灌溉区域的蒸散值计算方法

文档序号:6285955阅读:580来源:国知局
专利名称:灌溉区域的蒸散值计算方法
技术领域
本发明基本上涉及一种气象特性数据之处理,特别是一种灌溉区域之蒸散值(ET 值)计算方法。
背景技术
基本上,气象数据(例如温度或大气压力)是利用特定地点上的实体之气象测量 站或其它实体之气象参数测量装置来进行测量。以此方式取得之气象数据通常会再经过汇 整及储存而提供给使用者。当使用者收集到或取得气象数据之后,可再进而对其进行分析 或更进一步的计算。举例来说,使用者可依据一或多项气象参数(例如温度)来计算蒸散 量(ev即otranspiration, ET),或者计算植物于所测量到之气象状况下所需要的水量。接 着使用者即可用手动方式输入此些数值并将其传送至一灌溉控制装置,令该灌溉控制装置 依据蒸散量ET及使用者输入数值来计算出适当之灌溉水量。 图1显示一现有技术的灌溉系统,其具有一本地端气象站112设置于一灌溉区域 130,用以提供气象数据来控制该灌溉区域130中的一个灌溉系统140。所收集之气象数据 可储存至一非本地端之储存装置114,但其仍为代表该灌溉系统140所在之现场的气象状 况。此灌溉系统140亦可接收来自一非本地端之数据来源装置116(例如卫星)的气象参 数资料,且该非本地端之数据来源装置116所提供之数据(即气象资料)代表该灌溉区域 130的气象状况。处理器150则是用来接收灌溉区域的气象数据并控制该灌溉系统140的 运作。 然而建基于上述之控制器及依据所求得之蒸散量ET来控制灌溉水量的灌溉系统 可能并不具有最优化的运作效能,其原因为其中之实体的气象参数测量装置设置于灌溉区 域以外的地点,因此蒸散量ET于计算上所依据之气象测量数据并非精确地代表灌溉区域 的气象状况,因此导致计算所得之蒸散量ET并无法用来据以精确地估算出所需之灌溉水 此外,蒸散量ET的计算通常是使用网格式处理方法(grid basedprocessing),其 中将蒸散量ET于计算上所用到的各项气象参数均利用该各项气象参数储放于一网格中之 特定单元格中的平均值来进行估算。然而此网格式处理方法的一项缺点在于网格之单元格 中的气象参数可能具有很大的变异。传统上,气象参数的平均值通常将网格中的单元格作 平均。然而此作法可能会因为不同的气象参数、其邻接或相关的气象参数、以及网格之单元 格尺寸的不同而导致不精确的计算结果。 因此我们需求一种灌溉区域蒸散量ET于计算上所需之数据无法取得的情况下, 仍可精确地计算出灌溉区域的蒸散量ET值的计算方法。

发明内容
本发明的一个实施例包括一种用来计算灌溉区域之蒸散值的方法。此方法包括令 一气象参数测量系统从一个气象参数区域中收集至少一项气象参数,其中该至少之气象参数代表该灌溉区域以外的区域的气象状况。接着依据从该气象参数区域所得之该至少之气 象参数来计算出一灌溉区域气象参数,其中该灌溉区域气象参数代表该灌溉区域之范围以 内的气象状况。蒸散量之值的计算利用该至少之灌溉区域气象参数及依据一N维连续函数 来计算出该灌溉区域的蒸散量ET值,其中该N维连续函数包括至少一个三维空间立方体。
本发明的另一个实施例包括一种用来对灌溉系统提供一非测量的气象相关参数 的方法。此方法包括令一气象参数测量系统从一个气象参数区域中收集至少一项气象参 数,其中该项气象参数代表该灌溉区域以外的区域的气象状况。接着依据从该气象参数区 域所得之至少一项气象参数来计算出一灌溉区域气象参数,其中该灌溉区域气象参数代表 该灌溉区域之范围以内的气象状况。非测量的气象相关参数的计算利用该至少之灌溉区域 气象参数依据一 N维连续函数来计算出其值,其中该N维连续函数包括至少一个三维空间 立方体。最后将该非测量的气象相关参数提供给该灌溉系统,令该灌溉系统依据该非测量 的气象相关参数来控制一灌溉区域的灌溉水量。 本说明书之其余部分的参考数据,包括图式和权利要求,可用来实现本发明之其 它特点和优点。本发明之其它的特点和优点,连同本发明之各种不同之实施方式的结构及 运作方式,均配合图式于以下作详细之描述。于图式中,相同的标号代表构造相同或功能等 效之构件。


本发明的各项结构、优点、及创新之特点可于以下配合附图来研读本发明的详细
说明而得到充分之认识,其中所附之图式的说明如下 图1显示一习知技术之用以控制灌溉区域之灌溉水量的系统; 图2显示一用以收集灌溉区域以外的区域的气象参数的系统,其中所收集之气象 参数即用来计算灌溉区域的蒸散量ET值; 图3为一流程图,用以显示灌溉区域蒸散值计算方法之一个实施例所涉及的流程 步骤; 图4A与4B显示一网格函数和一连续函数二者之间的比较; 图5为一方块图,用以显示具体实现第3图所示之方法的系统的一个实施例;以及
图6为一流程图,用以显示一种可用来对灌溉区域提供一非测量的气象相关参数 的方法所涉及的程序步骤。
具体实施例方式
蒸散量ET可用来决定维持植物正常生长所需的水量及保存灌溉区域的储水量。 假若用来计算蒸散量ET的气象参数并非于本地(亦即灌溉区域)测量,则会导致非最佳 化或不适当的灌溉结果。蒸散量ET的计算可使用多种不同的公式,例如彭曼-莫提斯 (Penman-Monteith)公式或彭曼_莫提斯衍生公式。然而此些公式于计算上需要许多项的 气象参数,且此些气象参数传统上并非于有必要作蒸散量ET之计算工作的场所来作测量。 换言之,于有必要作蒸散量ET值之计算以决定灌溉需求的灌溉区域之中,其计算所需之气 象参数并非可方便取得。 蒸散量ET计算方法的一种具体实施方式
为使用彭曼_莫提斯公式或彭曼_莫提
5斯衍生公式。此公式通常使用于每日测量数值之计算,如下所示
<formula>formula see original document page 6</formula> 其中 ET。为蒸散量参考值,单位为[mm day—1]; Rn为作物表面的净辐射量,单位为[MJ m—2day—^ ; G为土壤热流密度,单位为[MJ m—2day—^ ; T为2公尺高度的平均每日空气温度,单位为[°C ]; u2为2公尺高度的风速,单位为[ms—"; es为饱和蒸气压力,单位为[kPa]; ea为实际蒸气压力,单位为[kPa]; es-ea代表饱和蒸气压力差,单位为[kPa]; A代表斜坡蒸气压力曲线,单位为[kPa°C —"; y代表温湿常数(psychrometric constant),单位为[kPa。C —"。 蒸散量(evapotranspiration, ET)定义为农作物及其下方之土壤所蒸散之水量。
农作物上的蒸散又称为蒸腾作用(transpiration),而其下方土壤的蒸散又称为蒸发作用
(ev即oration)。蒸发作用和蒸腾作用同时进行,且目前并无简易的方法来区分此二种作
用。此二种作用的总合即称为蒸散作用(ev即otranspiration, ET),其值可用来控制一地
理区域的灌溉水量。蒸散量参考值定义为一标准化之参考作物(例如修剪过之草坪地或紫
花苜蓿)所在区域上的蒸散量ET。于计算此蒸散量参考值时所采用之作物表面,为了标准
化之目的,采用一种矮且灌溉良好之草坪地或一种较高且灌溉良好之紫花苜蓿作物来作为
基准。ASCE对于矮型作物之蒸散量参考值所建议之标准化名称为ETos,而对于高型作物之
蒸散量参考值所建议之标准化名称则为ETrs 。于此说明书中,ET指经由计算所求得之蒸散
量参考值ETos。 上述之ET计算公式以及其它各种计算公式均需要许多项的气象参数,而此些气 象参数目前于有必要作蒸散量ET计算工作的场所中通常并无对其进行测量。假若蒸散量 ET值于计算上所需之气象参数未于现场地点进行测量,则会导致非最佳化或不适当的灌溉 结果。传统上,此些计算上所需之气象参数通常是来自气象站。然而目前气象站通常是极 为稀少,且通常是位于遥远之处或其所在地点并无法对本地(即灌溉区域所在之现场)提 供最佳化之用途。由于此缘故,针对特定之区域精确地求得之气象参数数据是非常有价值 的。 此外,灌溉系统利用灌溉区域以外的地点所测量到的气象参数尚有其它之缺点。 举例来说,其所收集或接收到的数据并不一定能精确地反应灌溉系统所负责控管之本地区 域的气象状况。气象站所在之位置的气象状况通常可能大为相异于灌溉系统所负责控管之 区域的气象状况。此情况所造成的结果为依据气象站所收集到的数据所求得之气象参数可 能会导致灌溉系统无法针对本地之气象状况来提供适当之灌溉水量。此种依据气象数据来 运作的系统必须针对特定之目标区域来测量所有所需之气象参数,或仅使用一组有限数量 的气象参数。然而将此有限数量之气象参数与灌溉区域以外的地点所测量到的气象参数二者结合使用的结果,可能会造成非最佳化的灌溉结果。 图2显示一可用来测量气象参数的系统,其所测量到的气象参数可用来计算一灌 溉区域的蒸散量ET值。此系统包括气象参数测量系统210、212、214、216,用以收集及/或 提供气象参数。图2所示之实施例具有一第一气象参数测量系统210设置于一第一区域 220、一第二气象参数测量系统212设置于一第二区域222、一第三气象参数测量系统214设 置于一第三区域224、以及一第四气象参数测量系统216设置于一第四区域226。如图2所 示,此些气象参数测量系统210、212、214、216的设置地点可为不是位于灌溉区域230。图2 所示之4个气象参数测量系统210、212、214、216仅为一种实施范例,其总共之气象参数测 量系统的数量可为更多或更少。然而此些气象参数测量系统中的任何一个均可无必要配置 于灌溉区域230所在之处,且其亦无必要用来提供用来反应该灌溉区域230所在之处之气 象状况的测量资料。此作法具有高度的需求性,因为灌溉区域之中通常并不设置有气象参 数测量系统。于本发明的一个实施例中,此些气象参数测量系统210、212、214、216设置于 灌溉区域230以外的陆地区域之中。 此处须注意的一点是,气象参数测量系统210、212、214、216所收集之气象参数可 用以代表灌溉区域以外的区域的气象状况。此些代表灌溉区域以外的一或多个地点之气 象状况的气象参数可用来计算求得一灌溉区域气象参数。于本发明的一个实施例中,其计 算过程可例如包括利用一数值化之气象模型,其中将灌溉区域以外的地点所获得之一或多 项气象参数作为该数值化气象模型的输入数值。此数值化气象模型(numerical weather model, NWM)的实例例如包括(但不限于)NCAR/Pen State匪5或NOAA/丽S WRF,其均为 现有习知之气象模型。于本发明的另一实施例中,灌溉区域气象参数的计算可使用内插方 法(interpolation),即对灌溉区域以外的地点所得之气象参数进行内插来求得。
气象参数测量系统的实例包括气象站。基本上,气象站为一设置有各种仪器及设 备的设施,可透过监视及测量大气状况而测量、记录、以及传送气象观测数据。 一般之气象 站可用来测量温度、大气压力、湿度、风速、风向、以及降水量。高阶之气象站可进而用来测 量长波和短波之太阳辐射,以及土壤湿度和土壤温度。气象参数测量系统的其它可用之类 型包括卫星观测系统、飞行器、船舰、浮筒、以及汽球载运之无线电探空仪。
基本上,气象参数定义为某一特定之地点和时间点的大气状态。气象参数的种类 例如包括温度、大气压力、湿度、风速、风向、降水量、太阳辐射、土壤温度、等等(尚有其它 多项未于此处列举之种类),且其测量数据通常进而包括实际进行测量的日期时间和地点。
处理器250可配置于任何地点,用以接收来自气象参数测量系统210、212、214、 216的气象参数,并据此气象参数来例如计算出某一地点或区域的蒸散量ET值;其中该地 点或区域可定义为其纬度、经度、以及海拔高度来,或定义为一立方体坐标系统中的(x, y, z)坐标;而其蒸散量ET值则可用一连续性之N维连续函数来作计算。此外,额外之其它气 象因子亦可同时应用于气象参数和蒸散量ET值的计算。 蒸散量ET值可用来例如控制一灌溉系统240的运作,令该灌溉系统240据以控制 一灌溉区域230所需的灌溉水量。此蒸散量ET值可对一本地之现场区域(例如灌溉区域 230)的气象状况提供精确的描述。 蒸散量ET值的计算依据一组特定之参数,例如包括温度、风速、和太阳辐射量。然 而不同之蒸散量ET值计算方法可能会使用到不同数量的参数。气象参数测量系统210、
7212、214、216于其总体上的运作即用以提供所需之参数;但就其个别而言,则可能仅用来 提供一或多项特别的参数;而其所提供之数据即被用来据以计算出所需之蒸散量ET值。气 象参数测量系统210、212、214、216所提供之数据数据具有高度之利用价值,因为灌溉系统 240所在之灌溉区域230可能并不一定配备有足够之测量仪器来取得计算灌溉区域230之 蒸散量ET值所需之资料数据。 图3为一流程图,用以显示灌溉区域蒸散值计算方法之一个实施例的流程步骤。 如上所述,蒸散量ET值可用来辅助灌溉系统的控制功能。此方法中的第1个步骤310为令 一气象参数测量系统从一个气象参数区域中收集至少一项气象参数,其中该至少之气象参 数代表该灌溉区域以外的区域的气象状况。此方法的第2个步骤320为依据从该气象参数 区域所得之该至少之气象参数来计算出一灌溉区域气象参数,其中该灌溉区域气象参数代 表该灌溉区域之范围以内的气象状况。第3个步骤330为利用该至少之灌溉区域气象参数 依据一 N维连续函数来计算出该灌溉区域的蒸散量ET值,其中该N维连续函数包括至少一 个三维空间立方体。 我们可使用多种不同的方法来依据灌溉区域以外的地点的气象状况所相应的气 象参数估算出灌溉区域气象参数的数值。举例来说,前面所提到之数值化之气象模型即可 用来配合该气象参数区域所属之至少之气象参数。 除了上述之气象参数测量系统以外,本发明之另一实施例进而包括一第二气象参
数测量系统,其可从一第二气象参数区域中收集至少一第二气象参数,其中该至少之第二
气象参数代表该灌溉区域以外的区域的气象状况。灌溉区域气象参数的计算首先使用初始
之气象参数及该气象参数区域以外的区域所收集到之该至少之第二气象参数。 本发明的一个实施例包括利用一内插方法(interpolation)来计算出该灌溉区
域气象参数的数值,亦即对该至少之气象参数与该至少之第二气象参数进行内插方法而求
得其值。此作法可例如于无法取得灌溉区域之测量数据的情况下,用来计算出所需之灌溉
区域气象参数。 本发明的另一个实施例包括利用一数值化之气象模型来计算出灌溉区域气象参 数的数值。此作法将代表灌溉区域以外的地点之气象状况的该至少之气象参数与该至少之 第二气象参数作为该数值化气象模型的输入数值,亦即提供作为一组灌溉区域气象参数。 如前所述,此数值化气象模型(numerical weather model, NWM)的实例例如包括(但不限 于)NCAR/Pen State匪5或N0AA/丽S WRF。所用之模型的种类可视特别之灌溉区域及状 况而有所变更。 如前配合图3所述,蒸散量ET值将该至少之灌溉区域气象参数代入至N维连续函 数而计算出来。所谓N维连续函数指任一具有N个变量的连续函数,其名称中之〃 连续" 意指输入变量若有一小变动,则其运算结果亦相对显现出一小变动。举例来说,风速的计算 可于一非本地之地点来进行,其计算过程将风速分解为3个分量U、 V、和W,即纬向、经向、 和垂直分量;其中纬向分量为东西方向之分量,经向分量为南北方向之分量,而垂直分量则
为上下方向之分量。假若有2个以上之已知测量点或模型点,则我们可使用一薄版型样条 (thin platespline)或一具有连续表面的改良型数值化气象模型来针对3个分量U、 V、和 W的每一个分别建立一个连续性之表面。我们可利用下列之公式来计算出连续表面上之任 何一个点上的风速
风速=(U*U+V*V+W*W)的平方根
其中 U、 V、和W的数值透过一函数来撷取自该连续表上的某一位置(x, y, z)及时间点。
此方法可利用灌溉区域以外的地点的气象状况所对应的气象参数来计算出所需 之气象参数(于此范例中为风速)。其它类似之方程式或函数亦可用来决定蒸散量ET于计 算上所需之所有的气象参数。 计算气象参数值(例如温度)的方法的一种实施方式例如包括区域范围边界 的订定(此区域范围例如为美国本土)。第l个步骤为从遍布于该区域范围中的气象站 取得一组测量的温度数据。第2个步骤为将此组温度数据针对每一个地点来转换成海 平面温度值,其转换方式依据一简单之递减率公式,例如海平面温度二高度Z之处的温 度-(Z^6. 5/1000. O)),其中温度的单位为摄氏C,而高度的单位为公尺。于此公式中,递减 率假设为每1000公尺摄氏6. 5度。递减率计算方法的另一种实施方式为利用N维函数,并 令递减率可随时间及空间位置而变化,而非前面所用之固定的递减率。此作法可对一广大 之地理区域提供一更为精确的温度递减率气象状况。 当所有个别之地点的温度值均位于同一高度平面时(于此范例中为海平面),我 们即可利用一应用程序,例如薄版型样条(thin platespline),来决定出区域范围内的温 度分布网格。此作法即可将非测量的海平面温度的数值于一平面上建立连续性之多个点; 且其形式完全不同于数值化气象模型(丽M)中所使用之网格的类型。NWM网格中的每一个 单元格代表该单元格所涵盖之范围内的所有数值的平均值。反之,薄版型样条则是建立一 个表面来通过所有之(x, y)坐标点的每一个z值点。于此范例中,z值点即代表海平面温 度。我们可使用此表面的三次方巻积(cubic convolution)及x-y平面上最接近之16个 控制点来求得该平面中任何一个坐标点(x, y)上的海平面温度。为了于此范例中将该函 数扩充成包括时间维度,则时间点Tl和T2至少需要2个海平面表面的温度。此即可将该 函数扩充成可使用新加的时间维度。为了取得陆地表面之温度,我们可使用初始之递减率 公式来为时间点Tl和T2分别建立一个类似之温度表面。此种利用气象因子以及一或多项 N维函数来例如计算温度值的计算方法亦可应用于计算其它种类的气象参数,例如风速、湿 度、和太阳辐射。 本发明的一个实施例包括一种利用N维函数及至少一项收集而来之代表灌溉区 域以外的气象状况的气象参数来计算蒸散值的方法。此方法具有重要性及非显而易见之创 新性,因为其可对灌溉区域不具有测量的气象参数的区域提供一或多项所需之气象参数。 计算蒸散量ET值的重要性在于例如可求得农作物于特定之气象状况下所需之水量。另一 项重要性在于其可用来令灌溉控制系统适当地提供所需之灌溉水量,使得储水量得到最佳 化而不浪费的利用。然而由于大部分之灌溉控制系统并无本地端之气象站来提供本地现场 所需之气象参数作为计算蒸散量ET之用,因此我们亦有需要提供本地端之灌溉控制系统 所需之非测量的气象参数。 本地端之非测量的气象参数的利用价值在于其可延用至其它之领域及应用,例如 包括(但不限于)保险赔偿用之气候灾害评估、能源管理及预算、公路及铁路相关之气候 问题、农作物栽培上的应用。 传统上,业界通常利用网格式处理方法(grid based processing)来计算蒸散量ET值和非测量的气象参数。此种处理方法将非测量的气象参数填入至一矩阵型式的网格, 其中每一个单元格用以容纳一离算值。但此作法无法提供一连续函数之气象参数。每一 个单元格中的数值的品质依赖于非测量的气象参数计算方法的精确性以及网格之单元格 大小(即分辨率)。前面所述之气象参数计算方法不同于网格式处理方法之处在于利用一 N维连续函数来计算气象参数。此作法可提供一种与分辨率无关之计算方法来求得气象参 数和蒸散量ET之值,其优点在于具有更高之计算效能及精确性。网格式处理方法的另一项 缺点在于网格之各个单元格中的气象参数值代表一相当广大之地理区域上之气象状况的 平均值,因此某些点上的气象参数的实际值与此平均值之间可能有很大的差距。此问题较 为特别严重的情况在于相关之地理区域包括高山或山谷、或是邻近较大之水域或河流的区 域。 依据N维函数来求得蒸散量ET值和非测量的气象参数的计算方法可用来决定任 一时空坐标点上的气象参数值。于求出所需之气象参数值之后,即可定出此函数;而特定之 物理性的公式即可用来求得所需之气象参数及气象因子,令该函数可据以求得所需之气象 参数。 图4A与4B分别显示一网格函数410和一连续函数420的范例。此网格函数410 包括非连续性之点。反之,连续函数420则无此种非连续性。图4B所示之连续函数420仅 为一个维度的空间,而非蒸散量ET值之计算上所用之N维连续函数中大于3个维度的空 间。连续函数可针对一组特定之输入参数提供一输出值。举例来说,对于每一个输入时间 值,连续函数可提供各个坐标位置(x,y,z)上的温度值T,而此温度值T于连续不断进行测 量的情况下可能会有所变动。然而假若坐标位置(x,y,z)上的温度值T仅是每一小时测量 一次,则每小时中的任一时间点的温度值便均为相同,因此产生非连续性。
如前所述,我们可利用该至少之灌溉区域气象参数来代入N维连续函数而计算出 蒸散量ET值,其中该N维连续函数包括至少一个三维空间立方体,且其中N的值大于3。于 本发明的一个实施例中,此连续函数的N个维度至少例如包括纬度、经度、以及高度。
于本发明的一个实施例中,灌溉区域之蒸散量ET值的计算方法包括利用该N维连 续函数所包括之至少一项经收集或计算所得之该灌溉区域以外的地点的气象参数来计算 出该灌溉区域于一预设时间内的气象参数。本发明的另一个实施例进而包括利用至少一项 气象因子。此气象因子例如可为地理拓扑结构(topology)、坡度、坡向、土壤状况、植被指数 (vegetation indexes)、以及土地利用类型。 N维函数的温度参数分量可依据非测量的气象参数与某一数据来源(例如气象 站)所测量而得之气象参数之间的差异来适应性地进行更新。举例来说,任一非测量的气 象参数(例如温度)可与具备有温度测量能力之坐标位置(x,y,z)之处所测量而得之温度 值作比较。我们即可藉此方式来适应性地更新递减率,藉以对任何或所有地点均提供精确 之温度数据。当温度数据完成更新之后,接着即可更新蒸散量ET值之数据。此适应性数据 更新程序可适用于大部分的气象参数。 蒸散量ET的N维连续函数的更新可例如依据蒸散量ET值的作用来执行。明确而 言,我们可利用蒸散量ET值来控制一灌溉区域的灌溉水量;且其效果的评估可通过测定蒸 散量ET值所控制之灌溉系统(或至少有部分受控于蒸散量ET值的灌溉系统)的灌溉水量 的充足度而定。此充足度即代表灌溉区域所接受的灌溉水量是否充足,其测定方式可为观
10察灌溉区域中的植物的总体生长情况是否健全、或利用土壤湿度探针来监视土壤湿度。
本发明的另一个实施例包括选择蒸散量ET值的计算频率。此步骤的一种实施 方式为以一大于该蒸散量ET值的自然循环中的一项主谐波的奈奎斯特频率(Nyquist frequency)的变化率来计算蒸散量ET值。详而言之,蒸散量ET值的数值基本上会于一时 间周期中显现出一自然性的循环。此循环可例如以每日最小值及最大值来作界定。于定出 自然循环的频率之后,我们即可决定出蒸散量ET值的计算频率。其它会影响此自然循环的 因素包括静态性质或不断变动的动态性质。静态性质的因素例如高地沙漠,其每日之温度 变化的自然循环通常为完全相异于大平原地区的自然循环。动态性质的因素例如一团缓慢 移动的暖气流或冷气流。此二种因素及其它因素均会影响蒸散量ET的自然循环。
我们可方便地依据蒸散量ET值的自然循环来以一适当之对应于该自然循环的变 化率计算出蒸散量ET的值。此变化率之值选定为大于奈奎斯特频率,其值可视蒸散量ET 值于应用时的实际状况及需求而定,可为每日、每小时、或每分钟。 图5为一方块图,用以显示具体实现图3所示之方法的系统的一个实施例,其包括 一或多个气象参数测量系统来测量或收集灌溉区域之内部或外部区域的气象参数,如标号 512、514所指之方块所示。于此,图3所示之第1步骤310即执行完毕,如标号510所指之 方块所示。 如标号520所指之方块所示,灌溉区域之内部或外部区域的气象状况所对应之气 象参数可用来计算或估计出一或多项之灌溉区域气象参数。于此,图3所示之第2步骤320 即执行完毕,如标号520所指之方块所示。此外,我们亦可进而利用额外的气象因子来计算 灌溉区域气象参数。如前所述,我们可利用一数值化之气象模型来计算灌溉区域气象参数, 其中将灌溉区域以外的气象参数作为该数值化气象模型的输入值。同样如前所述,我们可 对灌溉区域以外的气象参数作内插处理而求得灌溉区域气象参数。 接着图3所示之第3步骤330如标号530所指之方块所示。经由计算所得之一或 多项灌溉区域气象参数即用来计算灌溉区域的蒸散量ET值。 如方块532所示,灌溉区域气象参数可定义为关联至坐标位置(x,y,z),且亦可定 义为关联至任何时间t。由于气象状况常随时间而变动,因此我们有必要随着时间来变更气 象参数的计算。举例来说,就温度而言,其测量值晚上会较低,早晨会略高一点,中午会再更 高,而傍晚则会再开始降低。此温度变化的速率及时间会显著影响灌溉区域之蒸散量ET之 计算的精确性。 方块534显示使用N维函数来计算蒸散量ET值的程序,其中将方块532所得之空 间立方体气象参数作用该N维函数的输入值。 如方块540所示,计算出来的蒸散量ET值即用来控制灌溉区域的灌溉水量。
非本地端之气象因子的基本目的在于我们可藉其来精确地求得灌溉区域之范围 以内的气象参数;而其精确的结果可进而对灌溉区域的水量提供一最佳化的利用。非本地 端之气象因子的一个实例为地理拓扑结构(topology)。举例来说,假若有一灌溉区域为位 于一宽广之山谷中的平地部分,且该灌溉区域的西部为一高出之山岭,则此灌溉区域之周 围的地理拓扑结构数据即可用来改进该灌溉区域之内部的气象参数的计算。再举例来说, 假若有一从西边之山岭吹来的落山风,则非本地端之气象因子可能会导致该灌溉区域上的 温度大幅升高。
图6为一流程图,用以显示一种可用来对灌溉区域提供一非测量的气象相关参数 的方法所包含的处理步骤。此方法的第1个步骤610为令一气象参数测量系统从一个气象 参数区域中收集至少一项气象参数,其中该至少之气象参数代表该灌溉区域以外的区域的 气象状况。第2个步骤620为依据从该气象参数区域以外的区域所得之该至少之气象参数 来计算出一灌溉区域气象参数,其中该灌溉区域气象参数代表该灌溉区域之范围以内的气 象状况。第3个步骤630为利用该至少之灌溉区域气象参数依据一 N维连续函数来计算出 该灌溉区域的蒸散量ET,其中该N维连续函数包括至少一个三维空间立方体。第4个步骤 640为将该非测量的气象相关参数提供给灌溉系统。第5个步骤650为令该灌溉系统依据 该非测量的气象相关参数来控制灌溉区域的灌溉水量。 于本发明的一个实施例中,N维连续函数中的N个维度至少包含纬度、经度、以及 高度,亦即前所提到之坐标(x, y, z)。于本发明的另一个实施例中,其维度进而包括时间, 亦即前所提到之时间维度t。 于本发明的另一个实施例中,灌溉区域之气象相关参数的计算过程包括利用该N 维连续函数所包含之至少一项经收集或计算所得之该灌溉区域以外的地点的气象参数来 计算出该灌溉区域于一预设时间内的气象参数。 于本发明的另一个实施例中,该N维函数依据非测量的气象参数的品质度来进行 适应性的更新。 以上所述仅为本发明之较佳实施例而已,并非用以限定本发明之实质技术内容的 范围。本发明之实质技术内容广义地定义于下述之申请专利范围中。若任何他人所完成之 技术实体或方法与下述之申请专利范围所定义者为完全相同、或是为一种等效之变更,均 将被视为涵盖于本发明之申请专利范围之中。于本专利申请中所引用之所有的公开文件、 专利文件、及专利申请文件均亦随件呈附作为审查之参考。
权利要求
一种灌溉区域的蒸散量ET值的计算方法,包括令气象参数测量系统收集气象参数区域的至少一项气象参数,其中该气象参数区域的该至少一项气象参数代表该灌溉区域以外的区域的气象状况;以及依据该气象参数区域的该至少一项气象参数来计算灌溉区域气象参数,其中该灌溉区域气象参数代表该灌溉区域内的气象状况;利用该至少一项灌溉区域气象参数,依据一N维连续函数来计算该灌溉区域的该蒸散量ET值,其中该N维连续函数包括至少一个三维空间立方体。
2. 根据权利要求1所述的方法,还包括令第二气象参数测量系统收集第二气象参数区域的至少一项第二气象参数,其中该第二气象参数区域的该至少一项第二气象参数代表该灌溉区域以外的区域的气象状况;以及射计算该灌溉区域气象参数,其中该灌溉区域气象参数代表该灌溉区域内的该灌溉区域气象参数,且该计算进一步包括该第二气象参数区域中的该至少一项第二气象参数。
3. 根据权利要求2所述的方法,其中该用来代表该灌溉区域内的该灌溉区域气象参数的该灌溉区域气象参数的计算还包括将该第二气象参数区域的该至少一项第二气象参数通过对该至少一项气象参数与该至少一项第二气象参数进行内插来求得其值。
4. 根据权利要求2所述的方法,其中该用来代表该灌溉区域内的该灌溉区域气象参数的灌溉区域气象参数的计算还包括以下步骤执行数值化气象模型,其中将该至少一项气象参数与该至少一项第二气象参数作为该数值化气象模型的输入数值。
5. 根据权利要求1所述的方法,其中该连续函数的N个维度至少包括纬度、经度和海拔高度。
6. 根据权利要求5所述的方法,其中该N维连续函数还包括时间维度。
7. 根据权利要求1所述的方法,其中该灌溉区域的该蒸散量ET值的计算包括利用该N维连续函数来计算该灌溉区域在一预设时间内的灌溉区域气象参数,其中该N维连续函数包括至少一项经收集或计算得到的该灌溉区域以外的地点的气象参数。
8. 根据权利要求1所述的方法,其中该灌溉区域的该蒸散量ET值的计算包括利用该N维连续函数来计算该灌溉区域在一预设时间内的灌溉区域气象参数,其中该N维连续函数包括至少一项经收集或计算得到的该灌溉区域以外的地点的气象参数以及至少一项气象因子。
9. 根据权利要求1所述的方法,还包括依据该蒸散量ET值的品质度来适应性地更新该N维连续函数。
10. 根据权利要求1所述的方法,还包括依据该至少一项灌溉区域气象参数的品质度来适应性地更新该N维连续函数。
11. 根据权利要求1所述的方法,还包括依据该气象参数区域的该至少一项气象参数的品质度来适应性地更新该N维连续函数。
12. 根据权利要求1所述的方法,还包括以大于该蒸散量ET值的自然循环中的一项主谐波的奈奎斯特频率的变化率来计算该蒸散量ET值。
13. 根据权利要求12所述的方法,其中假若每小时一次的变化率大于该奈奎斯特频率,则以每小时一次的变化率来计算该蒸散量ET值。
14. 一种将非测量的气象相关参数提供给灌溉系统的方法,包括令气象参数测量系统收集气象参数区域的至少一项气象参数,其中该气象参数区域的该至少一项气象参数代表该灌溉区域以外的区域的气象状况;依据该气象参数区域以外的区域的该至少一项气象参数来计算灌溉区域气象参数,其中该灌溉区域气象参数代表该灌溉区域内的气象参数;利用该至少一项灌溉区域气象参数,依据一 N维连续函数来计算该灌溉区域的非测量的气象相关参数,其中该N个维度包括至少一个三维空间立方体;以及将该非测量的气象相关参数提供给该灌溉系统,令该灌溉系统依据该非测量的气象相关参数来控制一灌溉区域的灌溉水量。
15. 根据权利要求14所述的方法,其中该连续函数的N个维度至少包括纬度、经度和海拔高度。
16. 根据权利要求15所述的方法,其中该N维连续函数还包括时间维度。
17. 根据权利要求15所述的方法,其中该灌溉区域所用的该气象相关参数的计算包括利用该N维连续函数来计算该灌溉区域在一预设时间内的灌溉区域气象参数,其中该N维连续函数包括至少一项经收集或计算得到的该灌溉区域以外的地点的气象参数。
18. 根据权利要求14所述的方法,还包括依据该非测量的气象相关参数的品质度来适应性地更新该N维连续函数。
全文摘要
一种灌溉区域之蒸散值计算方法,可用来计算灌溉区域的蒸散量。此方法包括令一气象参数测量系统从一个气象参数区域中收集至少一项气象参数,其中该至少之气象参数代表该灌溉区域以外的区域的气象状况。接着依据从该气象参数区域所得之该至少之气象参数来计算出一灌溉区域气象参数,其中该灌溉区域气象参数代表该灌溉区域之范围以内的气象状况。蒸散量之值的计算利用该至少之灌溉区域气象参数及依据一N维连续函数来计算出该灌溉区域的蒸散量ET值,其中该N维连续函数包括至少一个三维空间立方体。
文档编号G05B11/01GK101743525SQ200880019579
公开日2010年6月16日 申请日期2008年5月1日 优先权日2007年5月2日
发明者D·A·丹塞雷, P·卡尔森 申请人:水点数据系统公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1