一种基于动生涡电流的金属管件电磁无损检测装置的制造方法

文档序号:9749238阅读:283来源:国知局
一种基于动生涡电流的金属管件电磁无损检测装置的制造方法
【技术领域】
[0001]本发明涉及无损检测领域,具体涉及一种基于动生涡电流的金属管件电磁无损检测装置,适用于金属管件内/外部缺陷的高速无损检测。
【背景技术】
[0002]目前,金属管件有多种无损检测方法来实现其缺陷的检测,如磁粉检测、渗透检测、超声检测、涡流检测、射线检测、交流场检测、交流电势检测、直流电势检测以及漏磁检测等多种检测方法。
[0003]然而,现有的金属管件无损检测方法中,磁粉检测(MPT,1922年美国霍克)及渗透检测(PT,1940美国Magnaf Iux公司)因磁吸附作用或毛细作用细显原理而需人工手动操作,导致其效率不高;超声检测(UT,1929年俄国Sokolov)存在着激励与检测频率匹配而限制了扫描速度的问题;涡流检测(ECT,1935年德国霍斯特)由于趋附效应而对管件内部缺陷的检测失效;射线检测(RT,1900法国海关)具有辐射性,原则上尽可能减少使用;交流场检测法(ACFM,1980英国石油公司)和交流电势检测法(ACPD,1980英国伦敦大学学院)与涡流检测法一样,因趋附效应而不能检测内部缺陷;直流电势法(DCPD,1991Read和Pfuff)是一种基于缺陷处电压变化原理的探针电回路接触式检测,因接触式磨损而无法实现高速检测,且对表面有绝缘附着物的检测体失效;漏磁检测法(MFL,1923美国Sperry)仅适用于导磁性管件的缺陷检测,从而对有色金属(非导磁性导电体如不锈钢、铜、铝及钛合金等)以及高温黑色金属失效(过居里点而失去磁性),并且在高速检测时,由于磁化滞后效应导致构件的磁化不足,而无法产生足够强度的漏磁场。上述现有技术的金属管件无损检测方法,都无法实现对金属管件缺陷进行高速检测,不能满足生产的需要。因此,生产实践亟需提供一种可用于对金属管件内/外部缺陷全面进行检测的高速检测方法。

【发明内容】

[0004]针对上述问题,本发明的目的是提供一种基于动生涡电流的金属管件电磁无损检测装置,以实现金属管件内/外部缺陷的高速检测要求。
[0005]为实现上述目的,本发明采取了以下技术方案:
[0006]本发明提供的基于动生涡电流的金属管件电磁无损检测装置,其构成包括运送待检测金属管件的运送装置、待检测金属管件从中穿过的直流磁化线圈、磁敏传感器、信号调理电路、采集卡和计算机,磁敏传感器、信号调理电路、采集卡和计算机依次连接,所述磁敏传感器围绕待检测金属管件周向于动生涡电流集中的靠近区或/和离开区内布置,检测装置运行时,待检测金属管件由运送装置运送穿过直流磁化线圈,磁敏传感器拾取管件表面的电磁场变化,将电磁场变化转化为电信号,电信号经信号调理电路放大、滤波后,由采集卡进行A/D转换,提供给计算机进行分析处理,得到管件的缺陷信息。
[0007]在本发明的上述技术方案中,所述磁敏传感器优先考虑分别设置在直流磁化线圈两侧动生涡电流集中的靠近区和离开区内,且沿待检测金属管件周向均匀阵列布置。进一步地,所述阵列布置的磁敏传感器可通过支架设置在直流磁化线圈上。
[0008]在本发明的上述技术方案中,所述磁敏传感器的端面与待检测金属管件表面之间的距离一般大于2.0mm;最好控制在0.5mm?1.0mm范围。
[0009]在本发明的上述技术方案中,所述运送装置,最好使其运送的待检测金属管件与直流磁化线圈同轴地穿过直流磁化线圈。
[0010]在本发明的上述技术方案中,所述传送装置优先采用“V”型轮运送装置,在直流磁化线圈的两边至少各布置一副“V”型轮机构。
[0011]在本发明的上述技术方案中,所述运送装置运送待检测金属管件的移动速度最好不低于3米/分钟。
[0012]在本发明的上述技术方案中,磁场强度可根据需要通过磁化线圈的通电电流幅值进行调节。直流磁化线圈在磁敏传感器布置区域内产生的径向磁场强度最好不得低于3000A/m。
[0013]本发明的发明人研究中发现,以直流磁化线圈作为磁场源,所产生的磁场为具有径向分量的分布磁场,当待检测管件与直流磁化线圈同轴地穿过直流磁化线圈,由于金属管件材料内部电子的运动方向与磁场的径向分量垂直,在洛伦兹力的作用下,在金属管件内部形成沿圆周方向均匀分布的涡电流闭合环路,当管件中存在缺陷时,涡电流环路在缺陷处的传导路径将发生畸变,并在管件表面形成可探测的扰动电磁场,可通过在金属管件表面布置磁敏感传感器阵列,拾取管件表面的电磁场变化信号,通过管件表面电磁场信号特征来获得管件内的缺陷信息。本发明正是基于发明人的上述发现提出了本发明的技术方案。
[0014]本发明提供的基于动生涡电流的金属管件电磁无损检测装置,其中直流磁化线圈在空间形成具有径向分量的磁场分布,金属管件通过线圈时切割磁力线,从而在金属管件靠近直流磁化线圈的靠近区和离开区分别形成动生涡电流,金属管件中如有缺陷存在,涡电流传导路径将发生畸变,并在管件表面形成可探测的扰动电磁场。在靠近区和离开区的管件表面周向布置的传感器阵列,拾取缺陷引起的动生涡电流环路畸变形成的扰动电磁场信号,最终根据扰动电磁场信号特征获得管件内的缺陷信息。
[0015]本发明所提供的基于动生涡电流的金属管件电磁无损检测装置,以运动金属管件切割磁力线在金属管件体内产生的动生涡电流作为激励,消除了高频交变电磁场趋附效应的影响,从而解决了高频电磁检测探测深度不够的问题,从而可实现探测金属管件内/外部缺陷。又由于管件运行速度越快,管件体内的动生涡电流强度越大,进而缺陷检测灵敏度也越高,最终可实现金属管件内/外部缺陷的高速检测要求。
【附图说明】
[0016]图1-1为本发明的金属管件无损检测装置主视结构示意图;
[0017]图1-2为本发明的金属管件无损检测装置左视结构示意图
[0018]图2为直流磁化线圈产生的磁场分布不意图;
[0019]图3为金属管件内动生涡电流分布示意图;
[0020]图4为磁敏传感器阵列布置示意图;
[0021 ]图5为金属管件中无缺陷时的涡电流环路分布示意图;
[0022]图6为金属管件中有缺陷时的涡电流环路分布示意图。
[0023]上述附图中的各图示标号表示对象分别为:1_待测金属管件;2-直流磁化线圈;3-运送装置;4、4’_磁敏传感器阵列;5-信号调理电路;6-采集卡;7-计算机;8-支架;9、9’_涡电流闭合环路。
【具体实施方式】
[0024]下面结合附图给出本发明的【具体实施方式】,并通过【具体实施方式】对本发明的基于动生涡电流的金属管件电磁无损检测装置作进一步的说明。需要特别指出的是,本发明的【具体实施方式】不限于实施例所描述的形式。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1