磁悬浮横梁零相位直线驱动龙门移动镗铣床及控制方法

文档序号:6279684阅读:151来源:国知局
专利名称:磁悬浮横梁零相位直线驱动龙门移动镗铣床及控制方法
技术领域
本发明属于数控技术领域,特别涉及一种磁悬浮横梁零相位直线驱动龙门移动镗铣床及控制方法。
背景技术
高精度大型数控机床是国民经济、国防建设中的关键装备与战略物资,我国与先进国家尚有较大差距。在大型加工设备中,龙门移动式数控加工中心是最具有代表性的机床之一。在龙门移动式加工中心中,移动部件和静止导轨之间存在着摩擦,降低运动副精度,磨损发热,使精密部件变形。特别是在低速微进给情况下,由于摩擦与运动速度间存在的非线性,可能产生所谓的尺蠖运动方式或混沌不清的极限环现象,严重破坏了对微进给、高精度、高响应能力的进给性能要求。因此减小摩擦历来是提高机床水平关键技术之一,要想从根本上彻底解决摩擦问题,唯有把两个相对运动的接触面分离开来,不直接发生接触。也就是说,把具有一定重量的运动体悬浮起来,这才是解决摩擦问题的根本出路。为此,必须采用悬浮技术将运动部件悬浮起来。气浮由于存在刚度较差等缺点,而不宜在重型机床上应用。由于电磁悬浮可控性好,精度高,无噪声,刚度好等特点,是很有发展前途的悬浮方案。
另外,数控机床的同步控制问题当前具有代表性的方案是立柱两边各采用一套交流伺服电动机,即所谓的双电机驱动方案,各自检测与控制自身的加速度、速度和位移,即所谓的双检测方法。龙门机床的横梁,通常由两根丝杠驱动。当刀架或主轴箱不在横梁中心点时,则丝杠的受力是不对称的,因而会发生横梁的倾斜。这时要根据刀架或主轴箱所在的位置对二边驱动电机系统进行适当补偿,使之平衡。在只有一根丝杠的传动结构中,可以增设一套伺服电机系统,根据这根丝杠所确定的横梁倾斜方向的高或低,而使丝杠获得相应的多转一点或少转一点的运动,从而使横梁调整到水平,这就是一种自动调平的方法。大跨度龙门框架二边立柱不同步,将会通过横梁或固定框架梁顶互相间产生机械耦合,可以采用检测应力的方法,补偿控制立柱伺服系统。二个伺服电机驱动系统若采用并联结构,实行独立控制,无法保证同步性能,甚至因龙门框架的二立柱间存在机械耦合而造成设备损坏。

发明内容
针对现有技术中存在的上述问题,本发明提供了磁悬浮横梁零相位直线驱动龙门移动镗铣床及控制方法。
本发明镗铣床包括磁悬浮横梁直线电机驱动龙门移动式加工机床部分以及控制电路部分。
其中磁悬浮横梁直线电机驱动龙门移动式加工机床部分包括伺服单元(包括伺服电动机与传感器、伺服驱动器)、箱式横梁、X方向直线电机、导向单元(包括电机、传感器与驱动器)、U型一体化床身、工作台、主悬浮电磁铁、补偿电磁铁、主轴单元(主轴驱动电动机与传感器、主轴驱动器)和刀具,床身与立柱成U型一体化床身,工作台置于U型床身内底部,U型一体化床身上部两外侧成凹槽,且这两个凹槽相互对称,箱式横梁两端部延伸形成凹槽并与U型一体化床身成嵌套结构,主轴单元设置在箱式横梁上,可以左右上下旋转运动,X方向直线电动机设置在横梁与床身上部,用来推进横梁的X方向直线运动,主悬浮电磁铁线圈与横梁端部内伸部分相连接,衔铁在床身上,分左右两排,起悬浮横梁作用,补偿悬浮电磁铁与横梁端部内伸部分的下边相连,衔铁在床身上,分左右两排,导向电磁铁分别侧向设置在横梁端部内侧和床身侧面,对工作台运动起导向作用。
本发明的控制电路部分包括双直线电机同步驱动控制电路以及横梁悬浮高度控制电路。
其中双直线电机同步驱动控制电路包括整流滤波单元、IPM逆变单元、DSP处理器、IPM保护隔离驱动电路、电流采样电路、速度采样电路,PMLSM(永磁直线同步电动机)以及霍尔传感器,IPM逆变单元主电源输入P、N端与整流电路输出相连,IPM输出端子U、V、W与永磁直线同步电机相连,V、W通过两个霍尔电流传感器再与两路电流采样电路相连,IPM的16路控制端子与IPM隔离驱动保护电路相连,IPM隔离驱动的输入和保护电路的输出以及电流采样电路输出与DSP处理器相连。
横梁悬浮高度控制电路包括PWM及其驱动电路,位置、速度、电流控制电路,过电流保护电路,三角波发生电路,斩波电路,电流检测电路,悬浮高度检测电路,增益调节单元电路以及气隙给定单元电路,PWM及其驱动电路分别与位置、速度、电流控制电路,过电流保护电路,三角波发生电路,斩波电路相连;电流检测电路分别与位置、速度、电流控制电路,过电流保护电路相连;增益调节单元电路分别与气隙给定单元电路,位置、速度、电流控制电路以及悬浮高度检测电路相连。
本发明控制方法包括对双直线电机的同步控制以及横梁悬浮高度的控制。
(一)双直线电机同步控制本发明采用改进型的主-从同步驱动方式,其中位置控制器采用零相位误差跟踪控制器,能实现准确的位置跟踪;速度控制器、电流控制器均采用PI控制器。主动AC(交流)伺服电机实现定位控制,从动AC伺服电机则以主动AC伺服电机的位置控制器的输出为速度控制指令,执行速度控制。输入参考指令与实际输出之间的差值送入零相位误差跟踪控制器(ZPETC),ZPETC的输出与实际速度之间的差值作为速度控制器的输入,经过速度调节后,其输出与实际的输出电流之间的差值作为电流调节器的输出,实现电流调节。这样,在两个AC伺服电机输出中,获得了同一个位置控制器控制定位和同样的速度控制作用,而保持同步。如果因某种因素,两驱动电机输出不同步,机械耦合机构则会产生动态变形应力和应力扭矩,应力扭矩测量信号经过滤波后送到一个PI调节器,其输出根据应力扭矩的符号+或-,分别附加到主、从伺服电机的速度指令上,改变电机的运动速度,从而保持同步运行。
数控机床进给伺服系统的设计中,采用前馈控制可以大大拓宽系统的频带,提高其跟随性能。反馈控制器有改善系统稳定性,暂态响应及增加系统鲁棒性的优点。然而,反馈控制器主要是靠误差信号控制系统,所以反馈控制系统输入指令和输出响应之间必然有相位滞后的现象,在跟踪控制时就会产生跟踪误差。要改善此相位滞后现象可考虑在闭环系统前使用一前馈控制器,本发明中前馈控制器采用的是ZPETC。采用ZPETC提高了运动控制的跟踪精度,其基本思想是基于零极点对消。而且,针对那些具有不稳定零点的系统抵消掉不稳定零点之后,ZPETC还可以补偿这些零点产生的相位移,以便获得零相位误差。
首先考虑离散化后的闭环系统的传递函数Gc(z-1)=z-dBc(z-1)Ac(z-1)---(1)]]>式中Bc(z-1)=b0+b1z-1+…bmz-m,b0≠0;Ac(z-1)=1+a1z-1+…anz-n,m≤n;Gc(z-1)——闭环系统的传递函数;z-d——闭环系统所造成的d步延迟;Ac(z-1)——闭环传递函数的分母多项式,且首项为1;Bc(z-1)——闭环传递函数的分子多项式。
若上述闭环系统不包含不可对消的零点(单位圆外的零点),即前馈控制器为理想的零相位误差跟踪控制器(C(z-1)),其输出与输入之间的表达式y(k)=z-dBc(z-1)Ac(z-1)·C(z-1)y*(k)=z-dBc(z-1)Ac(z-1)·zdAc(z-1)Bc(z-1)·y*(k)=y*(k)---(2)]]>式中C(z-1)——零相位误差跟踪控制器的离散传递函数;y*(k)——系统的参考输入;zd——超前d步;Ac(z-1)——闭环传递函数的分母多项式,且首项为1;Bc(z-1)——闭环传递函数的分子多项式;y(k)——系统的实际输出。
若系统的初始条件为零,由式(2)可知前馈控制器使系统的输出y(k)完全跟随期望轨迹y*(k),达到理想的跟踪控制效果。
若式(1)所描述的系统包含不可对消的零点,则不可以设计前馈控制器直接对消系统的零点,否则将导致前馈控制器不稳定。下面将针对包含不可对消零点的系统来设计ZPETC。将Bc(z-1)因式分解为Bc(z-1)=Bca(z-1)Bcu(z-1)---(3)]]>式中Bca(z-1)——闭环传递函数分子多项式中可接受的部分,即可对消的零点多项式;Bcu(z-1)——闭环传递函数分子多项式中不可接受的部分,即不可对消的零点多项式。
则闭环传递函数可表示为Gc(z-1)=y(k)r(k)=z-dBca(z-1)Bcu(z-1)Ac(z-1)---(4)]]>式中r(k)——零相位误差跟踪控制器的输出。
根据系统的逆思想设计ZPETC控制器,其表达式为C(z-1)=r(k)y*(k)=zdAc(z-1)Bcu(z)Bca(z-1)[Bcu(1)]2---(5)]]>式中C(z-1)——零相位误差跟踪控制器的离散传递函数;Bcu(z)——用z替换z-1换时,不可对消的零点多项式;Bcu(1)——当z=1时不可接受部分的多项式。
本发明中双直线电机同步控制最终由嵌入DSP处理器中的控制程序实现,其控制过程按以下步骤执行步骤一、系统初始化;步骤二、电机动子初始定位;步骤三、允许INT1,INT2中断;步骤四、启动T1下溢中断;步骤五、中断等待;步骤六、T1中断处理;步骤七、保护中断处理;步骤八、结束。
其中步骤七中保护中断处理过程按以下步骤执行步骤一、禁止所有中断;步骤二、封锁IPM;步骤三、中断返回。
步骤六中T1中断处理过程按以下步骤执行步骤1保护现场;步骤2判断是否有应力扭矩,是进入步骤3,否则进入步骤4;步骤3调用滤波器,PI调节器进行速度补偿;步骤4判断是否位置调节,是进入步骤5,否进入步骤9;步骤5位置采样,并与给定值比较后获得位置偏差;步骤6位置ZPETC调节;步骤7主电机速度采样,位置ZPETC调节器输出信号比较后获得速度偏差;
步骤8主电机速度PI调节;步骤9主电机电流采样;步骤10对主电机电流值进行3S/2R变换;步骤11利用q轴电流计算主电机电磁推力;步骤12求出推力偏差作为主电机电流调节器的输入信号;步骤13电流调节器进行主电机电流调节;步骤14对主电机控制器输出电流值进行2R/3S变换;步骤15用得到的电流值作为载波与三角载波调制获得PWM信号;步骤16输出PWM信号驱动主电机逆变电路步骤17判断从电机是否进行速度调节,是进入步骤18,否进入步骤21;步骤18由主电机位置输出和从电机的速度补偿计算从电机的速度给定;步骤19从电机速度采样,与从电机速度给定比较后获得速度偏差;步骤20从电机速度PI调节;步骤21从电机电流采样;步骤22对从电机电流值进行3S/2R变换;步骤23利用q轴电流计算从电机电磁推力;步骤24求出推力偏差作为从电机电流调节器的输入信号;步骤25电流调节器进行从电机电流调节;步骤26对从电机控制器输出电流值进行2R/3S变换;步骤27用得到的电流值作为载波与三角载波调制获得PWM信号;步骤28输出PWM信号驱动从电机逆变电路步骤29恢复现场;步骤30中断返回。
(二)悬浮高度控制悬浮高度控制采用模拟电路进行控制。其控制原理为气隙给定单元输出的位置指令与装置的反馈位置比较后,送入增益调节单元,通过增益调节单元后送入位置调节器,其输出作为速度给定信号,速度指令和速度反馈在速度控制器的输入端比较,速度控制器的输出信号作为电流调节器的输入指令,电流调节器的输出通过与三角波比较后产生PWM脉冲,PWM脉冲通过驱动电路,来驱动斩波电路中功率器件的开关来控制悬浮横梁中电磁铁的电流,通过控制电磁铁中电流的大小,来控制悬浮横梁的高度。
本发明的优点在于,即使主动电机受到外界干扰而产生不同于输入命令的输出,从动电机也会以主动电机的输出值作为输入命令,进而维持同步运动,同时采用ZPETC来作为位置控制器,使得系统具有快速而准确的跟踪性能,能实现高精度的定位。而悬浮高度控制是通过控制吸引型电磁铁,来实现横梁悬浮的,吸引型磁悬浮电磁铁悬浮运动体于某一高度、电磁铁侧向引导控制横向间隙,确保悬浮气隙高度及其刚度特性,能经受住各种耦合干扰和负载扰动,且具有强鲁棒性,最后实现了显著减小摩擦的目的。同时,使横梁两端运动状态保持高度一致,不产生扭斜现象,确保同步误差不超过允许值,一旦出现误差能快速收敛,采用了主从控制能实现良好的同步控制,使系统的同步误差达到最小。


图1为本发明装置中磁悬浮横梁直线电机驱动龙门移动式加工机床部分结构示意图;图2为本发明装置中双直线电机同步驱动控制电路原理框图;图3为本发明装置中横梁悬浮高度控制电路原理框图;图4为本发明控制方法中双直线电机同步驱动控制原理框图;图5为理想零相位误差跟踪控制器控制原理框图;图6为本发明双直线电机同步驱动控制中零相位误差跟踪控制器控制原理框图;图7为本发明双直线电机同步驱动控制过程流程图;图8为本发明双直线电机驱动控制过程中保护中断处理过程流程图;图9为本发明双直线电机驱动控制过程中T1中断处理过程流程图;图10为本发明控制方法中横梁悬浮高度控制原理框图;图11为本发明实施方式中双直线电机同步驱动控制电路原理图;(a)直线电机主电路原理图;(b)直流电源电路原理图;(c)DSP处理器及其外围电路原理图;(d)直线电机速度采样电路原理图;(e)直线电流采样电路原理图;(f)扩展口I连接图;(g)直线电机驱动电路原理图;(h)扩展口II连接图;(i)扩展口III连接图;(j)扩展口IV连接图;图12为本发明实施方式中横梁悬浮高度控制电路原理图;图中1——伺服单元,2——箱式横梁,3——X方向直线电机,4——导向单元,5——横梁悬浮气隙,6——U型一体化床身,7——工作台,8——主悬浮电磁铁,9——补偿电磁铁,10——主轴单元,11——刀具,12——DSP处理器,13——速度采样电路,14——光电编码器,15——电流采样电路,16——霍尔传感器,17——IPM保护隔离驱动电路,18——整流滤波电路,19——气隙给定单元电路,20——增益调节单元电路,21——位置、速度、电流控制电路,22——三角波发生电路,23——PWM及其驱动电路,24——过电流保护电路,25——电流检测电路,26——斩波电路,27——悬浮横梁,28——悬浮高度检测电路。
具体实施例方式
本发明的一个优选实施例参见图1、图11以及图12。
如图1所示,磁悬浮横梁直线电机驱动龙门移动式加工机床部分包括伺服单元(包括伺服电动机与传感器、伺服驱动器)、箱式横梁、X方向直线电机、导向单元(包括电机、传感器与驱动器)、横梁悬浮气隙、一体化床身、工作台、主悬浮电磁铁、补偿电磁铁、主轴单元(主轴驱动电动机与传感器、主轴驱动器)和刀具,主悬浮电磁铁线圈与横梁端部内伸部分相连接,衔铁在床身上,分左右两排,起悬浮横梁作用,补偿电磁铁与主悬浮电磁铁的连接是相似的,就是主悬浮电磁铁与横梁端部内伸部分的上边相连,而补偿悬浮电磁铁与横梁端部内伸部分的下边相连,其它部分的连接一样。导向电磁铁分别侧向安置在横梁端部内侧和床身侧面,对工作台运动起导向作用。工作台放置被加工工件,它放在床身底部,主轴单元安放在箱式横梁上,可以左右上下旋转运动,X方向直线电动机安放在横梁与床身上部,用来推进横梁的X方向直线运动。
图11所示为双直线电机同步驱动控制电路原理图,图11(a)为单个电机的主电路,另一个电机的主电路原理图与之完全相同,电机主电路中的R、S、T端分别与三相交流电相连,V1、V2、V3、V4、V5、V6端分别与图11(g)直线电机驱动电路中的扩展口CON12的1、3、5、7、9、11管脚相连;直线电机驱动电路中22V10D芯片的2、3、4、5、6、7、8、9、10、11、13、14管脚分别与图11(h)扩展口的3、4、5、6、7、8,图11(f)扩展口的6、5、4、3、2、1管脚相连;另一直线电机驱动电路中22V10D芯片的2、3、4、5、6、7、8、9、10、11、13、14管脚分别与图11(h)扩展口的9、10、11,图11(i)扩展口的25、26、27,以及与图11(f)扩展口完全相同的扩展口的6、5、4、3、2、1管脚相连;图11(d)电机速度采样电路中扩展口CON8的6、5、4、3、2、1管脚与26s32芯片的4、2、5、7、11、9管脚相连,一端与电机的光电编码器相连,电机速度采样电路中QS3245芯片的18、17、11管脚分别与图11(c)DSP处理器及其外围电路中TMS320LF2407A芯片的83、79、32管脚相连;图11(e)电流采样处理电路中扩展口CON20的15、13、11、9管脚分别与5路电流采样电路相连,扩展口的另一端与霍尔传感器相连,电流采样处理电路中ADCIN1、ADCIN2、ADCIN3、ADCIN4、ADCIN5分别与图11(j)扩展口的5、6、7、8、9管脚相连。
图12所示为悬浮高度控制电路原理图,图中in1、in2与气隙传感器相连。
本发明的控制方法包括对双直线电机的同步控制以及横梁悬浮高度的控制。
双直线电机的同步控制由嵌入DSP处理器中的控制程序实现,如图7所示,其控制过程按以下步骤执行步骤一、系统初始化;步骤二、电机动子初始定位;步骤三、允许INT1,INT2中断;步骤四、启动T1下溢中断;步骤五、中断等待;步骤六、T1中断处理;步骤七、保护中断处理;步骤八、结束。
其中步骤七中保护中断处理过程按以下步骤执行(如图8所示)
步骤一、禁止所有中断;步骤二、封锁IPM;步骤三、中断返回。
步骤六中T1中断处理过程按以下步骤执行(如图9所示)步骤1保护现场;步骤2判断是否有应力扭矩,是进入步骤3,否则进入步骤4;步骤3调用滤波器,PI调节器进行速度补偿;步骤4判断是否位置调节,是进入步骤5,否进入步骤9;步骤5位置采样,并与给定值比较后获得位置偏差;步骤6位置ZPETC调节;步骤7主电机速度采样,位置ZPETC调节器输出信号比较后获得速度偏差;步骤8主电机速度PI调节;步骤9主电机电流采样;步骤10对主电机电流值进行3S/2R变换;步骤11利用q轴电流计算主电机电磁推力;步骤12求出推力偏差作为主电机电流调节器的输入信号;步骤13电流调节器进行主电机电流调节;步骤14对主电机控制器输出电流值进行2R/3S变换;步骤15用得到的电流值作为载波与三角载波调制获得PWM信号;步骤16输出PWM信号驱动主电机逆变电路步骤17判断从电机是否进行速度调节,是进入步骤18,否进入步骤21;步骤18由主电机位置输出和从电机的速度补偿计算从电机的速度给定;步骤19从电机速度采样,与从电机速度给定比较后获得速度偏差;步骤20从电机速度PI调节;步骤21从电机电流采样;步骤22对从电机电流值进行3S/2R变换;步骤23利用q轴电流计算从电机电磁推力;步骤24求出推力偏差作为从电机电流调节器的输入信号;步骤25电流调节器进行从电机电流调节;步骤26对从电机控制器输出电流值进行2R/3S变换;步骤27用得到的电流值作为载波与三角载波调制获得PWM信号;步骤28输出PWM信号驱动从电机逆变电路;步骤29恢复现场;步骤30中断返回。
横梁悬浮高度的控制用模拟电路实现,该模拟电路如图12所示。
权利要求
1.一种磁悬浮横梁零相位直线驱动龙门移动镗铣床,包括磁悬浮横梁直线电机驱动龙门移动式加工机床部分以及控制电路部分,其特征在于磁悬浮横梁直线电机驱动龙门移动式加工机床部分包括伺服单元、箱式横梁、X方向直线电机、导向单元、横梁悬浮气隙、U型一体化床身、工作台、主悬浮电磁铁、补偿电磁铁、主轴单元和刀具,床身与立柱成U型一体化床身,工作台置于U型床身内底部,U型一体化床身上部两外侧成凹槽,且这两个凹槽相互对称,箱式横梁两端部延伸形成凹槽并与U型一体化床身成嵌套结构,主轴单元安放在箱式横梁上,X方向直线电动机安放在横梁与床身上部,主悬浮电磁铁线圈与横梁端部内伸部分相连接,衔铁在床身上,分左右两排,补偿悬浮电磁铁与横梁端部内伸部分的下边相连,衔铁在床身上,分左右两排,导向电磁铁分别侧向安置在横梁端部内侧和床身侧面;控制电路部分包括双直线电机同步驱动控制电路以及横梁悬浮高度控制电路,双直线电机同步驱动控制电路包括整流滤波单元、IPM逆变单元、DSP处理器、IPM保护隔离驱动电路、电流采样电路、速度采样电路,永磁直线同步电动机以及霍尔传感器,IPM逆变单元主电源输入P、N端与整流电路输出相连,IPM输出端子U、V、W与永磁直线同步电机相连,V、W通过两个霍尔电流传感器再与两路电流采样电路相连,IPM的16路控制端子与IPM隔离驱动保护电路相连,IPM隔离驱动的输入和保护电路的输出以及电流采样电路输出与DSP处理器相连;横梁悬浮高度控制电路包括PWM及其驱动电路,位置、速度、电流控制电路,过电流保护电路,三角波发生电路,斩波电路,电流检测电路,悬浮高度检测电路,增益调节单元电路以及气隙给定单元电路,PWM及其驱动电路分别与位置、速度、电流控制电路,过电流保护电路,三角波发生电路,斩波电路相连;电流检测电路分别与位置、速度、电流控制电路,过电流保护电路相连;增益调节单元电路分别与气隙给定单元电路,位置、速度、电流控制电路以及悬浮高度检测电路相连。
2.权利要求1所述的一种磁悬浮横梁零相位直线驱动龙门移动镗铣床的控制方法,其特征在于包括双直线电机同步控制以及横梁悬浮高度控制;双直线电机同步控制采用改进型的主-从同步驱动方式,主动直流电机实现定位控制,从动直流伺服电机以主动交流电机的位置控制器的输出为速度控制指令,执行速度控制,输入参考指令与实际输出之间的差值送入零相位误差跟踪控制器,零相位误差跟踪控制器的输出与实际速度之间的差值作为速度控制器的输入,经过速度调节后,其输出与实际的输出电流之间的差值作为电流调节器的输出,实现电流调节,在两个交流伺服电机输出中,获得了同一个位置控制器控制定位和同样的速度控制作用,而保持同步,当两驱动电机输出不同步时,机械耦合机构则会产生动态变形应力和应力扭矩,应力扭矩测量信号经过滤波后送到一个PI调节器,其输出根据应力扭矩的符号+或-,分别附加到主、从伺服电机的速度指令上,改变电机的运动速度,从而保持同步运行;横梁悬浮高度控制中气隙给定单元输出的位置指令与装置的反馈位置比较后,送入增益调节单元,通过增益调节单元后送入位置调节器,其输出作为速度给定信号,速度指令和速度反馈在速度控制器的输入端比较,速度控制器的输出信号作为电流调节器的输入指令,电流调节器的输出通过与三角波比较后产生PWM脉冲,PWM脉冲通过驱动电路,来驱动斩波电路中功率器件的开关来控制悬浮横梁中电磁铁的电流,通过控制电磁铁中电流的大小,实现对悬浮横梁的高度控制。
3.如权利要求2所述的磁悬浮横梁零相位直线驱动龙门移动镗铣床的控制方法,其特征在于所述的零相位误差跟踪控制器的表达式如下C(z-1)=r(k)y*(k)=zdAc(z-1)Bcu(z)Bca(z-1)[Bcu(1)]2]]>式中C(z-1)——零相位误差跟踪控制器的离散传递函数;r(k)——零相位误差跟踪控制器的输出;y*(k)——系统的参考输入;zd——超前d步;Ac(z-1)——闭环传递函数的分母多项式,且首项为1;Bca(z-1)——闭环传递函数分子多项式中可接受的部分,即可对消的零点多项式;Bcu(z)——用z替换z-1换时,不可对消的零点多项式;Bcu(1)——当z=1时不可接受部分的多项式。
4.如权利要求2所述的磁悬浮横梁零相位直线驱动龙门移动镗铣床的控制方法,其特征在于所述的双直线电机同步控制包括以下步骤步骤一、系统初始化;步骤二、电机动子初始定位;步骤三、允许INT1,INT2中断;步骤四、启动T1下溢中断;步骤五、中断等待;步骤六、T1中断处理;步骤七、保护中断处理;步骤八、结束。
5.如权利要求4所述的磁悬浮横梁零相位直线驱动龙门移动镗铣床的控制方法,其特征在于所述的步骤七中保护中断处理过程按以下步骤执行步骤一、禁止所有中断;步骤二、封锁IPM;步骤三、中断返回。
6.如权利要求4所述的磁悬浮横梁零相位直线驱动龙门移动镗铣床的控制方法,其特征在于所述的步骤六中T1中断处理过程按以下步骤执行步骤1保护现场;步骤2判断是否有应力扭矩,是进入步骤3,否则进入步骤4;步骤3调用滤波器,PI调节器进行速度补偿;步骤4判断是否位置调节,是进入步骤5,否进入步骤9;步骤5位置采样,并与给定值比较后获得位置偏差;步骤6位置ZPETC调节;步骤7主电机速度采样,位置ZPETC调节器输出信号比较后获得速度偏差;步骤8主电机速度PI调节;步骤9主电机电流采样;步骤10对主电机电流值进行3S/2R变换;步骤11利用q轴电流计算主电机电磁推力;步骤12求出推力偏差作为主电机电流调节器的输入信号;步骤13电流调节器进行主电机电流调节;步骤14对主电机控制器输出电流值进行2R/3S变换;步骤15用得到的电流值作为载波与三角载波调制获得PWM信号;步骤16输出PWM信号驱动主电机逆变电路步骤17判断从电机是否进行速度调节,是进入步骤18,否进入步骤21;步骤18由主电机位置输出和从电机的速度补偿计算从电机的速度给定;步骤19从电机速度采样,与从电机速度给定比较后获得速度偏差;步骤20从电机速度PI调节;步骤21从电机电流采样;步骤22对从电机电流值进行3S/2R变换;步骤23利用q轴电流计算从电机电磁推力;步骤24求出推力偏差作为从电机电流调节器的输入信号;步骤25电流调节器进行从电机电流调节;步骤26对从电机控制器输出电流值进行2R/3S变换;步骤27用得到的电流值作为载波与三角载波调制获得PWM信号;步骤28输出PWM信号驱动从电机逆变电路;步骤29恢复现场;步骤30中断返回。
全文摘要
磁悬浮横梁零相位直线驱动龙门移动镗铣床及控制方法,属于数控技术领域。本发明镗铣床包括磁悬浮横梁直线电机驱动龙门移动式加工机床部分以及控制电路部分,其中控制电路部分包括双直线电机同步驱动控制电路以及横梁悬浮高度控制电路;控制方法包括对双直线电机的同步控制以及横梁悬浮高度的控制,双直线电机同步控制采用改进型的主-从同步驱动方式,悬浮高度控制采用模拟电路进行控制。本发明中双直线电机的主-从同步驱动方式维持了同步运动,同时通过控制吸引型电磁铁,实现横梁悬浮,确保了横梁的刚度特性,并能经受住各种耦合干扰和负载扰动,且具有强鲁棒性,最终实现了显著减小摩擦的目的。
文档编号G05B19/18GK1915587SQ20061004757
公开日2007年2月21日 申请日期2006年8月31日 优先权日2006年8月31日
发明者郭庆鼎, 赵希梅, 孙宜标, 王丽梅, 杨霞 申请人:沈阳工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1