光谱测量场景的示意图;
68.图4b是本技术实施例提供的另一种光谱测量场景的示意图;
69.图5是本技术实施例提供的又一种光谱测量场景的示意图;
70.图6是本技术实施例提供的另一种光谱测量方法的流程图;
71.图7是本技术实施例提供的一种皮肤光谱图;
72.图8是本技术实施例提供的一种光谱测量系统的架构图;
73.图9是本技术实施例提供的一种光谱测量装置的示意性框图;
74.图10是本技术实施例提供的另一光谱测量装置的示意性框图;
75.图11是本技术实施例提供的一种芯片的结构示意图。
具体实施方式
76.下面结合本技术实施例中的附图对本技术实施例进行描述。本技术实施例的实施方式部分使用的术语仅用于对本技术的具体实施例进行解释,而非旨在限定本技术。
77.本技术的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
78.在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本技术的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相
同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
79.在本技术中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“a和/或b”可以表示:只存在a,只存在b以及同时存在a和b三种情况,其中a,b可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
80.下面结合本技术实施例中的附图对本技术实施例进行描述。
81.请参阅图1,图1为本技术实施例提供的一种光谱测量方法的流程示意图。如图1所示,该光谱测量方法包括但不限于以下步骤110-步骤160:
82.步骤110,获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光。
83.本技术可以应用于终端人工智能领域中的光谱检测领域。如图2所示,图2为本技术实施例提供的一种光谱测量的过程示意图,由图2可知,在进行光谱测量的过程中,光源发出的光照射至被测物体上,经被测物体反射后获得回波,进而得到反射光谱。而在光源与被测物体之间存在一定距离时,照射至物体表面的光包括光源发出的光和环境光,即在远距离环境下通过测量来获得被测物体的光谱信息,容易受到环境光的干扰。为了降低环境光的干扰,可以对光源发出的光进行调制。因此,通过对光源发出的光采用目标调制方式进行调制后获得入射信号,该入射信号照射至被测物体上,经被测物体反射后,获得调制回波信号。其中,光源发出的光包括至少一个波长的光。
84.而针对第一次照射至被测物体上的入射信号,采用的目标调制方式可以是通用的调制方式,例如,正弦波调制或者方波调制,根据具体的场景需求,可以将某种通用的调制方式(如正弦波调制)设置为初始的目标调制方式。采用该目标调制方式对光源发出的光进行调制后获得入射信号,进而获得调制回波信号。
85.步骤120,获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应。
86.具体的,在获取调制回波信号之后,针对该调制回波信号进行解调,得到光源发出的光中包括的至少一个波长里每个波长对应的原始回波信号。进行解调时所采用的解调方式包括相干解调和非相干解调的方法。示例性的,可以采用锁相放大法对调制回波信号进行解调。锁相放大器利用与待测信号有相同频率和固定相位关系的参考信号作为基准,滤掉与其频率不同的噪声,从而提取出有用信号成分。而对调制回波信号进行解调所采用的解调方式与得到该调制回波信号的目标调试方式是对应的。例如,采用正弦波调制作为目标调制方式获得调制回波信号,那么,相应可以采用利用正弦波的相干解调方式来获得对应的原始回波信号。
87.步骤130,获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比。
88.在本技术实施例中,针对解调得到的至少一个波长对应的至少一个原始回波信号,获取每个原始回波信号的信噪比。其中,信噪比可以是通过测量得到的。
89.步骤140,确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比。
90.具体的,在获取该至少一个原始回波信号对应的至少一个信噪比之后,确定该至少一个信噪比中是否存在小于信噪比阈值的第一信噪比。信噪比阈值可以根据经验进行设置,该信噪比阈值可以反映进行光谱测量时对环境光干扰的容忍程度,可理解的,在获取的信噪比大于或等于该信噪比阈值时,环境光干扰对获得的光谱的影响程度比较小,因此可以得到符合准确度要求的光谱测量结果。
91.步骤150,若是,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值。
92.在本技术实施例中,若确定获取的至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,那么获取该第一信噪比对应的原始回波信号,其中,第一信噪比的数量可以为一个或者多个,即小于信噪比阈值的低信噪比包括一个或多个信噪比。因此第一信噪比对应的原始回波信号可以包括一个或者多个原始回波信号。在获取该第一信噪比对应的原始回波信号之后,基于该第一信噪比对应的原始回波信号对目标调制方式进行更新,直到该至少一个原始回波信号对应的至少一个信噪比均大于或等于该信噪比。调制方式不同,信噪比也不同,即调制方式可以影响信噪比。因此可以通过更新目标调制方式,使得获得的信噪比得到提高,进而减少环境光对反射光谱的干扰,提高光谱测量的准确度。
93.对目标调制方式进行更新之后,可以重新利用更新后的目标调制方式对光源发出的光进行调制,以获得调制回波信号,进一步的,获得与该调制回波信号对应的原始回波信号的信噪比,从而再次判断该至少一个原始回波信号对应的至少一个信噪比是否均大于或等于该信噪比。不同的调制方式的抗噪效果不同,通过对调制方式进行更新,即根据获得的原始回波信号确定相应的调制方式,再采用更新后的调制方式对光源发出的光进行调制,可以获得满足信噪比条件的测量结果,提高光谱测量的准确度。本技术实施例提供的光谱测量方法,可以自适应地选择合适的调制方式来获得光谱,进一步的,还可以获得随时间变化的光谱信息,与采用简单且单一的调制方式来获得光谱的测量方法相比,本技术提供的方法能减少环境光的干扰,获得质量更好的光谱,提高光谱测量的准确度。
94.具体的,基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,可以包括以下过程:
95.基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
96.采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
97.即可以利用神经网络模型来确定更新后的目标调制方式。通过将第一信噪比对应的原始回波信号在预设时间窗内进行拼接,获得二维图像。接着将该二维图像输入至神经网络模型,得到的输出即为更新后的目标调制方式。其中,所述神经网络模型可以包括卷积神经网络模型。如图3所示,图3为卷积神经网络模型的结构图。该卷积神经网络模型的目标函数主要由信号的信噪比、功率效率和带宽效率等组成。基于该神经网络模型获得的更新
后的目标调制方式,可以使信号的信噪比提高,且对应的功率效率和功率效率满足预设要求。可选的,确定更新后的目标调制方式的过程中,还可以考虑被测物体的特征、空间衰减、误码率和调制方式实现难易程度等信息,结合这些信息中的一项或多项,通过自适应算法来获得最合适的调制方式,使得信号的信噪比得到提高,且满足相关要求。在一个实施例中,通过解调获得原始回波信号,采用的解调方式为相干解调,那么可以用到参考信号,因此在利用神经网络模型来实现自适应确定更新后的目标调制方式的过程中,可以将参考信号与第一信噪比对应的原始回波信号进行拼接,获得二维图像。利用参考信号进行拼接可以起到校正作用,使得测量结果更准确。
98.在一个实施例中,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述采用所述目标调制方式对所述光源发出的光进行调制,包括以下过程:
99.采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
100.在此实施例中,光源可以为宽谱光源,因此光源产生宽谱光,宽谱光中包括的至少一个波长的光在空间中相互交叠。对应地,更新后的目标调制方式包括一种调制方式,在对目标调制方式进行更新后,再次利用该更新后的目标调制方式对光源发出的所有波长的光均进行重新调制。基于该更新后的目标调制方式获取至少一个原始回波信号对应的至少一个信噪比,若该至少一个信噪比中仍存在小于信噪比阈值的第一信噪比,则继续对目标调制方式进行更新,直到此至少一个信噪比均大于或等于信噪比阈值。因此,通过不断对目标调制方式进行更新,每次更新后得到一种新的调制方式,经过一次或多次循环,直到满足信噪比条件时可以获得测量结果。可理解的,对目标调制方式进行更新后,采用更新后的目标调制方式重新对光源发出的光进行调制,获得调制回波信号,对调制回波信号进行解调得到不同波长的原始回波信号,解调时采用的解调方式和更新后的目标调制方式对应,即对目标调制方式进行更新之后,相应地也对解调方式进行更新,使得调制方式和解调方式始终满足对应关系。
101.在一个实施例中,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括n种调制方式,所述n为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述n为正整数,一种调制方式对应一个第一波长,所述第一波长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述采用所述目标调制方式对所述光源发出的光进行调制,包括以下过程:
102.针对所述n种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
103.在此实施例中,光源包括的所述至少一个波长的光在空间中相互分离,因此光源可以为分立的多波长相干光源。对应地,更新后的调制方式包括n种调制方式,一种调制方式和一个第一波长对应,而第一波长是与第一信噪比对应的原始回波信号的波长,并且,该n个第一波长为光源包括的至少一个波长中的波长。因而,在对目标调制方式进行更新后,针对该n种调制方式中的每种调制方式,采用该调制方式对光源发出的光中与该调制方式
对应的第一波长的光进行调制。即分别用n种调制方式中的一种调制方式对光源中一个第一波长的光进行调制,该调制方式和该第一波长满足对应关系。基于该更新后的目标调制方式获取至少一个原始回波信号对应的至少一个信噪比,若该至少一个信噪比中仍存在小于信噪比阈值的第一信噪比,则继续对目标调制方式进行更新,直到此至少一个信噪比均大于或等于信噪比阈值。因此,通过不断对目标调制方式进行更新,每次更新后得到一种或多种新的调制方式,经过一次或多次循环,直到满足信噪比条件时可以获得测量结果。
104.可选的,采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述n种调制方式对应的n个第一波长之外的波长的光进行调制。
105.具体的,光源发出的光中,包括上述n种调制方式对应的n个第一波长的光,还包括其他波长的光,因此,在对目标调制方式进行更新后,可以采用n种调制方式对光源发出的n个第一波长的光进行调制,而针对光源包括的除第一波长之外其他波长的光,仍采用更新前的目标调制方式进行调制。
106.所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
107.在进行光谱测量的过程中,光源和被测物体之间相距一定距离,因此测量结果会受到环境光的干扰。而测量的场景或者环境不同,那么环境光产生的干扰也可能存在区别,因此利用调制来降低干扰,也相应存在不同的调制需求,采用不同调制方式会达到不同的抗噪效果。根据不同的调制需求,可以分别采用不同的调制方式来对光源发出的光进行处理,因而更新后的调制方式可以包括但不限于上述几种调制方式。可选的,还可以结合各种编码技术,如随机编码技术等来确定更新后的调制方式,以获得满足信噪比条件的测量结果。
108.步骤160,输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
109.在本技术实施例中,当得到的原始回波信号对应的信噪比较小时,对目标调制方式进行更新,基于更新后的目标调制方式再次对光源进行调制,获得调制回波信号,进而再次对调制回波信号进行解调得到对应的原始回波信号,在确定上述至少一个波长对应的原始回波信号的信噪比均大于或等于信噪比阈值的情况下,基于该原始回波信号获得反射光谱,输出该反射光谱。其中,获得反射光谱时对应的原始回波信号,是最后一次更新目标调制方式后获得的与该更新后的目标调制方式相关的原始回波信号,因而,获得的反射光谱是与该更新后的目标调制方式关联的反射光谱。也就是说,若获得反射光谱前,对目标调制方式进行了一次或多次更新,那么获得的反射光谱与最后一次更新后得到的目标调制方式关联。具体的,把最后一次更新得到的目标调制方式确定为更新后的目标调制方式,基于所述光源包括的所述至少一个波长中每个波长的光的信号强度,和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度,可以获得各波长对应的反射率,进而得到反射光谱。
110.下面介绍两个光谱测量的场景。如图4a所示,图4a为一种光谱测量场景的示意图。在该场景下进行光谱测量,需要将光谱测量的装置紧贴被测物体,这种测量方式不太适合在终端消费电子领域应用。而如图4b所示,图4b为另一种光谱测量场景的示意图。在该场景
下进行光谱测量,需要在特定设计的腔室中完成测量,这种测量方式有一定的限制,也不便于在日常生活中应用。
111.因此,可以采用本技术提供的光谱测量方法,在日常生活中获取光谱信息,在满足信息准确度需求的同时,提高获取信息的简便性。如图5所示,图5为实施本技术的光谱测量场景的示意图,在该场景下,可以进行远距离的光谱测量。相对于图4a、图4b所示的场景,图5所示的场景不限制被测物体与光源之间的距离(即可以实现非接触式的光谱测量),而且对测量环境也无限制,进一步的,在该场景下进行光谱测量操作比较方便,因此本技术提供的光谱测量方法更适合应用于日常生活。
112.下面以一个具体的场景为例,介绍实施本技术提供的光谱测量方法的具体过程。请参阅图6,图6为本技术实施例提供的一种光谱测量方法的流程示意图。如图6所示,该光谱测量方法包括:
113.步骤210,采用目标调制方式对光源发出的光进行调制,获得入射信号。
114.本技术提供的光谱测量方法可以应用于自然开放环境,在远距离场景下进行光谱测量。示例性的,在一个具体的场景下,可以使用电子设备对人的皮肤进行测量,以获取皮肤的光谱信息,该电子设备能够实施本技术提供的光谱测量方法。该电子设备包括探头,该探头可以用于将入射信号传输到被测物体(在此场景下指皮肤)上,并从被测物体处将调制回波信号传送回电子设备。在远距离场景下,该电子设备的探头对准皮肤,但不紧贴皮肤,探头和皮肤间的距离可以由用户根据需要确定。
115.实施本技术,首先,采用目标调制方式对光源发出的光进行调制,获得入射信号。其中,光源可以为连续宽谱光源,此光源发出的光包括至少一个波长的光,而目标调制方式可以为一般周期调制(例如正弦波调制或方波调制等)。
116.在获得入射信号后,继续执行步骤220。
117.步骤220,获取调制回波信号,对该调制回波信号进行解调获得不同波长的原始回波信号。
118.入射信号从电子设备的探头传输至被测物体(在此场景下指皮肤)上,经被测物体反射后获得调制回波信号。对该调制回波信号进行解调,采用的解调方式和目标调制方式对应。解调之后获得不同波长对应的原始回波信号。
119.然后,继续执行步骤230。
120.步骤230,获取不同波长的原始回波信号的信噪比。
121.在获得不同波长对应的原始回波信号之后,获取该不同波长中每个波长对应的原始回波信号的信噪比。
122.接着继续执行步骤240。
123.步骤240,判断所有波长的原始回波信号的信噪比是否均大于或等于信噪比阈值。
124.判断所有波长的原始回波信号的信噪比是否满足信噪比条件,即均大于或者等于信噪比阈值,此信噪比阈值可以根据测量结果的精确度(也即准确度)需求进行设置,可选的,信噪比阈值也可以根据经验设置。
125.根据判断结果执行步骤250或步骤270。
126.步骤250,若不满足上述信噪比条件,获取小于信噪比阈值的低信噪比对应的波长的原始回波信号。
127.不满足信噪比条件,则作进一步处理,即获取小于信噪比阈值的低信噪比对应的波长的原始回波信号,利用该原始回波信号对目标调制方式进行更新。
128.下一步执行步骤260。
129.步骤260,基于该小于信噪比阈值的低信噪比对应的波长的原始回波信号,获得更新后的目标调制方式,返回步骤210。
130.基于该小于信噪比阈值的低信噪比对应的波长的原始回波信号,可以利用自适应算法来确定更新后的目标调制方式。该自适应算法可以通过卷积神经网络实现。更新后的目标调制方式包括一种或多种调制方式,根据光源的类型和小于信噪比阈值的低信噪比对应的波长的原始回波信号,可以确定更新后的目标调制方式包括的调制方式的数量。示例性的,在光源为连续宽谱光源的场景下,更新后的目标调制方式包括一种调制方式。该更新后的目标调制方式可以为调幅、调频、调相,以及更一般的正交调制等。调制内容可以是周期正弦、周期方波、脉冲、真/伪随机编码等,还可考虑波分复用等。
131.确定更新后的目标调制方式后,返回步骤210,即继续采用该更新后的目标调制方式对光源发出的光进行调制,获得入射信号。
132.步骤270,若满足上述信噪比条件,计算各个波长反射率,获得反射光谱。
133.满足信噪比条件,即所有波长的原始回波信号的信噪比均大于或等于信噪比阈值,则可以计算各个波长对应的反射率,得到反射光谱。计算反射率时,获取光源包括的各个波长的原始信号强度,以及最后一次更新目标调制方式后得到的各个波长的原始回波信号的信号强度,根据此两者计算得到各个波长对应的反射率。
134.在该场景下,获得人的皮肤的反射光谱(可选的,还可以获得随时间变化的光谱信息),因而可以根据该皮肤的反射光谱等获得皮肤的相关信息。示例性的,可以通过测量获取人脸皮肤指标数据(如血氧、黑色素、血红蛋白、胶原蛋白等),或者获取相关信息在支付场景性进行活体验证等。如图7所示,图7为一种皮肤光谱图,通过光谱测量可以获得皮肤中包含的物质的含量的相关信息。
135.因此,本技术提供的光谱测量方法可应用于多种场景,包括远距离心率检测、血氧检测、人脸活体检测、皮肤检测、远距离物质识别等。通过在电子设备上实施该光谱测量方法,可以实现随时随地测量肤质等功能,其中,该电子设备可以为集成了相关装置的终端等,具体的,可以将光谱测量装置集成于手机前置或后置,方便进行远距离的光谱测量。
136.下面介绍本技术提供的光谱测量系统,如图8所示,图8为本技术提供的一种光谱测量系统的架构图。在该光谱测量系统中,光源发出包括至少一个波长的光,采用光源调制算法对光源发出的光进行调制后,获得入射信号;入射信号传输至被测物体上,经被测物体反射后被光谱探测器接收,得到调制回波信号;利用光电信号解调算法对调制回波信号进行解调,获得各波长的原始回波信号;利用自适应调制选择算法判断各波长的原始回波信号的信噪比是否均大于或等于信噪比阈值,若否,则更新光源调制算法,重复上述步骤;若是,则利用反射光谱计算算法获取光源包括的各个波长的原始信号强度,以及各个波长的原始回波信号的信号强度,计算各波长的反射率,获得反射光谱。其中,光源调制算法、光电信号解调算法、自适应调制选择算法以及反射光谱计算算法可以在数字信号处理器(dsp)或通用处理器(通用cpu)上实现。通过利用该光谱测量系统获得反射光谱,可以减少杂散环境光对测量过程的干扰,提高光谱测量的准确度。在该光谱测量系统中,光源可以为宽谱光
源或者分立波长的光源,光源中可以包含透镜等光学聚焦组件;光谱探测器可以包括分光器件和光电探测器件,因而该光谱探测器可以包括分立滤光片或可实现连续分光的线性滤光片等。可理解的,该光谱测量系统中包括光源调制算法、光电信号解调算法、自适应调制选择算法以及反射光谱计算算法,那么还包括用于实现这些算法对信号进行处理的相关器件。
137.以上,结合图1至图8详细说明了本技术实施例提供的方法。以下,结合图9至图11详细说明本技术实施例提供的装置。
138.图9是本技术实施例提供的一种光谱测量装置的示意性框图。如图9所示,该光谱测量装置10可以包括第一获取单元11、第二获取单元12、第三获取单元13、确定单元14、更新单元15和输出单元16。第一获取单元11、第二获取单元12、第三获取单元13、确定单元14、更新单元15和输出单元16可以是软件,也可以是硬件,或者是软件和硬件结合。下面对各个单元进行阐述:
139.第一获取单元11,用于获取调制回波信号,所述调制回波信号对应的入射信号是采用目标调制方式对光源发出的光进行调制后得到的信号,所述光源发出的光包括至少一个波长的光;
140.第二获取单元12,用于获取对所述调制回波信号进行解调后得到的,所述至少一个波长中每个波长对应的原始回波信号,所述解调所采用的解调方式与所述目标调制方式对应;
141.第三获取单元13,用于获取所述至少一个波长对应的至少一个原始回波信号中每个原始回波信号的信噪比;
142.确定单元14,用于确定所述至少一个原始回波信号对应的至少一个信噪比中是否存在小于信噪比阈值的第一信噪比;
143.更新单元15,用于若确定所述至少一个原始回波信号对应的至少一个信噪比中存在小于信噪比阈值的第一信噪比,则获取所述第一信噪比对应的原始回波信号,并基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新,直到所述至少一个原始回波信号对应的至少一个信噪比均大于或等于所述信噪比阈值;
144.输出单元16,用于输出与更新后的目标调制方式关联的反射光谱,所述反射光谱是基于所述光源包括的所述至少一个波长中每个波长的光的信号强度和所述更新后的目标调制方式相关的至少一个原始回波信号中每个原始回波信号的信号强度得到的。
145.在一种可能的设计中,所述更新单元15具体用于:
146.第一处理单元,用于基于所述第一信噪比对应的原始回波信号,获得二维图像,所述二维图像是通过至少两个所述第一信噪比对应的至少两个原始回波信号拼接得到的;
147.第二处理单元,用于采用神经网络模型对所述二维图像进行自适应算法处理,获得更新后的目标调制方式。
148.在一种可能的设计中,所述装置还包括:
149.第一调制单元,用于采用所述目标调制方式对所述光源发出的光进行调制,获得所述入射信号。
150.在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互交叠,所述更新后的目标调制方式包括一种调制方式;所述基于所述第一信噪比对应的原始
回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
151.采用所述更新后的目标调制方式对所述光源发出的所述至少一个波长中每个波长的光进行调制。
152.在一种可能的设计中,所述光源包括的所述至少一个波长的光在空间中相互分离,所述更新后的调制方式包括n种调制方式,所述n为所述至少一个信噪比中小于所述信噪比阈值的所述第一信噪比的数量,所述n为正整数,一种调制方式对应一个第一波长,所述第一波长为所述第一信噪比所关联的波长;所述基于所述第一信噪比对应的原始回波信号对所述目标调制方式进行更新之后,所述第一调制单元具体用于:
153.针对所述n种调制方式中的每种调制方式,采用所述调制方式对所述光源发出的光中与所述调制方式对应的第一波长的光进行调制。
154.在一种可能的设计中,所述装置还包括:
155.第二调制单元,用于采用更新前的所述目标调制方式,对所述光源发出的所述至少一个波长的光中除所述n种调制方式对应的n个第一波长之外的波长的光进行调制。
156.在一种可能的设计中,所述更新后的目标调制方式包括以下调制方式中的任一项:正弦波调制、方波调制、最小频移键控、频移键控以及相移键控。
157.在一种可能的设计中,所述神经网络模型包括卷积神经网络模型。
158.请参照图10,是本技术实施例提供的另一种光谱测量装置20的示意性框图。应理解,图10示出的光谱测量装置仅是示例,本技术实施例的光谱测量装置还可包括其他部件,或者包括与图10中的各个部件的功能相似的部件,或者并非要包括图10中所有部件。
159.光谱测量装置20包括通信接口21和至少一个处理器22。
160.该光谱测量装置可以对应电子设备,进一步的,该光谱测量装置还可以对应终端设备。通信接口21用于收发信号,至少一个处理器22执行程序指令,使得该光谱测量装置实现上述方法实施例中电子设备所执行的方法的相应流程。具体请参照前述方法实施例的描述,在此不再赘述。
161.对于光谱测量装置可以是芯片或芯片系统的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片30包括处理器31和接口32。其中,处理器31的数量可以是一个或多个,接口32的数量可以是多个。需要说明的,处理器31、接口32各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
162.可选的,芯片还可以包括存储器33,存储器33用于存储必要的程序指令和数据。
163.本技术中,处理器31可用于从存储器中调用本技术的一个或多个实施例提供的光谱测量方法在电子设备的实现程序,并执行该程序包含的指令。接口32可用于输出处理器31的执行结果。本技术中,接口32可具体用于输出处理器31的各个消息或信息。关于本技术的一个或多个实施例提供的信号处理方法可参考前述所示方法实施例,这里不再赘述。
164.本技术实施例中的处理器可以是中央处理单元(central processing unit,cpu),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,dsp)、专用集成电路(application specific integrated circuit,asic)、现成可编程门阵列(field programmable gate array,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常
规的处理器等。
165.根据本技术实施例提供的方法,本技术还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中的方法。
166.根据本技术实施例提供的方法,本技术还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得该计算机执行前述方法实施例中的方法。
167.本技术实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
168.应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,fpga),可以是通用处理器、数字信号处理器(digital signal processor,dsp)、专用集成电路(application specific integrated circuit,asic)、现成可编程门阵列(field programmable gate array,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,soc),还可以是中央处理器(central processor unit,cpu),还可以是网络处理器(network processor,np),还可以是数字信号处理电路(digital signal processor,dsp),还可以是微控制器(micro controller unit,mcu),还可以是可编程控制器(programmable logic device,pld)或其他集成芯片。可以实现或者执行本技术实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本技术实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
169.可以理解,本技术实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,rom)、可编程只读存储器(programmable rom,prom)、可擦除可编程只读存储器(erasable prom,eprom)、电可擦除可编程只读存储器(electrically eprom,eeprom)或闪存。易失性存储器可以是随机存取存储器(random access memory,ram),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的ram可用,例如静态随机存取存储器(static ram,sram)、动态随机存取存储器(dynamic ram,dram)、同步动态随机存取存储器(synchronous dram,sdram)、双倍数据速率同步动态随机存取存储器(double data rate sdram,ddr sdram)、增强型同步动态随机存取存储器(enhanced sdram,esdram)、同步连接动态随机存取存储器(synchlink dram,sldram)和直接内存总线随机存取存储器(direct rambus ram,dr ram)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
170.在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分
地产生按照本技术实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,dsl))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,dvd))、或者半导体介质(例如,固态硬盘(solid state disc,ssd))等。
171.在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
172.可以理解的,本技术实施例中电子设备可以执行本技术实施例中的部分或全部步骤,这些步骤或操作仅是示例,本技术实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本技术实施例呈现的不同的顺序来执行,并且有可能并非要执行本技术实施例中的全部操作。
173.本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本技术的范围。
174.所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
175.在本技术所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
176.所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
177.另外,在本技术各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
178.所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本技术的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本技术各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器rom、随机存取存储器ram、磁碟或者光盘等各种可以存储程序代码的介质。
179.以上所述,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以所述权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1