一种逆变器负载检测电路的制作方法

文档序号:33506962发布日期:2023-03-18 02:47阅读:113来源:国知局
一种逆变器负载检测电路的制作方法

1.本技术涉及电力控制领域,尤其涉及一种逆变器负载检测电路。


背景技术:

2.当前,随着市场用电量不断增加,电力市场的电力需求也随之扩大,电力能源不足或不均现象时有发生。同时,当发生各种不可逆的灾难(如地震、水灾),或电力系统主线路故障时,用电主体的供电需求难以得到保证,影响各单位以及个人正常的生产及生活。为了保证用电主体的供电需求,分为储能和逆变两部分的光伏储能逆变电源应运而生。光伏储能逆变电源一般需要连接相应的逆变器,以使直流电源转换为供生产生活使用的交流电源。
3.然而,光伏储能逆变电源的质量受气候影响较大,如云层干扰、阳光入射角度等,因而电能质量的稳定性不能得到保障。在此基础上,当逆变器输出端的负载类型发生异常变化时,例如,逆变器输出端的无功功率突然增加、功率因数降低,会产生如下问题:第一,无功功率增加导致电压降落增大,最终引起电网电压波动,使得光伏供电系统的供电质量无法得到保证;第二,无功功率增加使总电流增大,设备及线路的损耗也随之增大。上述问题都严重影响光伏供电系统的稳定运行。
4.因此,目前亟需一种新的逆变器负载检测电路来解决上述问题。


技术实现要素:

5.本技术提供了一种逆变器负载检测电路,用于解决光伏电源逆变器在负载异常时,光伏供电系统处于不稳定运行状态的问题。
6.第一方面,本技术提供了一种逆变器负载检测电路,所述电路包括采样输入端101、电压采样单元102、电流采样单元103、信号转换单元104、供电单元105、光耦合器106以及微机处理模块107,所述微机处理模块107包括电压反馈端1071以及数据输出端1072;所述采样输入端101与所述电压采样单元102以及所述电流采样单元103相连接,所述采样输入端101包括逆变模块1013;所述电压采样单元102与所述信号转换单元104相连接,所述电压采样单元102还与所述电压反馈端1071相连接;所述电流采样单元103还与所述信号转换单元104相连接;所述信号转换单元104还与所述光耦合器106相连接;所述供电单元105与所述采样输入端101相连接,还与所述信号转换单元104相连接,所述供电单元105用于为所述信号转换单元104供电;所述光耦合器106还与所述数据输出端1072相连接,所述光耦合器106向所述数据输出端(1072)发送所述数字信号。
7.可选的,所述供电单元105包括第一电阻、第二电阻、第三电阻、第一电容、第一电解电容、第二电解电容、第一二极管以及稳压芯片1051;所述第一电阻一端与逆变模块第一输出端口相连接,另一端与第二电阻一端相连接;所述第二电阻另一端与第三电阻一端相连接;所述第三电阻另一端接地;所述第一电容一端与所述第一电阻一端相连接,另一端与所述第三电阻一端相连接;所述第一二极管一端与所述第三电阻一端相连接,另一端与所
述稳压芯片1051输入端相连接;所述第一电解电容负极与所述稳压芯片1051输入端相连接,所述第一电解电容正极接地;所述第二电解电容负极与所述稳压芯片1051输出端相连接,所述第二电解电容正极接地;所述稳压芯片1051接地端与逆变模块第二输出端口相连接,所述稳压芯片1051输出端还与电能计量芯片1041的vdd端相连。
8.通过设置供电单元能够实现向电能计量芯片1041以及光耦合器106稳定供电。
9.可选的,所述电压采样单元102包括第四电阻1021、第五电阻以及第二电容;所述第四电阻1021一端与逆变模块1013第一输出端口相连接,另一端与电能计量芯片1041的电压信号输入端相连接;所述第五电阻一端与所述电压信号输入端相连接,另一端接地;所述第二电容并联在所述第五电阻两端。
10.可选的,所述电流采样单元103包括第六电阻、第七电阻、第三电容以及第四电容;所述第六电阻一端与所述采样输入端101相连接,另一端与电能计量芯片1041的第一电流差分信号输入端相连接;所述第三电容一端与所述第一电流差分信号输入端相连接,另一端接地;第七电阻一端与电能计量芯片1041的第二电流差分信号输入端相连接,另一端接地;所述第四电容并联在所述第七电阻两端。
11.可选的,所述采样输入端101还包括:采样电阻1011以及第一共模电感1012;所述采样电阻1011一端与逆变模块1013第二输出端口相连接,另一端与所述第一共模电感1012的第二同名端相连接;所述第一共模电感1012的第一同名端与所述逆变模块1013的第一输出端口相连接;所述第一共模电感1012的第一异名端与第一交流负载接口相连接;所述第一共模电感1012的第二异名端与第二交流负载接口相连接。
12.可选的,所述信号转换单元包括至少一个电能计量芯片1041,所述电能计量芯片1041用于处理所述电压采样单元102以及所述电流采样单元103输出的交流信号。
13.可选的,所述数字信号包括电压信号值、电流信号值、电压电流相位信号值、视在功率信号值以及功率因数信号值;其中,所述视在功率信号值以及所述功率因数信号值根据以下公式得到,s=ui;其中,p为有功率因数信号值,u为电压信号值,i为电流信号值,为电压电流相位信号值,s为视在功率信号值,为功率因数信号值。
14.可选的,其特征在于,所述微机处理模块(107)中储存有所述数字信号与负载类型的预设对应关系,所述负载类型包括异常负载以及正常负载。
15.可选的,当所述功率因数信号值小于预定功率因数阈值时,所述微机处理模块107确定所述负载为所述异常负载;所述微机处理模块107控制所述逆变模块1013执行保护动作。
16.可选的,当所述功率因数信号大于或等于预定功率因数阈值,且所述视在功率信号大于预定视在功率阈值时,所述微机处理模块107确定所述负载为所述异常负载;所述微机处理模块107控制所述逆变模块1013执行保护动作。
17.与现有技术相比,本技术的有益效果是:通过对逆变器输出端的电压电流进行采样,能够判断负载是否异常,并及时作出保护动作,保证了逆变器的安全工作,保证了光伏供电系统的稳定运行。避免了无功功率增加导致电压降落增大,最终引起电网电压波动,使得光伏供电系统的供电质量无法得到保证;同时避免了无功功率增加使总电流增大,设备及线路的损耗也随之增大。
附图说明
18.图1是本技术实施例提供的一种逆变器负载检测电路的结构示意图;图2是本技术实施例提供的一种逆变器负载检测电路的供电单元结构示意图;图3是本技术实施例提供的一种逆变器负载检测电路的电压采样单元结构示意图;图4是本技术实施例提供的一种逆变器负载检测电路的采样输入端结构示意图;图5是本技术实施例提供的一种逆变器负载检测电路的电流采样单元结构示意图;图6是本技术实施例提供的一种逆变器负载检测电路的光耦合器结构示意图;图7是本技术实施例提供的一种逆变器负载检测电路的电路原理示意图。
19.附图说明:101、采样输入端;1011、采样电阻;1012、第一共模电感;1013、逆变模块;102、电压采样单元;103、电流采样单元;104、信号转换单元;1041、电能计量芯片;1021、第四电阻;105、供电单元;1051、稳压芯片;106、光耦合器;107、微机处理模块;1071、电压反馈端;1072、数据输出端。
具体实施方式
20.为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本技术一部分实施例,而不是全部的实施例。
21.在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本技术的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
22.此外,本技术的说明书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者多个该特征。
23.在本技术的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”或“通信连接”应做广义理解,例如,“相连”、“连接”或“通信连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本技术中的具体含义。
24.本技术实施例中的负载可以为容性负载、感性负载、阻性负载以及组合负载。例如冰箱、冷饮机、空调器、电扇、换气扇、冷热风器、空气去湿器、洗衣机、干衣机、电熨斗、吸尘器等,包括但不限于上述所提到的负载类型。
25.本技术实施例中的逆变器可以为用于光伏电源的逆变器,包括但不限于有源逆变器、无源逆变器、离网型逆变器、并网型逆变器。
26.本技术实施例中提供了一种逆变器负载检测电路,图1为本技术提供的电路结构示意图。如图1所示,电路包括采样输入端101、电压采样单元102、电流采样单元103、信号转
换单元104、供电单元105、光耦合器106以及微机处理模块107,微机处理模块107包括电压反馈端1071以及数据输出端1072。采样输入端101与电压采样单元102以及电流采样单元103相连接,采样输入端101包括逆变模块1013;电压采样单元102与信号转换单元104相连接,电压采样单元102还与电压反馈端1071相连接;电流采样单元103还与信号转换单元104相连接;信号转换单元104还与光耦合器106相连接;供电单元105与采样输入端101相连接,还与信号转换单元104相连接,供电单元105用于为信号转换单元104供电;光耦合器106还与数据输出端1072相连接,光耦合器106向数据输出端1072发送数字信号。
27.其中,采样输入端101提供电压采样以及电流采样的采样点,供电流采样单元103以及电压采样单元102采样;电流采样单元103以及电压采样单元102将各自采样交的流信号传输至信号转换单元104中的电能计量芯片1041中;电压采样单元102同时向微机处理模块107的电压反馈端1071输出反馈电压;信号转换单元104通过光耦合器106向数据输出端1072输出数字信号;供电单元105同时为信号转换单元104和光耦合器106提供电源。
28.cse7759b位置误差小、功耗电流小,并且具有开路保护及短路保护功能,性能稳定,精度高,外围电路简单,无需校准。
29.可选的,数字信号包括电压信号、电流信号、电压电流相位信号、视在功率信号以及功率因数信号;其中,视在功率信号以及功率因数信号根据以下公式得到,s=ui;其中p为有功功率值,u为电压值,i为电流值,为电压电流相位角,s为视在功率值,为功率因数值。
30.可选的,微机处理模块107中储存有所述数字信号与负载类型的预设对应关系,所述负载类型包括异常负载以及正常负载。
31.可选的,当功率因数值小于预定阈功率因数阈值时,微机处理模块107确定所述负载为所述异常负载;微机处理模块107控制所述逆变器保护动作,断开所述逆变器开关。
32.例如,在某时刻,微机处理模块107输入的功率因数信号的数值为0.66,预定阈功率因数阈值为0.80,微机处理模块107确定所述负载为异常负载;微机处理模块107控制逆变器保护动作,断开逆变器开关。
33.可选的,当功率因数信号大于或等于预定功率因数阈值,且视在功率信号大于预定视在功率阈值时,微机处理模块107确定负载为所述异常负载;微机处理模块107控制所述逆变器保护动作,断开逆变器开关。
34.例如,在某时刻,微机处理模块107输入的功率因数信号的数值为0.88,视在功率信号的数值为1100va,预定阈功率因数阈值为0.80,预定视在功率阈值为1000va,微机处理模块107确定负载为所述异常负载;微机处理模块107控制逆变器保护动作,断开逆变器开关。
35.可选的,当功率因数信号大于或等于预定功率因数阈值,且视在功率信号小于预定视在功率阈值时,微机处理模块107确定负载为所述正常负载;微机处理模块107控制所述逆变器保护不动作,保证逆变器正常工作。
36.例如,在某时刻,微机处理模块107输入的功率因数信号的数值为0.88,视在功率信号的数值为800va,预定阈功率因数阈值为0.80,预定视在功率阈值为1000va,微机处理模块107确定负载为正常负载;微机处理模块107控制所述逆变器保护不动作,保证逆变器
正常工作。
37.可选的,图2为本技术提供的一种供电单元的电路结构示意图。如图2所示,所述供电单元105包括第一电阻r1、第二电阻r2、第三电阻r3、第一电容c1、第一电解电容c2、第二电解电容c3、第一二极管d1以及稳压芯片1051。
38.第一电阻r1一端与逆变模块第一输出端口相连接,另一端与第二电阻r2一端相连接;第二电阻r2另一端与第三电阻r3一端相连接;第三电阻r3另一端接地,起到保护供电单元105的作用;第一电容c1一端与第一电阻r1一端相连接,另一端与第三电阻r3一端相连接,第一电阻r1、第二电阻r2以及第一电容c1组成rc并联电路,接收逆变模块第一输出端口输出的电压,同时衰减输入供电单元105的低频信号。
39.第一二极管d1一端与第三电阻r3一端相连接,另一端与稳压芯片1051输入端vin相连接,第一二极管d1保证仅直流信号输入vin端口,同时避免电路反接引起故障。
40.第一电解电容c2负极与所述稳压芯片1051输入端vin相连接,第一电解电容1055负极接地;第二电解电容c3负极与稳压芯片1051输出端vout相连接,第二电解电容c3负极接地。第一电解电容c2与第二电解电容c3通过接地起到过滤输入vin端的低频信号,起到滤波作用。
41.稳压芯片1051接地端gnd与逆变模块第二输出端口相连接,稳压芯片1051输出端vout还与电能计量芯片1041的vdd端相连,稳压芯片1051通过上述供电单元105实现对信号转换单元中的电能计量芯片1041的供电,同时通过稳压芯片1051输出端vout向光耦合器106供电。
42.可选的,图3为本技术提供的一种电压采样单元的电路结构示意图。如图3所示,所述电压采样单元102包括第四电阻1021、第五电阻r5以及第二电容c2。其中,第四电阻1021由电阻r9、电阻r10、电阻r11、电阻r12以及电阻r13组成,电压采样单元102通过串联多个上述电阻实现分摊功率,防止单个电阻的耐压值不够导致电阻被击穿。
43.第四电阻1021一端与逆变模块第一输出端口相连接,另一端与电压采样单元102的电压信号输入端v2p相连接,第四电阻1021接收逆变模块第一输出端口输出的电压信号,并将电压信号输出至电能计量芯片1041的电压信号输入端v2p;第五电阻r5一端与电压信号输入端相连接,另一端接地;第二电容1023并联在第五电阻r5两端。第五电阻r5与第二电容1023构成rc并联电路并且接地,过滤输入电能计量芯片1041的电压信号输入端v2p中的高次谐波。
44.可选的,采样输入端还包括采样电阻1011以及第一共模电感1012。如图4所示,采样输入端101包括采样电阻1011、第一共模电感1012以及逆变模块1013。
45.采样电阻1011一端与逆变模块第二输出端口相连接,另一端与第一共模电感的第二同名端相连接;第一共模电感的第一同名端与逆变模块第一输出端口相连接;第一共模电感的第一异名端与第一交流负载接口相连接;第一共模电感的第二异名端与第二交流负载接口相连接。
46.采样电阻1011一端还连接供电单元105,另一端还连接电流采样单元103;逆变模块第一输出端口还与电压采样端口相连接。
47.可选的,如图5所示,电流采样单元103包括第六电阻r6、第七电阻r7、第三电容c4以及第四电容c5。
48.第六电阻r6一端与采样输入端101相连接,另一端与电能计量芯片1041的第一电流差分信号输入端v1n相连接,电流信号通过第六电阻r6后输入第一电流差分信号输入端v1n;第三电容c4一端与第一电流差分信号输入端v1n相连接,另一端接地,防止残余的高频信号干扰;第七电阻r7一端与电能计量芯片1041的第二电流差分信号输入端v1p相连接,另一端接地。第四电容c5并联在第七电阻r7两端,第七电阻r7与第四电容c5组成并联rc滤波电路后接地,用于去除电流采样单元103中的高次谐波。
49.可选的,如图6所示,光耦合器106输入端正极与供电单元105的稳压芯片1051输出端vout通过第八电阻r8相连接,稳压芯片1051输出端vout向光耦合器106提供电源,第八电阻r8起到分压作用;输入端负极与电能计量芯片1041的ti端口连接。
50.ti端口为uart发送口,通过uart串口协议读取电压、电流、功率等相关参数,通过光耦合器106将上述信号发送给微机处理模块107中的数据输出端;光耦合器106输出端正极与数据输出端1072连接,输出端负极接地;电容c7一端接地,另一端与光耦合器106输出端正极相连,电容c7用于过滤光耦合器106输出端输出信号中的残余高次谐波。
51.可选的,图7为本技术提供的一种逆变器负载检测电路的结构示意图。电路中各元件的连接关系及原理可参见上述部分,在此不再赘述。
52.如图7所示,ac1端口与ac2端口用于连接负载端。
53.可选的,微机处理模块中还包括mcu单元。
54.可选的,微机处理模块中的mcu单元使用的mcu类型为so-20单片机。
55.可选的,电能计量芯片102的型号为cse7759b。
56.在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
57.本技术采用上述电路,通过对逆变器输出端的电压电流进行采样,能够判断负载是否异常,并及时作出保护动作,保证了逆变器的安全工作,保证了光伏供电系统的稳定运行。同时,避免了无功功率增加导致电压降落增大,最终引起电网电压波动,使得光伏供电系统的供电质量无法得到保证;同时避免了无功功率增加使总电流增大,设备及线路的损耗也随之增大。
58.以上所述者,仅为本公开的示例性实施例,不能以此限定本公开的范围。即但凡依本公开教导所作的等效变化与修饰,皆仍属本公开涵盖的范围内。本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其它实施方案。本技术旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未记载的本技术领域中的公知常识或惯用技术手段。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1