基于光散射与相位成像下的血细胞联合检测系统的制作方法

文档序号:8222190阅读:255来源:国知局
基于光散射与相位成像下的血细胞联合检测系统的制作方法
【技术领域】
[0001]本发明属于细胞检测技术领域,尤其是一种基于光散射与相位成像下的血细胞联合检测系统。
【背景技术】
[0002]对生物血细胞进行分类识别是生物学以及医学等领域的重要研宄课题。细胞大小和形态的检测方法以及分类众多,其中镜检和流式技术是两个比较常用的细胞光学检测方法,其中镜检针对于个体细胞,进行静态的形态测量;流式技术则适用于多个细胞的快速检测。例如日本希森美康株式会社发明专利申请公开号为CN104075981A,名称为“血细胞分析装置及血细胞分析方法”,采用流式技术,利用光散射和荧光检测来分类细胞;中国发明专利申请公开号为CN102590067A,名称为“一种利用普通显微镜可进行血细胞相位成像的加载装置”,采用相位显微成像的技术对细胞进行分类。相位显微成像技术为镜检技术中的一部分,具有检测精准的特点。
[0003]从技术应用来看,相位显微成像的检测速度过慢,不能够适宜于大量细胞的实时监测;而流式技术能够快速的对细胞进行检测,其速度可以达到每秒上万个细胞,但是快速也导致了其检测精度低,对于样品中异常的细胞不能进行分析,同时现有的流式技术采用荧光染色和光散射法结合进行细胞分类,而荧光染色需要的试剂众多,成本较高,步骤繁琐,得到的细胞信息不完整。基于上述两种方法的优缺点,本发明提出了一种光散射与相位成像下的血细胞联合检测技术,该技术能有效的结合两者的优势。

【发明内容】

[0004]针对现有技术中存在不足,本发明提供了一种基于光散射与相位成像下的血细胞联合检测系统,能够更加完整、准确、快速的进行血细胞检测。
[0005]本发明是通过以下技术手段实现上述技术目的的。
[0006]一种基于光散射与相位成像下的血细胞联合检测系统,其特征在于:包括光相位光路系统和光散射光路系统;所述光相位光路系统用于采集待测样品的光学干涉图,包括激光器、扩束准直系统、第一分束镜、液流系统、样品、第一反射镜、第二分束镜、第三分束镜、第二反射镜、和面阵CCD,其中扩束准直系统、第一分束镜、第三分束镜和第二反射镜依次放置在激光器的光路上,所述样品盛放在液流系统中、与第一反射镜依次放置在第一分束镜的反射光路上,所述第二分束镜和面阵CCD依次放置在第一反射镜的反射光路上,且所述第二分束镜同时位于第二反射镜的反射光路上;所述光散射光路系统用于采集样品的散射光信号,包括第三反射镜、第五透镜、会聚透镜和光电二极管,所述第三反射镜位于第三分束镜的反射光路上,所述第五透镜、样品、会聚透镜和光电二极管依次放置在第三反射透镜的反射光路上。
[0007]进一步地,所述扩束准直系统包括依次放置在激光器光路上的第一透镜、针孔滤波器和第二透镜。
[0008]进一步地,所述光相位光路系统还包括第一显微放大镜、第三透镜、第二显微放大镜和第四透镜,所述第一显微放大镜位于液流系统与第一反射镜之间的光路上,所述第三透镜位于第一反射镜与第二分束镜之间的光路上,所述第二显微放大镜和第四透镜依次放置在第二反射镜与第二分束镜之间的光路上。
[0009]进一步地,所述第三透镜的物方焦点与所述第一显微放大镜的像方虚焦点重合,所述第四透镜的物方焦点与所述第二显微放大镜的像方虚焦点重合。
[0010]进一步地,所述第一显微镜与第二显微镜的放大率均为50倍,且焦距均为4cm。[0011 ] 进一步地,所述第一分束镜的反射光经所述液流系统、第一显微放大镜、第一反射镜、第三透镜到达第二分束镜的光程等于所述第一分束镜的透射光经过所述第三分束镜、第二反射镜、第二显微放大镜、第四透镜到达第二分束镜的光程。
[0012]进一步地,所述样品位于第五透镜的焦平面上、且位于第一显微放大镜的物方焦平面处。
[0013]进一步地,所述第一分束镜、第二分束镜、第三分束镜均以45度放置,且镀有45度入射时半透半反的介质膜。
[0014]本发明中所述的光相位光路系统应用马赫增德尔干涉原理采集测定液流系统中待测样品的光学干涉图,同时利用在第三分束镜形成的反射光作为光散射光路系统的入射光,采集样品的散射光信号,将待测样品所含有的血细胞实现快速分类,当在光散射光路系统中发现异常细胞时,同时在面阵CCD上抓取该异常细胞的光学干涉图,依据光相位恢复技术,根据相位与细胞厚度的关系,得到均质细胞的形态,本发明的基于光散射与相位成像下的血细胞联合检测系统,可以实现对于大量血细胞的实施监测和快速分类,同时可对特定细胞进行全面、精准的信息检测,满足现实使用需求,节约检测时间与成本,提高检测效率。
【附图说明】
[0015]图1为本发明所述基于光散射与相位成像下的血细胞联合检测装置的结构示意图。
[0016]图2为本发明所述的光散射光路系统的结构示意图。
[0017]附图标记说明如下:
[0018]1-激光器,2-第一透镜,3-针孔滤波器,4-第二透镜,5-第一分束镜,6_液流系统,7-样品,8-第一显微放大镜,9-第一反射镜,10-第三透镜,11-第二分束镜,12-第三分束镜,13-第二反射镜,14-第二显微放大镜,15-第四透镜,16-第三反射镜,17-第五透镜,18-会聚透镜,19-光电二极管,20-面阵(XD。
【具体实施方式】
[0019]下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
[0020]本实施例中的激光器I是波长为632.8nm,输出功率为3.4mff的氦氖激光器。
[0021]激光器I光源发出水平方向的光束,向前传输经第一透镜2、针孔滤波器3、第二透镜4扩束准直后达到第一分束镜5,光束在第一分束镜5分为继续水平传输的透射光和垂直向上传输的反射光,继续水平传输的透射光束前向到达第三分束镜12,光束在第三分束镜12分为继续水平传输的透射光和垂直向上传输的反射光两束光,继续水平传输的透射光束经第二反射镜13反射后改为垂直向上的参考光,所述第二显微放大镜14的像方虚焦点与第四透镜15的物方焦点重合,保证所述参考光经第二显微放大镜14放大、再经第四透镜15后转换为平行光束到达第二分束镜11 ;由第一分束镜5分为垂直向上的反射光束经由携带样品7的液流系统6后,成为携带样品信息的物光,所诉样品7置于第一显微放大镜8的物方焦平面处。所述物光通过第一显微放大镜8以及第一反射镜9组成的显微系统,形成放大倒立的像,所述第一反射镜9成45度放置,将所述垂直入射的物光反射后改为沿水平方向传输,且第一显微镜8的像方虚焦点与第三透镜10的物方焦点重合,保证所述物光经第三透镜10后转换为平行光束到达第二分束镜11,所述物光与所述参考光在第二分束镜11会聚发生干涉,最终成像于面阵CCD的接收面上,形成细胞样品7的干涉图像,依据光相位恢复技术,根据相位与细胞厚度的关系,最终得到均质细胞的三维形态图。
[0022]为了减少最终成像的误差,需调节参考光光路和物光光路的光程一致,即在液流系统6中无细胞悬浮液流入时,通过选择不同折射率或厚度参数的分束镜和液流系统6的材质与厚
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1