一种火力发电机组除氧器液位自动调节控制装置的制作方法

文档序号:6301585阅读:185来源:国知局
专利名称:一种火力发电机组除氧器液位自动调节控制装置的制作方法
技术领域
本实用新型涉及火力发电机组控制技术领域,具体涉及一种火力发电机组除氧器液位自动调节控制装置。
背景技术
火力发电机组中除氧器的液位调节是机组给水系统的重要组成部分。除氧器的液位过高会影响汽轮机安全运行(汽轮机进水),除氧器的液位过低,则可能导致给水泵汽蚀,影响给水泵的安全。除氧器液位调节不当会引起除氧器的液位异常波动。在更恶劣的情况下,会导致除氧器液位过高或过低,从而导致机组异常停机。 现阶段,大部分火电机组控制系统的除氧器液位调节无法实现全程控制,需要运行人员手动干预,特别对于参与电网负荷调整和调峰运行的大型火电机组,若除氧器液位不能实现全程控制,会导致除氧器的液位频繁波动,对机组稳定安全运行带来不小的隐患。除氧器液位调节,是机组安全、稳定、经济运行的重要环节。除氧器液位调节的稳定,提高了机组的自动化水平,改善了机组的安全性、经济性。
发明内容为了克服上述现有技术存在的缺点,本实用新型的目的在于提供一种火力发电机组除氧器液位自动调节控制装置能够减少运行人员手动干预,实现机组负荷变化时除氧器液位的调节稳定自动调节,改善了机组的安全性,能够减少了阀门在小开度下的磨损及节流损失,避免了阀门同时动作的相互干扰,提高了机组效率。为了实现上述目的,本实用新型采用以下技术方案—种火力发电机组除氧器液位自动调节控制装置,包括相互通信连接的如下模块系统监测模块用于对机组的负荷指令、除氧器液位以及除氧器入口和出口流量信号实时监测;除氧器液位设定模块用于产生除氧器液位设定值,能够根据当前负荷指令自动产生除氧器液位设定值,或者由运行人员手动输入产生除氧器液位设定值;除氧器液位调节方式判断单元用于根据监测信号的质量与监测值,确定除氧器液位由不同调节控制模块自动调节控制,并根据监测信号的质量与监测值的变化,可在不同调节控制模块间自动切换;自动调节控制模块用于跟踪除氧器液位当前指令以及控制除氧器液位。所述系统监测模块包括除氧器液位监测模块、机组负荷指令监测模块以及除氧器入口流量和除氧器出口给水流量监测模块。所述自动调节控制模块包括如下模块除氧器液位副调阀单冲量控制模块用于跟踪除氧器液位副调阀当前指令以及控制除氧器液位;[0015]除氧器液位主调阀单冲量控制模块用于跟踪除氧器液位主调阀当前指令以及控制除氧器液位;[0016]除氧器液位主调阀三冲量控制模块用于跟踪除氧器液位主调阀当前指令以及控制除氧器液位。所述除氧器液位主调阀单冲量控制模块或除氧器液位主调阀三冲量控制模块中的主调阀与除氧器液位副调阀单冲量控制模块中的副调阀仅有一个阀门参与调节系统在除氧器液位副调阀单冲量控制时,除氧器液位主调阀全关;系统在除氧器液位主调阀单冲量或除氧器液位主调阀三冲量控制时,除氧器液位副调阀全关。所述系统监测模块监视到参与调节的参数监测到信号故障,自动切换到不需故障信号参与调节的调节模块,若无法切换到不需故障信号参与调节的调节模块则保持系统当前指令输出,待系统监测模块监视故障信号恢复正常后,系统可恢复到正常调节的调节模块调节。本发明火力发电机组除氧器液位自动调节控制装置,系统监测模块对机组的负荷指令、除氧器液位以及除氧器入口和出口流量信号实时监测,除氧器液位调节方式判断单元根据监测信号的质量与监测值,确定除氧器液位自动调节控制的不同调节方式,在所述各种调节方式下,除氧器液位主调阀与除氧器液位副调阀仅有一个阀门参与调节阀门参与调节系统在除氧器液位副调阀单冲量控制时,除氧器液位主调阀全关;系统在除氧器液位主调阀单冲量或除氧器液位主调阀三冲量控制时,除氧器液位副调阀全关。减少了阀门在小开度下的磨损及节流损失,避免了阀门同时动作的相互干扰,利于提高了机组效率。

图I是本实用新型一种火力发电机组除氧器液位自动调节控制装置优选实施方式的系统结构图。图2是本实用新型一种火力发电机组除氧器液位自动调节控制方法的调节方式判断原理图。图3是本实用新型一种火力发电机组除氧器液位自动调节控制方法中除氧器副调阀单冲量调节方式时除氧器副调阀单冲量调节模块控制原理图。图4是本实用新型一种火力发电机组除氧器液位自动调节控制方法中除氧器主调阀单冲量调节方式时除氧器主调阀单冲量调节模块控制原理图。图5是本实用新型一种火力发电机组除氧器液位自动调节控制方法中除氧器主调阀三冲量调节方式时除氧器主调阀三冲量调节模块控制原理图。
具体实施方式
以下结合附图和具体实施方式
对本实用新型作更详细的说明。如图I所示,本实用新型一种火力发电机组除氧器液位自动调节控制装置,包括除氧器液位设定模块、除氧器液位监测模块、机组负荷指令监测模块、除氧器入口流量和除氧器出口给水流量监测模块、除氧器液位调节方式判断单元、除氧器液位副调阀单冲量控制模块、除氧器液位主调阀单冲量控制模块以及除氧器液位主调阀三冲量控制模块,所述除氧器液位设定模块输入端与机组负荷指令监测模块的输出端通信连接,所述除氧器液位调节方式判断单元的第一输入端、第二输入端以及第三输入端分别与除氧器液位监测模块、机组负荷指令监测模块以及除氧器入口流量和除氧器出口给水流量监测模块的输出端通信连接,所述除氧器液位调节方式判断单元的输出端同时与除氧器液位副调阀单冲量控制模块、除氧器液位主调阀单冲量控制模块以及除氧器液位主调阀三冲量控制模块的第一输入端通信连接,所述除氧器液位设定模块的输出端同时与除氧器液位副调阀单冲量控制模块、除氧器液位主调阀单冲量控制模块以及除氧器液位主调阀三冲量控制模块的第二输入端通信连接,所述除氧器液位监测模块的输出端同时与除氧器液位副调阀单冲量控制模块、除氧器液位主调阀单冲量控制模块以及除氧器液位主调阀三冲量控制模块的第三输入端通信连接,所述除氧器入口流量和除氧器出口给水流量监测模块的输出端与除氧器液位主调阀三冲量控制模块的第四输入端通信连接。本实用新型一种火力发电机组除氧器液位自动调节控制装置的工作原理如图2所示,当除氧器液位调节投入时,系统监测模块判断除氧器液位有无故障,若除氧器液位故障,则系统保持主调阀及副调阀当前指令,除氧器液位副调阀单冲量控制模块跟踪除氧器液位副调阀当前指令、除氧器液位主调阀单冲量控制模块及除氧器液位主调阀三冲量控制模块跟踪除氧器液位主调阀当前指令,同时发出系统报警,否则进入如下所述判断; 若第一负荷指令阈值LI与当前机组负荷指令之差大于第一负荷指令阈偏差值AL1,系统进入除氧器液位副调阀单冲量调节方式,由除氧器液位副调阀单冲量控制模块控制除氧器液位,否则除氧器液位副调阀单冲量控制模块跟踪除氧器液位副调阀当前指令,系统进入如下所述判断;若当前机组负荷指令大于第一负荷指令阈值LI且当前负荷指令小于第二负荷指令阈值L2,或者当前机组负荷指令大于第一负荷指令阈值LI且系统流量检测单元检测到流量信号故障,或者系统给出的除氧器液位副调阀指令大于95%且除氧器液位仍然低于除氧器液位设定值时,系统进入除氧器液位主调阀单冲量调节方式,由除氧器液位主调阀单冲量控制模块调节除氧器液位,否则除氧器液位主调阀单冲量控制模块跟踪除氧器液位主调阀当前指令,系统进入如下所述判断;若当前机组负荷指令与第二负荷指令阈值L2之差大于第二负荷指令阈偏差值A L2并且系统流量检测单元检测到流量信号无故障时,系统进入除氧器液位主调阀三冲量调节方式,由除氧器液位主调阀三冲量控制模块调节除氧器液位,否则除氧器液位主调阀三冲量控制模块跟踪除氧器液位主调阀当前指令,系统进入如下所述判断;若上述情况都不满足,系统保持当前调节方式调节直至下一控制周期,系统再次做如上判断及调节。如图3所示,当系统进入除氧器液位副调阀单冲量调节方式时,除氧器液位副调阀单冲量控制模块控制除氧器液位副调阀指令,除氧器液位主调阀指令由当前指令以预设速度减小至0,由除氧器液位测量值与除氧器液位设定值经过PIDl控制单元产生控制输出控制除氧器副调阀。除氧器液位副调阀单冲量调节方式时,除氧器主调阀单冲量调节模块与除氧器主调阀三冲量调节模块不参与调节,除氧器主调阀单冲量调节模块与除氧器主调阀三冲量调节模块均跟踪当前除氧器主调阀指令。如图4所示,当系统进入除氧器液位主调阀单冲量调节方式时,除氧器液位主调阀单冲量控制模块控制除氧器液位主调阀指令,除氧器液位副调阀指令由当前指令以预设速度减小至O,由除氧器液位测量值与除氧器液位设定值经过PID2控制单元产生控制输出控制除氧器主调阀。除氧器液位主调阀单冲量调节方式时,除氧器副调阀单冲量调节模块与除氧器主调阀三冲量调节模块不参与调节,除氧器副调阀单冲量调节模块跟踪当前除氧器副调阀指令,除氧器主调阀三冲量调节模块跟踪当前除氧器主调阀指令。如图5所示,当系统进入除氧器液位主调阀三冲量调节方式时,除氧器液位主调阀三冲量控制模块控制除氧器液位主调阀指令,除氧器液位副调阀指令由当前指令以预设速度减小至0,由除氧器液位测量值与除氧器液位设定值经过PID3控制单元产生中间输出,中间输出再与除氧器进口流量信号以及除氧器出口给水流量信号经过PID4控制单元产生控制输出控制除氧器主调阀。除氧器液位主调阀三冲量调节方式时,除氧器副调阀单冲量调节模块与除氧器主调阀单冲量调节模块不参与调节,除氧器副调阀单冲量调节模块跟踪当前除氧器副调阀指令,除氧器主调阀单冲量调节模块跟踪当前除氧器主调阀指令。基于上述火力发电机组除氧器液位自动调节控制装置,原则上在低负荷时使用除氧器副调阀调节除氧器液位,除氧器主调阀调全关,在高负荷时使用除氧器主调阀调节除 氧器液位,除氧器副调阀调全关,避免了除氧器主调阀及除氧器副调阀在小阀位下长期运行,减小了阀门的磨损及节流损失,提高了机组效率。在低负荷时除氧器入口及出口流量信号小于其流量仪表基准量程甚多时,测量的除氧器入口及出口流量误差较大,故采用除氧器副调阀单冲量调节方式。在低负荷时仅当副阀指令已最大且液位仍低于设定值时,采用除氧器主调阀单冲量调节方式调节。在高负荷下,采用除氧器主调阀三冲量调节,把除氧器入口及出口流量信号作为前馈信号,当负荷变化引起除氧器出口给水流量变化,进而影响除氧器水位变化之前,调节系统就进行调节,从而提高了控制系统的稳定性和快速性。在高负荷下,仅当流量检测异常时,采用除氧器主调阀单冲量调节,异常的流量信号不参与调节控制,保证液位调节的可靠性。以上调节方式的切换均为无扰切换,有利于系统的稳定性。
权利要求1.一种火力发电机组除氧器液位自动调节控制装置,其特征在于包括相互通信连接的如下模块 系统监测模块用于对机组的负荷指令、除氧器液位以及除氧器入口和出口流量信号实时监测; 除氧器液位设定模块用于产生除氧器液位设定值,能够根据当前负荷指令自动产生除氧器液位设定值,或者由运行人员手动输入产生除氧器液位设定值; 除氧器液位调节方式判断单元用于根据监测信号的质量与监测值,确定除氧器液位由不同调节控制模块自动调节控制,并根据监测信号的质量与监测值的变化,可在不同调节控制模块间自动切换; 自动调节控制模块用于跟踪除氧器液位当前指令以及控制除氧器液位。
2.根据权利要求I所述的自动调节控制装置,其特征在于所述系统监测模块包括除氧器液位监测模块、机组负荷指令监测模块以及除氧器入口流量和除氧器出口给水流量监测模块。
3.根据权利要求I所述的自动调节控制装置,其特征在于所述自动调节控制模块包括如下模块 除氧器液位副调阀单冲量控制模块用于跟踪除氧器液位副调阀当前指令以及控制除氧器液位; 除氧器液位主调阀单冲量控制模块用于跟踪除氧器液位主调阀当前指令以及控制除氧器液位; 除氧器液位主调阀三冲量控制模块用于跟踪除氧器液位主调阀当前指令以及控制除氧器液位。
4.根据权利要求3所述的自动调节控制装置,其特征在于所述除氧器液位主调阀单冲量控制模块或除氧器液位主调阀三冲量控制模块中的主调阀与除氧器液位副调阀单冲量控制模块中的副调阀仅有一个阀门参与调节系统在除氧器液位副调阀单冲量控制时,除氧器液位主调阀全关;系统在除氧器液位主调阀单冲量或除氧器液位主调阀三冲量控制时,除氧器液位副调阀全关。
专利摘要一种火力发电机组除氧器液位自动调节控制装置,包括相互通信连接的系统监测模块、除氧器液位设定模块;根据监测信号的质量与监测值,确定除氧器液位由不同调节控制模块自动调节控制,并根据监测信号的质量与监测值的变化,可在不同调节控制模块间自动切换的除氧器液位调节方式判断单元以及用于跟踪除氧器液位当前指令以及控制除氧器液位的自动调节控制模块;能够实现机组负荷变化时除氧器液位的调节稳定自动调节,改善了机组的安全性,减少阀门在小开度下的磨损及节流损失,避免了阀门同时动作的相互干扰,提高了机组效率。
文档编号G05D9/12GK202383529SQ201120439690
公开日2012年8月15日 申请日期2011年11月9日 优先权日2011年11月9日
发明者习志勇, 刘浩, 崔战兵 申请人:西安热工研究院有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1