与数控系统直接通讯的计算机辅助制造方法及装置和系统与流程

文档序号:12716927阅读:198来源:国知局
与数控系统直接通讯的计算机辅助制造方法及装置和系统与流程

本发明涉及一种借助计算机控制机器以制造产品的方法,尤其涉及一种与数控系统直接通讯的计算机辅助制造方法,及装置和系统,以便于按需实现自动化制造目标产品。



背景技术:

计算机辅助系统(Computer-aided system)是利用计算机辅助完成不同类任务的系统的总称,可分为计算机辅助教学(Computer Aided Instruction,CAI)、计算机辅助设计(Computer Aided Design,CAD)、计算机辅助工程(Computer Aided Engineering,CAE)、计算机辅助制造(Computer Aided Manufacturing,CAM)、计算机辅助测试(Computer Aided Testing,CAT)、计算机辅助翻译(Computer Aided Translation,CAT)、计算机集成制造(Computer Integrated Making System,CIMS)等系统。

计算机辅助系统已广泛应用于工业控制,实现作业的自动化和精确化。工业控制主要是借助电子电气、机械和计算机等多项技术的组合,对产品的生产加工进行控制,使所生产和制造过程更加自动化、效率化、精确化,并具有可控性及可视性。

工业控制计算机对工业控制起到关键性的作用,其通常是一种采用总线结构,对生产过程及其机电设备、工艺装备进行检测与控制的工具总称,具有计算机的基本属性和特征,如:中央处理单元(CPU)、硬盘、内存、外设及接口、并有实时的操作系统、控制网络和协议、计算处理能力和人机界面等。工控机的主要类别有:IPC(PC总线工业电脑)、PLC(可编程控制系统)、DCS(分散型控制系统)、FCS(现场总线系统)及CNC(数控系统)五种。目前,使用比较广泛的工业控制产品如:PLC、变频器、触摸屏、伺服电机和工控机等。

伴随计算机技术在工业控制中的应用,还相应的产生了工控软件,包括数据输入和处理程序、插补计算程序、管理程序和诊断程序等。经历从二进制编码、汇编语言和高级语言等编程方式至今,工控软件已发展到组态软件,如:Auto CAD,是直接采用标准的过程控制流程图和电气原理系统图的组态软件。经人机界面输入相关控制方案后,由计算机自动生成执行程序。再如:CAM软件涉及计算机数控和计算机辅助过程设计。

计算机数控系统(CNC)是用计算机控制加工功能,实现数值控制的系统。其由数控程序存储装置、计算机控制主机、可编程逻辑控制器、主轴驱动装置和进给(伺服)驱动装置(包括检测装置)等,作为一个CNC整体(参见图1)。CNC系统根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置,用于控制自动化加工设备的专用计算机系统,而CNC运行于计算机的 后台,仅作为计算机运行的一个进程“程序”出现。

为了便于人机交互,开发出了CNC专用的交互界面,作为CNC的组成部分,通过该界面实现与CNC的数据输入和输出(参见图2)。随着PC机的大规模普及,为了能使CNC兼容于PC的操作系统,有利于提高计算机辅助制造的操作便利性,由此产生了“基于操作系统的CNC交互界面”,通过此种界面,操作人员可直接在PC上完成CAM,并相应实现与CNC的交互(参见图3)。

目前产业上应用较多的CNC为PC数控系统,包括“NC-PC”过渡型结构,既保留传统NC硬件结构,仅将PC作为HMI,以FANUC公司的160i、180i、310i和840D等型号产品为代表性。另一类即将数控功能集中以运动控制卡的形式实现,通过增扩NC控制板卡(如基于DSP的运动控制卡等)来发展PC数控系统,其以DELTA TAU公司的PMAC-NC系统为代表。归纳起来,主流技术大体有两种方式:1)需要在CNC界面和CAM界面之间分别进行操作;2)先在CAM界面进行完成制造方案后,再输入CNC。

可见,在现有的CNC包括负责对电器进行操作指挥的数控系统中核心和基本的程序部分(称为:CNC进程或CNC内核)和CNC的人机交互界面。操作者在CNC人机交互界面输入加工指令(如:G代码)或指定CNC加载某指定程序文件然后执行。由于人无法很好编写并输入复杂加工指令(如多轴联动编程),故一般复杂编程还会有一个CAM软件,由编程人员在CAM上输入各种参数,由CAM系统生成包含加工指令的文件,并由操作人员用CNC人机交互界面加载指令文件并操作CNC执行。

对于大批量制造的标准化产品而言,操作人员和编程人员各司其职互不干涉,这些技术已能满足制造的需要。对于非标准产品的制造,由于编程内容往往需要动态调整,操作和编程往往是由同一名工作者完成,这些技术仍显得有些许不足,比如:为了编程和操作CNC(如:查看当前坐标和查看探测返回数据)而频繁反复在CNC界面和CAM界面之间进行切换,而使操作繁琐并影响操作效率,机器运行情况在界面的显示滞后等问题。



技术实现要素:

本发明的一个目的在于提供一种与数控系统直接通讯的计算机辅助制造方法,以实现在同一界面上完成CAM编程和以更快速显示CNC工作数据和反馈数据,并以此为技术人员完成非标准产品的CAM提供便利。

本发明的另一个目的在于提供一种与数控系统直接通讯的计算机辅助制造装置,使得与CNC实现更快速的信息通讯获得各项数据,并在含有CAM的界面上一并呈现。

本发明的再一个目的在于提供一种与数控系统直接通讯的计算机辅助制造系统,使得与CNC实现更快速的信息通讯获得各项数据,并在含有CAM的界面上一并呈现。

本发明的又一个目的在于将所提供的与数控系统直接通讯的计算机辅助制造方法及装置和系统,各自应用于非标准产品(如:工件)的加工和制造,在实施CAM 时,一并获取CNC的各项数据。

本发明提供的一种与数控系统直接通讯的计算机辅助制造方法,将通讯接口与CAM系统组成一个整体,CNC接口与通讯接口连接后,CAM系统与CNC进行双向通讯。

本发明提供的另一种与数控系统直接通讯的计算机辅助制造方法,将通讯接口以代码形式加载于CAM软件中,CNC与接口进行双向通讯。

本发明提供的方法,CAM系统每一秒至少读取CNC的状态信息一次以上,尤其是5次以上或更多次,如:10次。

本发明提供的方法,还在CAM系统中包括在输出设备的同一界面上显示CNC状态信息和加工过程中的各个数据所需的代码。

应用于本发明提供的方法的接口如:具有物理形态的端口,或者为计算机语言,即代码。

本发明提供的方法,CAM系统或CAM软件能将加工指令直接发送给CNC,加工过程中的机械参数和反馈参数等也直接被CAM系统或软件获取,能及时于CAM同一界面进行呈现,如:显示设备机械坐标参数、工具参数和反馈参数等数值。

本发明提供的一种与数控系统直接通讯的计算机辅助制造装置,包括

CAM系统和通讯接口,通讯接口与CAM系统组成一个整体,通讯接口与CNC连接,CNC与CAM系统进行双向通讯。CAM系统包括显示界面,显示界面包括显示CAM操作的区域和显示CNC状态信息的区域。

本发明提供的装置,其CAM系统每一秒至少读取CNC的状态信息一次以上。CAM系统能将加工指令直接发送给CNC,CNC加工过程中的各个数据和CNC状态信息也直接被CAM系统及时获取,并于CAM的同一界面进行呈现。

本发明提供的一种与数控系统直接通讯的计算机辅助制造系统,包括:

终端,其上安装操作系统,并载有基于所述操作系统的CAM软件;

通讯接口,其加载于CAM软件内;

输入设备,其与终端连接,输入工件参数;

输出设备,其与终端连接,用于人机交互;

显示界面,其包含于CAM软件内,并于输出设备上至少显示CAM操作的区域和CNC状态信息的区域。

本发明提供的系统,其CAM软件每一秒至少读取CNC的状态信息一次以上。CAM软件能将加工指令直接发送给CNC,CNC加工过程中的各个数据也直接被CAM软件及时获取,并于CAM的同一界面进行呈现。

本发明所称CNC状态信息如:但不仅限于机器各个轴的坐标、各个轴的移动速度、主轴负载和主轴转动速度(即刃磨具的转速或线速度)等被直接及时于显示界面中显示。

本发明所称的数据是加工所需的各种参数,包括但不仅限于机械参数、工具参数、工件参数和反馈数据等。

本发明所称的机械参数应当理解为机加工设备及其部件或附件的固有的物理量,如:但不仅限于行程、角度、长度值、宽度值、高度值、偏移值和直径等。

本发明所称的工件参数应当理解为对工件所需加工的尺寸和形状方面的要求,如:但不仅限于待加工长度、深度、角度和圆弧半径等,以及执行加工所需要的其它信息,如:但不仅限于进给速度、进给方向、进给方式和安全距离等。

本发明所称的工具参数应当理解为加工工件所用刃磨具的物理量,如:但不仅限于刃磨具直径、厚度、角度和刃磨具安装位置等,在有些工艺中,这些信息也为完成加工运算所需要,其可预先输入并存储以供调用。

本发明所称的反馈数据应当理解为机加工设备在执行加工指令对工件进行加工/测量的过程中获得的数据。

本发明所称的计算机应当理解为安装处理芯片并能实施运算的装置如:但不仅限于个人电脑(PC机)、便携式电脑、平板电脑、智能手机和智能手表等。

本发明技术方案实现的有益效果:

本发明提供的与数控系统直接通讯的计算机辅助制造方法,将CAM算法和通讯接口集成在一个软件里,即实现将与CNC通讯的接口融入CAM系统形成一体,实现了CAM系统与CNC实现直接通讯,并在同一个界面上显示CAM的信息和CNC的信息,使得CAM软件和CNC交互界面软件合二为一,使得工作者不必再为编程和操作CNC而频繁切换界面,便于对制造过程及时了解,适合在工作现场直接操作的CAM,提高了工作效率并减少了工作发生失误的可能性。同时,由于CAM是直接与CNC进行通讯,还提高了数据的传输效率。

本发明提供的与数控系统直接通讯的计算机辅助制造方法,有利于非标准产品(如:工件)的按要求进行加工和制造,便于操作人员在同一界面进行CAM操作时,还能了解CNC信息。

本发明提供的与数控系统直接通讯的计算机辅助制造方法,实现了CAM设计的数据与CNC数据的直接双方通讯,操作人员可以将非标准产品的制造要求直接传送给CNC系统,或在内存中短暂存储,或生成NC文件后再由CNC自动调用并执行,提高了非标准产品的操作效率,还显著减少了代码冗余,降低了硬件性能要求。与采用队列式加工的方式相结合,使得加工工艺的数量和顺序实现了按需自由组合,也利于根据具体的加工要求,及时对非标准工件的制造过程做出工件参数的调整,提高了加工的灵活性和适应性。

与一次性向CNC下发全部加工参数的机加工方式相比,本发明提供的机加工控制方法大大减少了可执行文件的代码一次性载入量,显著降低了CNC系统的负荷,使得CNC反应慢、死机和执行效率低等问题得以解决。

与采用向CNC下发指令并获得全部反馈数据,然后根据全部反馈数据再计算并 下发全部加工参数的方式(如:MTS软件)相比,本发明提供的机加工控制方法的灵活性更高,对于向CNC下发加工参数也无需获得所有反馈数据,无需先执行全部测量并获取参数后再生成加工文件,因此可以实现加工后自动测量并自动再加工,可以实现加工-测量-加工-测量间无先后顺序的任意工序组合和自动执行,人工介入的情况更少,大大提高了加工程序的自动化及自适应程度。

本发明提供的与数控系统直接通讯的计算机辅助制造装置以及系统,可应用于采用分布式架构的设备中,借助有限或无线通讯协议实现这些设备的互联,并将加工任务分派到各指定设备端上,实现非标准工件的快速按需加工制造及分布式的自适应定制化制造。

附图说明

图1为CNC一实施例的示意图;

图2为具有专用交互界面的CNC一实施例的示意图;

图3为基于操作系统交互界面的CNC一实施例的示意图;

图4为本发明与数控系统直接通讯的计算机辅助制造装置一实施例的示意图;

图5为图4基于操作系统的与CNC交互的CAM一实施例的示意图;

图6为本发明与数控系统直接通讯的计算机辅助制造系统一实施例的示意图;

图7为本发明机应用于队列式加工方法一实施例的流程图。

具体实施方式

以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。

具有五轴功能的数控机床可以以多种姿态实现工件与刀具间的相对运动,一方面可以保持刀具更好的加工姿态,避免刀具中心极低的切削速度,也可以避免刀具和工件、卡具间的干涉,实现有限行程内更大加工范围。五轴功能也是衡量数控系统能力的重要指标。

具有五轴功能的数控设备的工作流程大体包括:

1、输入:零件程序及控制参数、补偿量等数据的输入,可采用光电阅读机、键盘、磁盘、连接上级计算机的DNC接口、网络等多种形式。CNC装置在输入过程中通常还要完成无效码删除、代码校验和代码转换等工作;

2、译码:不论系统工作在MDI方式还是存储器方式,都是将零件程序以一个程序段为单位进行处理,把其中的各种零件轮廓信息(如起点、终点、直线或圆弧等)、加工速度信息(F代码)和其他辅助信息(M、S、T代码等)按照一定的语法规则解 释成计算机能够识别的数据形式,并以一定的数据格式存放在指定的内存专用单元。在译码过程中,还要完成对程序段的语法检查,若发现语法错误便立即报警;

3、刀具补偿:刀具补偿包括刀具长度补偿和刀具半径补偿。通常CNC装置的零件程序以零件轮廓轨迹编程,刀具补偿作用是把零件轮廓轨迹转换成刀具中心轨迹。在比较好的CNC装置中,刀具补偿的工件还包括程序段之间的自动转接和过切削判别,这就是所谓的C刀具补偿;

4、进给速度处理:编程所给的刀具移动速度,是在各坐标的合成方向上的速度。速度处理首先要做的工作是根据合成速度来计算各运动坐标的分速度。在有些CNC装置中,对于机床允许的最低速度和最高速度的限制、软件的自动加减速等也在这里处理;

5、插补:插补的任务是在一条给定起点和终点的曲线上进行“数据点的密化”。插补程序在每个插补周期运行一次,在每个插补周期内,根据指令进给速度计算出一个微小的直线数据段。通常,经过若干次插补周期后,插补加工完一个程序段轨迹,即完成从程序段起点到终点的“数据点密化”工作;

6、位置控制:位置控制处在伺服回路的位置环上,这部分工作可以由软件实现,也可以由硬件完成。它的主要任务是在每个采样周期内,将理论位置与实际反馈位置相比较,用其差值去控制伺服电动机。在位置控制中通常还要完成位置回路的增益调整、各坐标方向的螺距误差补偿和反向间隙补偿,以提高机床的定位精度;

7、I/0处理:I/O处理主要处理CNC装置面板开关信号,机床电气信号的输入、输出和控制(如换刀、换挡、冷却等);

8、显示:CNC装置的显示主要为操作者提供方便,通常用于零件程序的显示、参数显示、刀具位置显示、机床状态显示、报警显示等,有些CNC装置中还有刀具加工轨迹的静态和动态图形显示;

9、诊断:对系统中出现的不正常情况进行检查、定位,包括联机诊断和脱机诊断。

本发明与数控系统直接通讯的计算机辅助制造方法,将通讯接口与CAM系统组成一个整体,CNC与通讯接口连接后,CAM系统和CNC进行双向通讯。CAM系统每一秒至少读取CNC的状态信息一次以上,尤其是5次以上或更多次,如:10次。本实施例中,CAM系统在目前广泛应用的CAM软件基础上,不仅将通讯接口以代码形式加载于CAM软件中,还包括了在输出设备的同一界面上显示CNC状态信息和加工过程中的各个数据所需的代码,以便于在输出设备上呈现。CAM软件通过通讯接口与CNC实现双向通讯,将产品的加工要求发送给CNC,并将CNC的各个数据,如:但不仅限于机械坐标数据和反馈数据等,由此在软件界面上得以呈现,使得技术人员在同一界面上及时了解机器的状态和工序等信息,还能根据加工的要求实施后续的CAM操作。

图4为本发明机与数控系统直接通讯的计算机辅助制造装置。如图4所示,本实 施例提供的装置包括CAM系统和通讯接口,CAM系统基于操作系统,通讯接口与CNC连接,并进行双向通讯。接口与CAM系统组成一个整体,作为基于操作系统的与CNC交互的CAM。CAM系统每一秒至少读取CNC的状态信息一次以上,尤其是5次以上或更多次,如:10次。图5为示出了图4中基于操作系统的与CNC交互的CAM一实施例的示意图。如图5所示,通讯接口21和CAM软件22共同组成基于操作系统10的与CNC交互的CAM系统20。CAM系统20还包括显示界面23,其加载于CAM软件内,并于输出设备上显示CAM操作的区域(未示出)和CNC状态信息的区域(未示出)。参见图4和图5,通过通讯接口,CNC接收到CAM系统的加工要求控制机器执行工序,并各项数据通过通讯接口21传回CAM,并于界面上显示。本实施例中,通讯接口为计算机语言(即代码),载于CAM软件的代码中。

图6为本发明与数控系统直接通讯的计算机辅助制造系统一实施例的示意图,如图6所示,本发明与数控系统直接通讯的计算机辅助制造系统包括终端40,在终端40上安装操作系统10,以及载有CAM软件22。通讯接口21加载于CAM软件22内形成基于操作系统10的与CNC交互的CAM系统。显示界面23包含于CAM软件22内,并于输出设备上显示CAM操作的区域(未示出)和显示CNC状态信息的区域(未示出)。通讯接口21与CNC50实现双向通讯。CAM软件每一秒至少读取CNC的状态信息一次以上,尤其是5次以上或更多次,如:10次。

与终端连接的还有输入/输出设备30,以输入工件参数,或实施人机交互。对于一种设备,当其作为工件参数输入时,充当了输入设备,当其显示数据时,充当了输出设备。在一个设备中,实现输入和输出功能已很常见并得到广泛应用,触摸屏就是一个典型的实例。

本发明提供的方法与采用队列式加工的方式相结合,不仅使得加工工艺的数量和顺序实现了按需自由组合,也利于根据具体的加工要求,及时对非标准工件的制造过程做出工件参数的调整,提高了加工的灵活性和适应性,还实现了CAM设计的数据与CNC数据的直接双方通讯,操作人员可以将非标准产品的制造要求直接传送给CNC系统,或在内存中短暂存储,无需生成NC文件后再由CNC执行,提高了非标准产品的操作效率,还显著减少了代码冗余,降低了硬件性能要求。以下举例说明队列式加工方式:

步骤100:输入加工参数,如:但不仅限于在人机界面给出的输入框中输入目标工件的加工参数,或者通过存储设备(如:硬盘和闪存盘)输入目标工件的加工参数,或者含有加工参数的文件,或者借助有线或无线的通讯方式实现加工参数或者含有加工参数的文件的输入。

步骤200:根据所输入的加工参数,相应地产生工艺数值,便于计算机进行计算。

步骤300:运算方式的识别,即对产生的工艺数值进行运算方式的识别,识别出工艺数值所属的那一种加工要素,如:但不仅限于开槽、开底刃和开横刃等。

步骤400:对工艺数值是否符合所识别的加工要素的运算方式进行判断:

当工艺数值不符合该种加工参数的运算方式时,则返回步骤100,要求重新输 入加工参数,

当工艺数值符合该种加工参数的运算方式时,则进行

步骤500:根据工艺数值所对应的运算方式对工艺数值进行运算处理,得到经计算的加工坐标点数值;

在此步骤中,还可以得到对该种工件进行加工所需的工艺情况,如:但不仅限于步骤及其数量。

接着,步骤600,根据所识别的加工要素的运算方式,至少参照设备机械坐标参数,将经计算的加工坐标点数值进行CNC坐标点转化,获得可实施的加工坐标点数值,产生CNC系统的可执行文件(如:但不仅限于程序或代码集等),即产生能使CNC系统执行加工指令的文件(如:但不仅限于将各个NC代码行汇集生成CNC系统可执行的NC文件等),以及还参照如:但不仅限于反馈数据的数值,获得可实施的加工坐标点数值,进而产生CNC系统的可执行文件;然后

步骤700:判断机器的状态:

当机器状态为“待机”时,则执行步骤800;

当机器状态为“停机”时,则生成返回代码,提示“可执行加工作业”,由操作者给出执行加工作业的指令后,执行步骤800;

步骤800:执行加工作业,包括

步骤810:CNC加载可执行文件,控制机器程序化的对工件进行加工;

步骤820:根据可执行文件的要求,提供加工后的反馈数据。

步骤900:判断与输入加工参数相关联的全部工艺是否均完成:

当与输入加工参数相关联的全部工艺均完成时,则停止机器,处于“停机状态”,返回步骤1;

当与输入加工参数相关联的全部工艺未完成时,则暂停机器,处于“待机状态”,返回步骤4或步骤5。

工艺数值是否符合所识别的加工要素的运算方式进行判断可以采用一次性全部判断,比如:在步骤4,根据工艺数值所属的加工要素种类依次对工艺数值是否符合所识别的加工要素的运算方式进行判断,这样在完成后续工艺的加工时则仅返回到步骤5进行(参见图2);当需要对输入的加工参数进行修改,或者先行仅就1种工艺的参数进行判断,在完成后续工艺的加工时则返回步骤4进行。

本实施例的方法中,其所进行的算法至少包括机械参数、工具参数和工件参数,还包括反馈数据。

以开槽工序和平面后角加工为例,相关的工件参数包括槽的长度、芯厚、轴向前角、径向前角、螺旋角度、先端角度、第一后角角度、第二后角角度、第一后角宽度和两刃间距等。

反馈数据应理解为基于完成加工指令(如:执行CNC文件)而产生的数值,大 体分为两种:表示当前工序状态,完成或正在加工中或加工失败的数据,以及标示测量工序结果的数据,包括但不仅限于工具悬伸长度、外径、A轴位相和螺旋角度等。加工工序的运算根据操作人员的设定调用反馈数据。

比如:对螺旋角度进行测量后,储存所得测量值(如:储存于数控系统),即为反馈数据,当根据开槽的工艺数值所对应的运算方式进行运算处理时,调取反馈参数(如:螺旋角度的测量值),以完成运算;再如:当机器完成对工件2条槽体的加工后,需要向数控系统给出表示“2条槽体”的数值,即为反馈数据,从而将该反馈数据的数值纳入有关开刃的算法中,产生开刃加工坐标点数值;

本实施例中,输入的加工参数包括工件参数、工具参数、机械参数和反馈数据,这些信息或设定(如:机械参数),或基于完成加工指令而产生(如:反馈数据),或根据加工要求人为输入(如:工件参数)或预先输入并存储而供调用(如:工具参数)。工件参数即为待加工工件相关的参数,包括工序清单,即工序的名称和对应的参数。以对工件执行开槽和开先端刃的工序为例,工序清单包括:开槽和开平面后角;开槽工序对应的参数包括:槽的长度、芯厚、轴向前角、径向前角、螺旋角度,开槽所选用的砂轮等。平面后角工序对应的参数包括:先端角度、第一后角角度、第二后角角度、第一后角宽度、两刃间距,以及开平面后角所选用的砂轮等。工具参数如:但不仅限于砂轮类型、砂轮角度、砂轮安装面距离、砂轮厚度、砂轮直径和砂轮安装方向等。“数值”或“工艺数值”和“加工坐标点数值”等表述中,“数值”应当理解为单一的数字,由若干数字组成表示1个或多个工艺的数值串,或者由若干数值串组成的串组。

机械参数,也称设备机械坐标参数,以机床为例,其参数包括:原点至A轴的X距离、原点至A轴的Y距离、原点至A轴的Z距离、电主轴与回转中心点偏置值、电主轴高度差、砂轮轴悬伸长度1、砂轮轴悬伸长度2、基准块前端面到A轴主轴端面X距离、原点到标准块左端面Y距离、原点到标准块右端面Y距离、原点到标准块上端面Z距离、原点到标准块下端面Z距离、A轴主轴端面到夹头距离和夹头直径等。

由此,当机器启动后,在CNC控制下对工件实现了一种工艺的加工参数后,处于待机状态,接着根据再输入的或已输入的另一种工艺的加工参数,再次重复上述步骤400至步骤900或者步骤500至步骤900,对工件实现该另一种工艺的加工。当加工工艺为三种以上时,则按上述步骤400至步骤900或者步骤500至步骤900进行第二次或更多次的重复。因此,就本实施例提供的机加工控制方法,各个加工参数从整体上呈现队列式依次完成。

本实施例的提供的与数控系统直接通讯的计算机辅助制造方法、装置以及系统可应用于非标准工件的加工机器设备中,尤其是采用分布式架构的机器中,借助有限或无线网络实现这些机器的互联,并将加工任务分派到各台机器上,便于操作人员基于CAM的作业,提高了非标准工件的快速按需加工和制造效率。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1