用于在光学图像捕获系统中减少梯形失真并提高图像清晰度的方法和装置的制作方法

文档序号:6521710阅读:226来源:国知局
专利名称:用于在光学图像捕获系统中减少梯形失真并提高图像清晰度的方法和装置的制作方法
技术领域
本发明涉及一种用于与图像捕获和识别系统一起使用的光学捕获装置,具体来说,本发明包括一种用于减少或大体消除带图案物体(Patterned Object)图像内的梯形失真并可使该图像更清晰聚焦的光学捕获装置。
该指纹识别系统或者任何图形识别系统必须能够做的第一件事情是准确捕获指纹或者其他图形用于分析。针对这种图形数据采集,存在许多机构。例如,下列美国专利即第3,975,711、第4,681,435号、第5,051,576号、第5,177,435号和第5,233,404号都揭示了用于捕获带图案物体图像的装置。


图1示出了一种这样的现有技术的光学指纹捕获识别系统的示意图。在图1中,光学识别系统108包括光源112;光学三棱镜110;透镜组件114;图像传感器116;以及存储处理单元125。棱镜110包括成像表面118;光接收表面120;以及观察表面122。成像表面118是指例如指纹等的带图案物体为了成像而放置成紧贴的表面。光源112例如可以是发光二极管(LED),其被放置成靠近光接收表面120并产生入射光124,该入射光124被传输给光学三棱镜110。光学三棱镜110是一等腰直角三角形,并且成像表面118的对角约为90度,另两个“底”角(即等腰三棱镜的两个等角)均约为45度。
通常,入射光124按照与入射表面法线115所成的一角度126照射到成像表面118上。角度126大于临界角128。一般,临界角是在入射光线与一表面的法线之间测定的。如果入射光按照一个大于临界角的角度照射到一表面上,则该入射光将从该表面进行全内反射;如果入射光按照一个小于临界角的角度照射到一表面上,则该入射光将大体穿过该表面。因此,临界角128是指与成像表面118的法线所成的角,在该成像表面118的上方,入射光将从成像表面118进行全内反射,并且作为反射光130通过观察表面122离开棱镜110。
反射光130穿过放置成靠近观察表面122的透镜组件114。透镜组件114可包含一个或多个光学透镜。之后,来自透镜组件114的光由图像传感器116捕获。图像传感器116例如可以是电荷耦合装置(CCD),或者是互补金属氧化物半导体(CMOS)装置,它捕获光图像并把其转换为电信号。该图像传感器已为本领域技术人员所熟知。然后,该电信号被传输给存储处理单元125。
存储处理单元125可包括存储器、处理器和模数转换器(未示出)。模数转换器把来自图像传感器116的模拟电信号转换为数字数据。存储器用于存储数字数据以及用于把所捕获的指纹图像与所存储的指纹图像进行比较的算法。处理器把所捕获的数字数据与事先存储在存储器内的数据进行比较,该比较是以一种用于比较这些数据的算法为基础。处理器还可分析所捕获的数字数据,其目的不同于与所存储的数据进行比较。该存储处理单元已为本领域技术人员所知,并且可包括配备有合适软件的标准个人计算机。用于处理和比较图像数据的算法例如在第4,135,147和第4,688,995号美国专利中作了揭示,这两份专利的全部发表内容均包含在本文中,以供参考。
当指纹被放置在光学棱镜的成像表面118上时,指纹凸部111接触成像表面118,而指纹凹部109不与成像表面118保持接触。这样,如果入射光的入射角超过光学棱镜110的临界角,则在指纹凹部109中,从光源112进入光学棱镜110的入射光124便在成像表面118进行全内反射。然而,在指纹凸部111,入射光124的某些部分被吸收并从指纹凸部散射。本文中所使用的“散射”一词表示光在照射到一不规则表面之后,在多个方向上从该不规则表面辐射或不规则反射。
由于这种散射和/或吸收,入射光124在指纹凸部111进行不充分的全内反射。这样,从指纹凹部109离开棱镜110的反射光130的强度比从凸部111离开棱镜110的反射光130的强度大。来自凸部111的强度较低的反射光130转移到较暗区,以表示在光束与指纹表面之间的入射点存在一物体。相反,强度较高的反射光130,例如进行全内反射的反射光转移到较亮区,以表示在入射光124与成像表面118之间的入射点不存在一物体。这就可将较暗的指纹凸部111与较亮的指纹凹部109区别开。由于在指纹凸部111吸收入射光是生成指纹图像的主要原因,因而系统108被称为“吸收式”成像系统。
上述系统可捕获光学指纹图像,并可处理光学指纹图像的电表示。然而,在指纹凸部111的区域内,入射光124中有些仍进行全内反射,有些在与反射光130平行的方向上散射。这样,来自指纹凹部109与指纹凸部111的反射光130之间的强度差会较小。也就是说,在指纹图像中的指纹凸部111与指纹凹部109之间的对比度会较小。这会使图像的捕获、处理和比较变得较困难。
此外,在例如光学识别系统108等的光学识别系统中,透镜组件114中的第一透镜的直径最好比观察表面122上的指纹的图像小。这不仅可使光学识别系统108的尺寸较小,而且可使该系统的制造成本较低。
然而,如图2所示,在例如系统108等的吸收式系统中,如果透镜组件114的第一透镜的直径比成像表面118上的指纹小,则透镜组件114一般必须放置成离观察表面122较远。这可使由系统108捕获的指纹图像一直到指纹图像的边缘都较清晰。也就是说,如果透镜组件114被放置成离观察表面122太近,则指纹图像的边缘会在图像边缘附近丢失或失真。这是因为在例如系统108等的吸收式系统中,产生指纹图像的光线对于待聚焦的图像必须大体是平行的。而且,如果透镜组件114内的第一透镜比成像表面118内的指纹小,则来自指纹图像边缘并且与来自更靠近指纹图像中心的区域的光线平行的光线可能就无法进入透镜组件114。这会导致指纹图像的边缘散焦或丢失。
这样,如图2所示,如果光学识别系统108的透镜组件被放置在显示透镜组件114’的地方(在虚像中),则大体平行的反射光130和130’的光线将不进入透镜组件114’。为此,如果透镜组件被放置在透镜组件114’的位置,则对于放置在成像表面118上的点A和点B处的指纹,系统108将不会产生该指纹的清晰图像。
这样,如图2所示,在吸收式系统中,通过制造透镜组件114中较小的第一透镜所实现的尺寸减少会不产生作用,因为透镜组件114必须放置成距观察表面122较远,以便使用大体平行的光线捕获整个指纹图像。为此,使光学识别系统108变得较紧凑会有问题。此外,在观察表面122与透镜组件114之间的距离较大,会使得在指纹图像中因光干扰而发生对比度损失。
并且,当透镜组件114内的第一透镜比观察表面122处的指纹图像小,则会在光学识别系统108内出现被称为梯形失真的现象。成像系统内的梯形失真所具有的效果是使由系统生成的方形图像看起来象梯形。
图2是示出在光学识别系统108内产生梯形失真原因的示意图。来自光源112的入射光124进入棱镜110并从成像表面118反射,使物体AB成像。然后,反射光130离开观察表面122并到达透镜组件114的点A’和点B’,以形成物体A’B’。通过观察表面122观察物体AB,物体AB将看起来位于“视在图像(apparent image)”物体ab处。具体来说,点A看起来在点a,即离观察表面122的距离为aa’,点B看起来在点b,即离观察表面122的距离为bb’。一物体的视在图像看起来离观察表面122的距离是通过该物体离观察表面122的实际距离除以棱镜110的折射率n而得出。具体来说,距离aa’是通过下列公式求出aa’=Aa’/n式中,n是指棱镜110的折射率。同样,距离bb’是通过下列公式求出bb’=Bb’/n当从一物体的视在图像到透镜组件114的透镜平面107之间的光路径长度对于所成像物体的不同部分是不同的,而且当透镜组件114的物镜比通过观察表面122的指纹图像小时,出现梯形失真。具体来说,梯形失真出现在系统108内,因为距离aA’比距离bB’长,而且透镜组件114的直径比观察表面122上的距离a’b’小。
距离aA’大于距离bB’的另一后果是会难以获得图像各部分均清晰聚焦的物体图像。更通常的是,每当从一物体的视在图像到透镜组件的透镜平面并最终到图像传感器之间的光路径长度对于所成像物体的不同部分是不同时,在透镜平面处的物体图像中,有一部分图像可能较清晰聚焦,而有一部分图像可能散焦。
为了解决梯形失真和物体图像中有一部分散焦的问题,现有技术制造厂商已使透镜组件114的透镜平面107以及图像传感器116倾斜,以增加距离bB’并减少距离aA’,使这两个距离近似相等。然而,等腰直角三棱镜(即底角约为45度而非底角即顶角约为90度的三棱镜)的特性是,反射光130大体与观察表面122成直角离开棱镜110。也就是说,反射光130随着其离开观察表面122,不会发生折射。并且通常,透明物体表面上的入射角越大,入射光中从该表面反射的部分就越多。这样,虽然使透镜组件114和传感器倾斜会减少梯形失真和增加图像清晰度,但这也会增加反射光130从透镜组件114的表面以及图像传感器116的表面的反射,因为反射光130以较大的入射角照射到透镜组件114上。这降低了进入图像传感器116的光的强度,使图像处理和比较变得更困难。
此外,光源112和透镜组件114的有关位置使得由光源112发射的杂散光113能进入透镜组件114。这可产生附加背景“噪声”光,该光会进一步降低所捕获图像的质量,并使图像处理变得更困难。
为了克服与上述吸收式图像捕获系统相关的某些困难,已设计了这样的捕获系统,即这些捕获系统主要是以“散射”机构为基础,而不是以吸收式机构为基础。一个这样的捕获系统已由第5,233,404号美国专利(Lougheed等人)作了揭示,该专利已于1993年8月3日颁发给了J.Lougheed等人。图3是示出由Lougheed等人所揭示的装置中的图像捕获部分的示意图。如图3所示,现有技术图像捕获系统208包括梯形棱镜210;光源212;透镜组件214;以及图像传感器216。梯形棱镜210至少包括成像表面218;光接收表面220;以及观察表面222。
成像表面218是指例如指纹等的待成像物体被放置成紧贴的表面。光源212被放置成靠近并面向光接收表面220,光接收表面220与成像表面218大体平行。这样,由光源212发射的入射光224按照通常小于梯形棱镜210的临界角228的角度把光通过梯形棱镜210投射到成像表面218上。因此,在紧贴成像表面218放置的指纹凹部209中(指纹凹部不与成像表面接触),不会发生全内反射,并且入射光224穿过成像表面218。在指纹凸部211与成像表面218接触的各点,入射光224照射到指纹凸部上,以产生散射(或者相当于不规则反射)光230。散射光230在包括透镜组件214的方向在内的大体所有方向上往回传播到梯形棱镜210内。透镜组件214被放置成靠近观察表面222。散射光途经观察表面222并到达透镜组件214,以便由图像传感器216进行检测。如上所述,图像传感器216可以是CCD、CMOS或其他类型的检测器。
在指纹凹部209的区域内,入射光224穿过成像表面218。并且,在指纹凸部211的区域内,入射光224从成像表面218散射,以便由透镜组件214和图像传感器216拾取。因此,指纹图像在指纹凸部211较亮,而在指纹凹部209较暗。由于散射光230由图像传感器216拾取,因而该类型系统被称为“散射式”系统。
在由该散射式系统生成的指纹图像中的凸部和凹部之间的强度差或强度比,大于如图1所示的在吸收式系统中生成的指纹图像的凸部和凹部之间的强度差或强度比。结果,由该散射式系统生成的指纹图像与由吸收式系统所生成的图像相比,在指纹凸部和凹部之间显示的对比度更高。这样,图像会更准确地由图像传感器216捕获。这会减少在由系统随后进行的指纹比较中出现的误差。
此外,散射式系统的特性是,进入透镜组件214以便在散射式系统中产生指纹图像的光线无需平行以产生清晰图像。这样,如果透镜组件214内的第一透镜比观察表面222内的指纹图像小,则透镜组件214仍可放置成较靠近观察表面222,而且在图像边缘附近没有图像清晰度损失。
然而,例如棱镜210等的梯形棱镜,其制造费用会比例如在图1中所示的棱镜110等的三棱镜更高。其中一个原因是由于有额外表面要抛光。这会提高例如成像系统208等的成像系统的价格,从而使该系统不太适合消费者使用。
此外,由于在从棱镜210中的指纹视在图像的不同部分到透镜组件214之间的散射光路径长度存在差异,因而图像捕获系统208会采用与光学识别系统108类似的方式造成指纹图像部分散焦。此外,尽管未在图3中示出,但如果图像捕获系统208的透镜组件214内的第一透镜比观察表面222上的指纹图像小,则在从棱镜210中的指纹视在图像的不同部分到透镜组件214和图像传感器216之间的散射光路径长度的差异也会造成梯形失真。
正如以上讨论表明,需要对与带图案物体识别系统一起使用的图像捕获装置进行改进。具体来说,将最好使用这样一种图像捕获系统,即该图像捕获系统产生的图像已减少或大体消除梯形失真。此外,也最好使用这样一种图像捕获系统,即在该系统产生的图像中,整个图像大体聚焦。同时,该图像捕获系统还应结构较紧凑,而且制造成本较低。
在本发明的另一方面,一种用于产生带图案物体图像的方法包括提供一种光折射器,该光折射器具有成像表面;观察表面;以及外加表面。角度γ形成在由观察表面定义的平面与由成像表面定义的平面之间。带图案物体被放置成紧贴成像表面,并且入射光被投射到光折射器内。入射光通过观察表面从成像表面和带图案物体散射。透镜设置成靠近观察表面,并且角度δ形成在透镜的焦平面与由观察表面定义的平面之间。角度γ和δ设置成使从形成在光折射器内的带图案物体的视在图像的一部分移到透镜平面并最终移到图像传感器的第一光线的路径长度与大体同第一光线平行并从带图案物体的视在图像的另一部分移到透镜平面和图像传感器的任何另一光线的路径长度大体相等。优选的是,角度γ和δ设置成使其通过下列方程式相互联系0.7≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.30此外,优选的是,待用于成像的成像表面的各部分均能具有至少一条从成像表面散射的光线,以使该光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
上述的装置和方法可形成这样一种带图案物体图像,即该图像已减少或大体消除了梯形失真,并可产生整体较清晰聚焦的图像。这将有利地便于对带图案物体图像进行更准确地处理和比较。
图2是图1的图像捕获装置的示意图,该图示出了梯形失真。
图3是利用散射式图像捕获技术的第二个现有技术图像捕获装置的示意图。
图4是根据本发明的图像捕获系统的示意图,该图像捕获系统包括棱镜、光源、透镜组件和图像传感器。
图5是图4中所示的棱镜和光源的透视图。
图6是图4中所示的图像捕获系统的示意图,该图示出了如何减少梯形失真。
图7是示出可与图4中所示的图像捕获系统一起使用的透镜组件的示意图。
图8是图4中所示的图像捕获系统的示意图,该图示出了优选的棱镜和透镜组件配置。
图9是示出可与本发明的图像捕获系统一起使用的棱镜的另一实施例的示意图,该图示出了散射光线路径。
图10是图9中所示的棱镜的示意图,该图示出了另一散射光线路径。
详细说明图4和图5示出了根据本发明的带图案物体图像捕获系统308。捕获系统308优选地包括三棱镜310;光源312;透镜组件314;以及图像传感器316。棱镜310是一种五面三棱镜,其长度延伸到图4的平面内。棱镜310包括一长方形平面成像表面318,紧贴该表面放置有例如指纹335等的待成像物体。三棱镜310还包括一长方形平面观察表面320,通过该表面,紧贴成像表面318放置的指纹335的图像离开棱镜310。在图4和图5的实施例中,观察表面320还可用作光接收表面,以便使光能进入棱镜310。光散射表面322包括棱镜310的第三或外加长方形平面表面。鉴于以下详述的原因,光散射表面322最好是漫射的。
光源312最好是一伸长式LED阵列,该阵列由一排发光二极管(LED)组成,其延伸于棱镜310的整个长度(延伸到图4的平面内)。如果这些LED用作光源312,则可将一漫射罩设置在LED与观察表面320之间,以使成像表面318的照度更均匀。然而,还属于本发明范围内的是,使光源312成为任何其他类型光源,以便向棱镜310内提供入射光。优选的是,光源312设置成沿棱镜310的边缘338,该边缘在成像表面318的对面。然而,还属于本发明范围内的是,采用任何其他方式配置和设置捕获系统308的光源。例如,有关可与本发明一起使用的光源的其他配置,已在第09/191,428系列号的美国专利申请中作了揭示,该专利标题为“用于图像捕获的对比度高、失真少的光学捕获系统”,该专利申请已于1998年11月12日提交,属于共同转让,并且同时待审。本文在此包含该专利全文内容,以供参考。这包括将光源紧贴观察表面320并沿观察表面320设置在边缘338与线360之间的任何地方,线360由观察表面320及其垂线相交形成,并与边缘365相交。
透镜组件314用于接收来自指纹335的散射光330,并把散射光330聚焦到图像传感器316上。透镜组件314可以是单个透镜,或者优选的是可由多个透镜组成。最优选的是,透镜组件314具有约13.48mm的焦距,并且放置成距观察表面320约13.5mm。此外,如图7所示(图7是透镜组件314的一个实施例的示意图),透镜组件最优选的是由三个透镜904、906和908组成,其各自光轴均在共用光轴902上对准。透镜904最优选的是具有约17.8mm的直径,而另两个透镜906和908最优选的是具有约6mm的直径。已考虑到,在透镜组件314内包括任何数量的透镜。
图像传感器316捕获来自透镜组件314的光图像,并把该光图像转换为电信号。图像传感器316可以是电荷耦合装置(CCD),或者任何其他把光信号转换为模拟或数字电信号的装置。优选的是,图像传感器316是互补金属氧化物半导体(CMOS)装置。CCD和CMOS图像传感器已为本领域技术人员所熟知。由图像传感器316产生的电信号可采用已知装置进行处理,并可用于比较输入图形,例如指纹。正如在发明背景中提到的,该信号处理装置已在例如第4,135,147号和第4,688,995号美国专利中作了揭示,本文已包含该专利内容,以供参考。
为了在图像传感器316上生成指纹335的光学图像,指纹335被放置成紧贴成像表面318。来自光源312的入射光324途经观察表面320并进入棱镜310。由于光源312被放置成靠近边缘338,因而入射光324照射到散射表面322上。如上所述,散射表面322优选的是漫射的。因此,照射到散射表面322上的较大部分入射光334在棱镜310内进行内散射。然后,该散射光照射到成像表面318上。即使光散射表面322不是漫射的,大体所有入射光324也都将按照一个比散射表面322的临界角大的角度323照射到散射表面322上。因此,入射光将从散射表面322反射,并照射到成像表面318上。为了加强入射光从散射表面322的反射,计划把反射表面381的镜面放置成朝向散射表面322的方向。
由于入射光324已从散射表面322散射或直接反射,因而较大部分的入射光324将按照一个比棱镜310的临界角328小的角度327照射到成像表面318上。因此,在照射到成像表面318上具有指纹凹部309的区域的入射光324将不进行全内反射,并将大体穿过成像表面318。这样,在照射到成像表面318内具有指纹凹部309的区域的光基本上将不被导入传感器316内。然而,照射到成像表面318中具有与成像表面318接触的指纹凸部311的区域的入射光324将大体散射,从而产生散射光330。散射光330的一部分将通过观察表面320离开棱镜310。一旦离开棱镜310,散射光330将折射到透镜组件314内,该透镜组件314将把散射光330聚焦到图像传感器316内。
由于入射光324可由散射表面322散射,因而入射光324在成像表面318上提供较均匀的照度,该成像表面318产生较均匀的图像。该均匀图像是期望获得的,因为这将更容易进行处理并与其他所存储的指纹数据进行比较。为进一步提高成像表面318上的照度的均匀性,观察表面320中面向光源312的部分可采用如图5所示的蚀刻线370在观察表面320上形成条纹。线370延伸于棱镜310的整个长度,并且与顶点棱线338平行。线370用于使从光源312发射的光随着途经观察表面320而漫射。
除了上述讨论的部件以外,图像捕获系统308优选的是还包括光阻挡屏蔽350,其设置在与光源312相邻的光接收表面的一部分上。优选的是,光阻挡屏蔽350延伸于棱镜310的全长(进入图4的平面内)。光阻挡屏蔽350将用于减少来自光源312的杂散光的数量,该杂散光可能会进入透镜组件314,并干扰指纹图像或使其模糊。而且还考虑到,光阻挡屏蔽350中面向棱镜310内部的表面被作为镜面反射。该镜面反射可根据期望增加入射到成像表面318上的散射光的强度。除了光阻挡表面350以外,或者为了取代光阻挡表面350,还可将第二个光阻挡表面352设置在光源312与透镜组件314之间。光屏蔽352优选的是按照一角度从观察表面320延伸,以便阻挡来自光源312的杂散光进入透镜组件314。
由于光源312较窄并且设置成靠近在成像表面318对面的边缘338,因而到达成像表面318的所有入射光324基本上都被反射或散射到透镜组件314内。也就是说,如果入射光324不在与指纹凸部311接触的点从成像表面318散射,则图像传感器316会几乎捕获不到入射光324。为了进一步减少进入指纹凹部309并通过透镜组件314到达图像传感器316的入射光324的相似性,光源312优选的是被配置成不延伸通过线360,如图5所示,线360延伸于棱镜310的全长,并由观察表面320的平面法线的相交来定义,而且与靠近成像表面318的边缘365相交。如果相对于线360光源312被保持在与顶点338的同一侧,则从光源312垂直发射的入射光324如果没有从指纹凸部311散射,则基本上不会到达图像传感器316。
通过把来自光源312并直接入射到成像表面上的入射光324减至最少,从而使得入射光324基本上不从成像表面318中具有指纹凹部309的区域进行全内反射。也就是说,来自这些凹部区域的光基本上不途经观察表面320进入透镜组件314。相反,从成像表面318进入透镜组件314内的所有光基本上都从成像表面318上的指纹凸部311散射。这使得指纹图像在指纹凸部311和凹部309之间具有较高的对比度。这样一种对比度高的指纹图像可更容易进行处理并与其他指纹图像进行比较,因此可有利地提高处理准确度。
并且,使用这种用于图像捕获的散射技术是采用三棱镜实现的,该三棱镜与在发明背景中讨论的在Lougheed专利中揭示的梯形棱镜不同。由于三棱镜与梯形棱镜相比制造更为经济,因而将有利地使图像捕获系统308的制造成本较低。
并且,散射光通常在与大体一个方向相对的多个方向上从一物体散射。而且,正如在发明背景中提到的,非平行散射光可由透镜组件利用以形成一物体的聚焦图像。这样,如图6中的光学识别系统318所示,如果透镜组件314的第一透镜的直径比观察表面322内的指纹335的对角线短,则非平行散射光线可用于产生指纹335的聚焦图像。因此,透镜组件314可以,但并不一定需要设置成更靠近观察表面320。而且在由系统308所产生的指纹图像的边缘附近,图像质量没有损耗。有利的是,这可使图像捕获系统308变得更紧凑,并且可使透镜组件314的制造成本更低。
如图6所示,由于透镜组件314的第一透镜的直径比观察表面318上的指纹的尺寸小,因而在所产生的图像中会出现梯形失真。然而,本发明的图像捕获系统会减少所产生图像内的梯形失真,并且会提高所产生图像的整个清晰度。正如在发明背景中讨论的,梯形失真出现在这样一种图像中,即该图像的尺寸与实际成像物体的尺寸有偏差。梯形失真和图像中的散焦部分都会由于下列光路径长度的变化而造成,即该光路径长度从物体的视在图像到透镜组件314并最终到图像传感器316,且从成像物体的一部分到另一部分。然而,如图6所示,在图像捕获系统308中,从指纹335的视在图像335’上的不同点到透镜组件314和图像传感器316之间的散射光330的路径长度大体相同。具体来说,路径AA’大体等于路径BB’和路径CC’。这样,可有利地减少梯形失真,并可提高整个图像清晰度。如图6所示,通过使透镜组件314相对于观察表面320倾斜,会有助于使路径AA’、BB’和CC’大体相等。
然而,与图1中所示的光学识别系统108不同,使透镜组件314发生这种倾斜不会大幅减少到达图像传感器316的图像的强度。正如在发明背景中针对光学识别系统108所提到的,使透镜组件114倾斜将使反射光130按照与其法线所成的角度照射到透镜组件314的第一透镜上。这使反射光130从透镜组件114的表面发生更多反射,从而使图像强度在图像传感器116处发生不期望有的减少。
然而,棱镜310优选的是具有大于1的折射率。这样,照射到观察表面320上的散射光330随着其离开310,从观察表面320的法线折射。因此,通过使透镜组件314的透镜平面307倾斜,散射光330便以大体90度角照射到透镜组件314上。这样,由于散射光在透镜组件314的表面过度反射,使得图像强度损失很少或没有损失,同时可减少梯形失真,并且可提高整个图像清晰度,而不会在图像传感器316处出现图像强度损失。
参照图8,可确定使透镜组件314倾斜所采用的合适角度。在图8中,光线410和412分别从成像表面边缘414以及成像表面对面边缘416散射。随着透镜组件的厚度达到零,透镜平面307在理论上成为透镜组件314的代表平面。距离Aa是指从棱镜310内的物体的视在图像沿光线410到透镜平面307的距离,而距离B’b是指从棱镜310内的物体的视在图像沿光线412到透镜平面307的距离。为了大体消除梯形失真,距离Aa必须大体等于距离B’b。由于B’b是棱镜310内的边缘B处的物体的视在深度,因而正如在发明背景中所讨论的B’b=Bb/n式中,Bb是从边缘416处的点B到棱镜310上的点b之间的距离。对大体消除梯形失真并提高整个图像清晰度的要求可由下列公式表示Aa=Bb/n(公式1)观察表面320上的光线412的入射角,即在观察表面320的法线与棱镜310内的光线412之间的夹角,在图8中被表示为θ1。光线412在离开棱镜310之后的折射角被表示为θ2。这样,根据斯涅耳折射定律(Snell’s law)n=sinθ2/sinθ1(公式2)而且,使用基本三角关系,可用下列公式表示
ABcosγ+Bbcosα’=Ab(公式3)式中,AB是指棱镜310的成像表面从点A到点B的长度;Ab是指观察表面320上的线段Ab的长度;α’是指光线412与观察表面320之间的夹角,其等于90°-θ1;γ是指成像表面318与观察表面320之间的夹角(在图8中也表示为角度342)。
最后,使用正弦定律,可用下列公式表示AB/Bb=cosθ1/sinγ (公式4)使用上述的公式1、2、3和4,可以表明,为了大体消除梯形失真并提高整个图像清晰度,必须满足下列条件,即该条件使棱镜310的角度和透镜平面307与观察表面320所成的角度互相关联(n2-sin2δ)(cotγ)(sinδ)+sin2δ=1(公式5)式中,如图8所示,δ是指透镜组件314的透镜平面307与观察表面320所成的角度。这样,根据本发明,成像系统308优选的是根据公式5配置成大体消除梯形失真并提高整个图像清晰度。
然而,在制造成像系统308中,要获得角度γ和δ的精确公差会比较困难,而且价格昂贵。因此,根据本发明并允许30%制造公差的成像系统优选的是根据下列公式6进行配置0.7≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.3(公式6)更优选的是,根据本发明并允许15%制造公差的成像系统根据下列公式7进行配置
0.85≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.15 (公式7)最优选的是,根据本发明并允许7.5%制造公差的成像系统根据下列公式8进行配置0.925≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.075(公式8)如上所述,通过根据上述公式5~8的其中之一配置成像系统308,可大体减少或消除梯形失真,并可提高整个图像清晰度。这有利地便于图像捕获系统进行更准确得图像处理和比较。
棱镜310可采用玻璃、丙烯酸或任何其他折射率大于1(空气折射率)的透明材料制成。具有优选折射率和角度的棱镜可从韩国汉城的Shinkwang公司获得,并且采用代号为Lak-7或LaK-8的玻璃制成。
诸如透镜组件314的透镜组件可从韩国汉城的Woorim光学系统公司获得,并且优选的是采用具有商业名称为BK7的玻璃制成。如果在透镜组件314中使用一个以上的透镜,如图6所示,则通过将这些透镜放置在采用塑料模制方法或任何其他在现有技术中已知的制造方法制成的框架内,可对各个透镜进行校准,并可为其设置间隔。
光源312优选的是由四个设置在电路板上的直线阵列内的标准LED组成。LED的供电已由本领域内的技术人员所熟知。图像传感器316优选的是CMOS式传感器,并且可从下列公司购买韩国汉城的现代电子株式会社,加利福尼亚圣何塞的VLSI Vision公司,或者加利福尼亚逊尼威尔的Omnivision科技公司。
为了把图像捕获部件固定到图4所示的相关位置内,可采用塑料模制方法或其他制造方法制成一框架,该框架具有用于各部件的夹持槽。光源312既可设置在与观察表面320相邻的夹持槽内,也可使用该领域已知的粘接剂直接安装到观察表面320上。
公式5~8是假定将在捕获图像中使用成像表面318的整个宽度AB而导出的。然而,可以不使用棱镜的整个成像表面来捕获图像,例如,如果使用一种角度大于或等于90度的三棱镜作为光折射器,则情况可能就是这样。然而,如果棱镜的整个成像表面不用于使物体成像,则除了根据上述公式5~8进行配置之外,还优选的是通过这样一种成像系统来满足要求。为了示出这种附加要求,图9示出了具有钝角541的三棱镜510。三棱镜510包括平面成像表面518;平面观察表面520;以及外加平面表面522。图9还示出了光源512,该光源512可与光源312大体相同,以及透镜组件(未示出)的透镜平面507。与棱镜510一起使用的透镜组件可与透镜组件314大体相同。
如图9所示,光线612从成像表面518上的点D散射,而光线610从成像表面518的点A散射。棱镜510和透镜平面507都根据上述公式5进行配置。此外,线段a’d’与透镜平面507平行。而且,长度D’d’是指成像表面518上的点D处的物体图像在棱镜510内的视在深度。这样,线段Aa’和D’d’的长度相等。由于棱镜510的折射率大于1,随着光线612在点d’离开棱镜510,该光线612将从观察表面520的法线620折射。
角度545在图9中被表示为α’,它是由光线612和观察表面520的相交部分所形成的角度,并且靠近观察表面与成像表面的相交部分,该角度小于90度。这样,随着光线612离开棱镜510并从法线620折射,该光线612将在与棱镜510外部的光线610的路径平行的路径内移动。因此,线段a’a和d’d的长度也相等。因而,从棱镜510内的视在图像到透镜平面507并最终到图像传感器(未示出)的路径总长度对于在成像表面518上的点A和点D处的物体是相同的。这样可提高整个图像清晰度。
现参照图10,该图也示出了棱镜510,来自放置在成像表面518上的点E处的物体在棱镜510内的视在图像的路径长度不等于来自放置在棱镜510上的点A处的物体在棱镜510内的视在图像的路径长度。光线612是来自放置在成像表面518上的点E处的物体的散射光。如上所述,由于棱镜510的折射率大于1,随着光线612在点e’处离开棱镜510,该光线612将从观察表面520的法线620折射。因此,由于被标为α’的角度545大于90度,因而在棱镜510外部的光线612的路径不与棱镜510外部的光线610的路径平行。由于光线610和612不平行,因而线段e’e的长度将不同于线段a’a的长度。也就是说,从棱镜510内的视在图像到透镜平面507之间的路径总长度对于成像表面318上的点E处的物体以及对于成像表面318上的点A处的物体是不同的。这样,将产生较大的梯形失真和/或相对散焦的图像。
如上所述,为了避免这种情况,当角度等于或大于90度的棱镜用在根据本发明的成像系统中时,优选的是,使用成像表面的不足整个宽度来使物体成像。如上所述,当α’小于90度,并且图像捕获系统根据上述公式(5)~(8)进行配置时,可大体消除梯形失真。这样,如果使用棱镜的成像表面518的不足整个宽度把待成像物体放置成紧贴成像表面518,则待用于成像的成像表面518的各部分必须能够具有至少一条光线从该成像表面散射,以使该条光线与观察表面520的相交部分形成一个角度,即图9和图10中所示的α’,其靠近观察表面与成像表面的相交部分,该角度小于90度。这一准则有利于减少或大体消除梯形失真,并提高在根据上述公式5~8的其中之一进行配置的成像系统内的整个图像清晰度。
棱镜510和光源512可按照大体相同方式,并采用上述针对棱镜310和光源312讨论的相同材料制造。
本发明的许多大不相同的实施例可在不背离本发明的精神和范围的情况下予以实施。应理解的是,本发明不限于本说明书中所述的具体实施例。例如,尽管上述揭示的本发明的实施例是针对指纹成像而加以说明,然而可使用本发明对任何其他类型的带图案物体进行成像。
权利要求
1.一种用于生成对比度高、失真少的带图案物体图像的紧凑式装置,其特征在于,该装置包括光折射器,用于反射和折射光,光折射器包括成像表面,待成像的带图案物体被放置成紧贴该成像表面以便在光折射器内生成该带图案物体的视在图像;观察表面,其靠近成像表面,待成像物体的图像通过观察表面被投射,观察表面与成像表面形成角度γ;以及外加表面,其靠近成像表面,至少一个透镜,其靠近观察表面,用于接收和聚焦通过观察表面投射的带图案物体图像,该透镜具有一个与透镜光轴垂直的透镜平面,该透镜平面与观察表面形成角度δ;其中,角度γ和δ设置成使从带图案物体的视在图像的一部分移到透镜平面的第一光线的路径长度与大体同第一光线平行并从带图案物体的视在图像的另一部分移到透镜平面的任何另一光线的路径长度大体相等。
2.根据权利要求1所述的装置,其特征在于,角度γ和δ通过下列公式相互关联0.7≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.3。
3.根据权利要求1所述的装置,其特征在于,角度γ和δ通过下列公式相互关联0.85≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.15。
4.根据权利要求1所述的装置,其特征在于,角度γ和δ通过下列公式相互关联0.925≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.075。
5.根据权利要求1所述的装置,其特征在于,待成像物体所紧贴的成像表面的一部分能够具有至少一条从该成像表面各部分散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
6.根据权利要求1所述的装置,其特征在于,该装置还包括至少一个光源,其设置成靠近光折射器,用于发射进入光折射器的入射光,以便在观察表面生成带图案物体的图像。
7.根据权利要求6所述的装置,其特征在于,三棱镜包括第一边缘,其位于成像表面对面,并靠近观察表面;以及光源是一排发光二极管(LED),其朝向观察表面并与观察表面平行,而且靠近第一边缘。
8.根据权利要求1所述的装置,其特征在于,至少一个透镜具有一定直径;待成像物体具有一定长度尺寸;以及该至少一个透镜的直径比该待成像物体的长度尺寸小。
9.根据权利要求2所述的装置,其特征在于,待成像物体所紧贴的成像表面的一部分能够具有至少一条从该成像表面各部分散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
10.根据权利要求3所述的装置,其特征在于,待成像物体所紧贴的成像表面的一部分能够具有至少一条从该成像表面各部分散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
11.根据权利要求4所述的装置,其特征在于,待成像物体放置成紧贴的成像表面的一部分能够具有至少一条从成像表面各部分散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
12.一种带图案物体成像方法,该方法包括设置光折射器,该光折射器具有成像表面、观察表面和外加表面;在由观察表面定义的平面与由成像表面定义的平面之间形成角度γ;将带图案物体放置成紧贴光折射器的成像表面;将入射光投射到光折射器内;将入射光通过观察表面从成像表面和带图案物体散射;将一透镜设置成靠近观察表面;在由观察表面定义的平面与该透镜的透镜平面之间形成角度δ;将角度δ和角度γ设置成使从光折射器内的带图案物体的视在图像的一部分移到透镜平面的第一光线的路径长度与大体同第一光线平行并从带图案物体的视在图像的另一部分移到透镜平面的任何另一光线的路径长度大体相等。
13.根据权利要求12所述的方法,其特征在于,设置角度δ和角度γ的步骤包括使角度δ和角度γ根据下列公式相互关联0.7≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.3。
14.根据权利要求13所述的方法,其特征在于,设置角度δ和角度γ的步骤包括使角度δ和角度γ根据下列公式相互关联0.85≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.15。
15.根据权利要求12所述的方法,其特征在于,设置角度δ和角度γ的步骤包括使角度δ和角度γ根据下列公式相互关联0.925≤(n2-sin2δ)(cotγ)(sinδ)+sin2δ≤1.075。
16.根据权利要求12所述的方法,其特征在于,将带图案物体放置成紧贴成像表面的步骤包括将带图案物体放置成紧贴成像表面的各部分,该成像表面的各部分能够具有至少一条从该成像表面散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
17.根据权利要求13所述的方法,其特征在于,将带图案物体放置成紧贴成像表面的步骤包括将带图案物体放置成紧贴成像表面的各部分,该成像表面的各部分能够具有至少一条从该成像表面散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
18.根据权利要求14所述的方法,其特征在于,将带图案物体放置成紧贴成像表面的步骤包括将带图案物体放置成紧贴成像表面的各部分,该成像表面的各部分能够具有至少一条从该成像表面散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
19.根据权利要求15所述的方法,其特征在于,将带图案物体放置成紧贴成像表面的步骤包括将带图案物体放置成紧贴成像表面的各部分,该成像表面的各部分能够具有至少一条从该成像表面散射的光线,以使该至少一条光线与观察表面的相交部分形成第一角度,其靠近观察表面与成像表面的相交部分,该角度小于90度。
全文摘要
本发明提供了一种用于捕获例如指纹等带图案物体的图像的装置和方法,该装置包括:光折射器;聚焦透镜;以及光源。光折射器例如可以是棱镜,并且包括:成像表面;光接收表面;以及观察表面。来自光源的入射光通过光接收表面被投射,并且从除成像表面以外的表面反射。然后,该反射光被投射到成像表面上,以便通过观察表面从大体所有散射光生成带图案物体图像。透镜被放置成靠近观察表面,以使光在图像传感器上聚焦。该装置被配置成减少或大体消除由该装置生成的物体图像内的梯形失真并提高该物体图像内的整个图像清晰度。
文档编号G06K9/00GK1369077SQ00811261
公开日2002年9月11日 申请日期2000年8月1日 优先权日1999年8月4日
发明者哈里·H·腾, 赵诚赞 申请人:赛寇根公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1