一种非接触无源射频标签及其阅读系统的制作方法

文档序号:6558534阅读:159来源:国知局
专利名称:一种非接触无源射频标签及其阅读系统的制作方法
技术领域
本发明属于无线射频识别技术领域,具体地说,本发明涉及一种非接触无源射频标签及其阅读系统。
背景技术
无线射频识别技术(RFID,Radio Frequency Identification)是一种非接触的自动识别技术,其基本原理是利用射频信号和空间耦合(电磁耦合或电磁传播)传输特性,实现对被识别物体的自动识别。
电磁传播或者电磁反向散射耦合,即所谓的雷达原理模型,发射出去的电磁波碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律。电磁反向散射耦合方式一般适合于高频、微波工作的远距离射频识别系统。典型的工作频段包括430~460MHz,865~928MHz,2.35~2.45GHz,5.4~6.8GHz。识别的作用距离为0.1~1米,典型作用距离为3~10米。
射频标签系统一般由两部分组成,即电子标签(应答器,Tag)和阅读器(也叫读头,即Reader)。在RFID的实际应用中,电子标签附着在被识别的物体上(表面或内部),当带有电子标签的被识别物品通过阅读器的可识别区域时,阅读器自动以无接触的方式将电子标签中的约定识别信息取出,从而实现自动识别物品或自动收集物品识别信息的功能。
目前已有的射频标签(RFID)一般由集成电路IC芯片和相关的天线组成。读出器天线发射无线电信号给标签,射频标签(RFID)通过自己的专用天线接收此信号,利用他从信号得到的能量(有的RFID标签上装有电源)启动标签上的集成电路芯片工作。读出器也是由天线、信号收发接收器和译码器组成。一旦RFID标签上的芯片被激活启动后,就进行需要的读出、写入操作,读出器可把通过天线得到的标签芯片中的数据,经过译码送往主计算机处理。
这种采用由集成电路IC芯片构成的无源射频标签,在工作时,首先要从阅读器获得足够的能量,当收到的能量达到一定的域值时,标签中的IC才开始工作。因此,识别时间长,在应用范围上受到一定的限制。工作在较高频率段时(如工作在430~460MHz,865~928MHz,2.35~2.45GHz,5.4~6.8GHz频段),由于内部没有射频振荡器,这样,反射回阅读器的射频信号载波的频率稳定度比较差,给阅读器快速准确识别带来一定的困难。

发明内容
本发明的目的是克服现有技术的不足,采用体声波多模谐振器本身作为射频或微波信号源,从而提供一种能够直接对阅读器的查询信号进行应答,可以工作在300MHz~10GHz的工作范围,并且易于一体化集成的非接触无源射频标签及其阅读系统。
为实现上述发明目的,本发明提供的非接触无源射频标签,包括射频波信号源和射频天线301,其特征在于,所述射频信号源采用体声波多模谐振结构,包括由下至上依次分布的体声波谐振腔体310、底电极330、压电薄膜340和顶电极360;所述体声波谐振腔体310是一种体声波传播固体介质,其固体介质材料采用蓝宝石单晶、钇铝石榴石或熔融石英;所述底电极330和顶电极360均为金属电极,所述的底电极330和顶电极360与所述的射频天线301连接。
上述技术方案中,所述射频信号源还包括位于体声波谐振腔体310和底电极330之间的声学耦合层320;所述声学耦合层320是用于声学阻抗匹配的一层或多层声传播介质;所述声学耦合层320的声阻抗接近所述压电薄膜340声阻抗与所述体声波谐振腔体310声阻抗乘积的平方根。
上述技术方案中,所述射频信号源还包括位于压电薄膜340和顶电极360之间的绝缘层350。
上述技术方案中,所述压电薄膜340是磁控溅射方法生成的压电薄膜,或者是化学微加工方法制作的压电单晶薄膜,或者是用溶胶法制作的压电薄膜。
上述技术方案中,还包括一在射频天线301和射频信号源之间实现阻抗匹配的天线匹配电路302;所述天线匹配电路302一端口与所述的底电极330和顶电极360连接,另一端口与所述的射频天线301相连接。
上述技术方案中,所述的射频天线301采用鞭状天线或复合介质天线,或者采用与所述射频信号源集成在一起的微带天线,或者采用导电油墨制作的线状天线。
为实现上述发明目的,本发明提供的非接触无源射频标签阅读系统,包括阅读器400和阅读器天线401,所述阅读器400是一种负责射频标签查询信号的发射和接收的雷达收发设备,其特征在于,所述的阅读器400包括语音提示单元、查询信号发生器、外部接口控制单元、射频收发开关、显示单元、信号检测解码电路以及控制上述各单元的嵌入式计算机单元;还包括连接在查询信号发生器与射频收发开关之间的功率放大器,以及连接在射频收发开关与信号检测解码电路之间的低噪声放大器;所述射频收发开关与阅读器天线401连接。
上述技术方案中,该阅读系统采用如下四种信号的一种或组合作为查询信号1)包含相应非接触无源射频标签中体声波多模谐振结构工作带宽高频信号频谱分量的短脉冲信号;2)包含相应非接触无源射频标签中体声波多模谐振结构谐振频率点或非谐振点的单一高频信号调制的有一定宽度的脉冲信号;3)包含相应非接触无源射频标签中体声波多模谐振结构工作带宽的扫频信号调制的有一定宽度的脉冲信号;4)包含相应非接触无源射频标签中体声波多模谐振结构谐振频率点或非谐振点的单一高频编码调制的信号。
本发明的优点是,由于体声波多模谐振器本身就是射频(或微波)谐振器,它可以作为射频或微波信号源,它可以直接将标签天线接收到的射频信号转换成体声波,从而可以直接对阅读器的查询信号进行应答。这种射频标签可以工作在300MHz~10GHz的工作范围,因此,标签和天线都可以制作得非常小,而且易于一体化集成。在应用上,它可以作为独立的射频标签,广泛应用于物品识别或安全人员识别。也可以和现有的带集成电路IC芯片的射频标签系统一起工作,组成一个双频工作的射频标签,功能互相补充。本发明尤其适合于工作在超高频及以上的频段(如430~460MHz,865~928MHz,2.35~2.45GHz,5.4~6.8GHz频段)。


图1由体声波多模谐振器构成的射频标签(RFID)及系统的原理性框2由体声波多模谐振器、天线匹配电路和天线构成的射频标签(RFID)图3射频标签(RFID)阅读器系统的原理性框图具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述。
实施例图1示出了本发明的两个部分,即射频标签(RFID)和相应的射频标签(RFID)阅读器系统的原理性框图。
所述的射频标签(RFID)由体声波多模谐振器300、天线匹配电路302和射频天线301组成。所述的体声波多模谐振器103主要包括体声波谐振腔和压电薄膜换能器。所述的体声波谐振腔的厚度决定所述的体声波多模谐振器103两个相邻谐振频率的间隔或在时间域里,两相邻反射脉冲的时间间隔;所述的压电薄膜换能器中压电薄膜的厚度决定所述的体声波多模谐振器103工作的中心频率。本发明中,所述的体声波多模谐振器103工作的中心频率可以在300MHz~10GHz,所述的体声波谐振腔的厚度可以在20微米~20毫米的范围。通过调节所述的体声波多模谐振器103的中心频率以及其谐振腔的厚度来产生不同的射频标签。
进一步地,如图2所示,本实施例中所述的体声波多模谐振器300包括体声波谐振腔体310、声学耦合层320、底电极330、压电薄膜340、绝缘层350和顶电极360组成。所述的天线匹配电路302一端口与所述的底电极330和顶电极360连接,另一端口与所述的射频天线301相连接。
所述的体声波多模谐振器300中的体声波谐振腔体310位于最下层,它一般作为基片,在它上依次生长或淀积声学耦合层320、真空蒸发或溅射和光刻出底电极330、直流或射频磁控溅射压电薄膜340、射频溅射或淀积绝缘层350、以及真空蒸发或溅射和光刻出顶电极360。一般来讲,所述的体声波多模谐振器300可以切割成任意形状,只要切割不要影响到器件的性能。优选切割为长方体或正方体。只有所述的底电极330和顶电极360进行刻蚀,其它层一般不进行刻蚀。所述的底电极330和顶电极360的形状一般为圆形,也可以是正方形或多边形。一般情况下,所述的顶电极360比所述的底电极330小一些。
所述的射频标签(RFID)阅读器系统由阅读器400和阅读器天线401组成。如图3所示,所述的阅读器400包括语音提示单元410、查询信号发生器420、功率放大器430、外部接口控制单元440、嵌入式计算机单元450、射频收发开关460、显示单元470、信号检测和解码电路480和低噪声放大器490组成。所述的射频收发开关460与所述的阅读器天线401连接。
所述的嵌入式计算机单元450是所述的阅读器400的心脏部分,它与所述的阅读器400的各重要部分相连接,以实现是对整个系统进行控制。所述的嵌入式计算机单元450与所述的查询信号发生器420相连接,使其产生所需要的查询脉冲信号,此查询信号发生器420的输出连接所述的功率放大器430的输入,而此功率放大器430的输出与所述的射频收发开关460的发射端连接。所述的嵌入式计算机单元450与所述的射频收发开关460相连接,以控制所述的阅读器天线401是用于发射或是用于接收,此射频收发开关460的公共端与所述的阅读器天线401连接。所述的嵌入式计算机单元450与所述的信号检测和解码电路480相连接,通过它们之间的通讯,得到射频标签的识别信息,此信号检测和解码电路480与所述的低噪声放大器490的输出连接,而此低噪声放大器490的输入端与所述的射频收发开关460的接收端连接。所述的嵌入式计算机单元450与所述的显示单元470和语音提示单元410相连接,将射频识别的结果通过显示单元410和语音提示单元410输出,提供视觉和听觉的信息。所述的嵌入式计算机单元450通过所述的外部接口控制单元440建立与远方设备的联系,也可以将射频识别的结果同时输出给远方的设备。
射频标签(RFID)及其阅读系统的工作过程是这样的阅读器系统加电后,阅读器系统400的嵌入式计算机单元450运行自己的固件监控程序以进行系统初始化,然后向查询信号发生器420发出指令,使其发出查询脉冲信号,此脉冲信号经过功率放大器430放大后,再通过处于发射态的射频收发开关460和阅读器天线401以电磁波的形式辐射出去。当射频标签在所述的阅读器系统400的查询范围内时,它就将射频天线301接收到脉冲信号作为激励信号,此激励信号通过天线匹配电路302在所述的体声波多模谐振器300的顶电极360和金属底电极330之间产生电压,这样,通过压电薄膜340在所述的谐振腔310内激励出体声波,此体声波在谐振腔310内传播,并在谐振腔的两端来回反射,但体声波每次经过所述的压电薄膜340时,通过压电效应,在压电薄膜340的顶电极360和底电极330上产生一个电信号,此电信号再经过所述的天线匹配电路302和所述的射频天线301发射出去。而所述的阅读器400在发射查询脉冲后,射频收发开关460就进入接收状态,开始接收来自射频标签的应答信号。射频标签的应答信号经过阅读器天线401、低噪声放大器490及信号检测和解码电路480传递给所述的嵌入式计算机单元450。如果在给定的时间内,嵌入式计算机单元450能够收到预想到的应答信号,则确认射频标签的存在,并通过显示单元470显示识别结果,同时通过语音提示单元410产生相应的语音提示,也可以通过外部接口控制单元将识别的结果传递给远方的设备,如通过公共电话网或因特网等将识别的结果传递给远方的监测设备。如果在给定的时间内,嵌入式计算机单元450能够收到预想到的应答信号,则表明没有发现所述的射频标签的存在,嵌入式计算机单元450将做出相应的处理。
进一步地,本实施例中,所述的射频天线301是一种广义的天线或多个天线单元组成的天线系统,它的功能是有效地接收和辐射一定频率范围的电磁波。也可以是通常的鞭状天线、复合介质天线;也可以是和所述的体声波多模谐振器300在一起集成的微带天线;也可以是由导电油墨制作的线状天线。
所述的天线匹配电路302是一种广义的阻抗变换电路,它的功能是将所述的体声波多模谐振器300和所述的射频天线301实现阻抗匹配,以便更有效地接收和辐射电磁波。通常情况下,用若干电感和电容即可完成,也可以和所述的体声波多模谐振器300、所述的射频天线301集成同一片基片上或集成在所述的体声波谐振腔体310上。当压电换能器在工作频段内的阻抗与天线阻抗比较接近时,或者是所述的天线匹配电路302对提高标签的性能作用较小时,所述的天线匹配电路302可以省略。
所述的体声波谐振腔体310是一种广义的体声波传播固体介质。它的作用是让体声波在其中传播声波而衰减尽量小。由于声波在其中的来回反射,因此,要求用于声波反射的两个面的平行度尽量好。所述的体声波谐振腔体310常用的材料有蓝宝石单晶(Al2O3)、钇铝石榴石(YAG)、熔融石英等。所述的体声波谐振腔体310的厚度决定体声波多模谐振器300相邻两个频率点的频率间隔。对于短脉冲信号,所述的体声波谐振腔体310的厚度决定反射脉冲的间隔。举例来讲,对于熔融石英(纵波声速为6000米/秒)为材料的谐振腔,若厚度为0.3毫米,则相邻两个反射脉冲的时间间隔为100纳秒(计算方式,时间间隔=2*0.3*10e-3/6000=100纳秒),而相临两个的谐振频率间隔为10MHz。(注中心频率和相临两个谐振频率间隔这两参数是本发明所指标签的唯一性的两个指标。也就是说,不同的标签,只是变换这两个参数。)所述的声耦合层320是一层或多层声传播介质。它的作用是将所述的压电薄膜340产生的声波尽量多地耦合到所述的谐振腔310内,起到声学阻抗匹配的作用。一般情况下,所述的声耦合层320的材料和厚度由所述的压电薄膜340和体声波谐振腔体310的材料决定的。所述的声耦合层320的厚度一般为四分之一中心频率时体声波的波长,其声阻抗一般接近所述压电薄膜340声阻抗与所述谐振腔310声阻抗乘积的平方根。正如微波通讯中通常用的四分之一阻抗匹配器。在所述压电薄膜340声阻抗与所述谐振腔310声阻抗比较接近的情况下,所述的声耦合层320也可以省略。
所述的底电极330可以是一种金属电极(如铝,金等),可以是铝/钛(Al/Ti)复合层金属电极,也可以是金铬复合层(Au/Cr)电极。所述的底电极330引出导线与所述的天线匹配电路302相连接。
所述的压电薄膜340可以是磁控溅射方法生成的压电薄膜(如ZnO、AlN),也可以是化学微加工方法(CMP)制作的压电单晶薄膜(如LiNbO3、LiTaO3),也可以是用溶胶法(Sol-gel)制作的压电薄膜(如Sol-gel方法制作的PZT压电薄膜)。所述的压电薄膜340的厚度决定体声波多模谐振器300的工作频率。就目前的工艺条件,制作的压电薄膜可以工作在300MHz~10GHz的工作范围。目前的工艺条件下,可制作的压电薄膜的厚度一般在0.5微米~10微米量级。
所述的绝缘层350可以是用磁控溅射方法生成的二氧化硅(SiO2),也可以是别的方法制作的绝缘层(如LTO)等,所述的绝缘层350的作用是避免所述的压电薄膜340上的小的缺陷或针孔引起的直流短路或击穿。当所述的压电薄膜340的厚度比较厚的情况下,例如厚度大于2微米以上时,所述的绝缘层350也可以省略。
所述的顶电极360可以是一种金属电极(如铝,金等),可以是铝/钛(Al/Ti)复合层金属电极,也可以是金铬复合层(Au/Cr)电极,也可以是由导电油墨制作的电极。所述的顶电极360引出导线与所述的天线匹配电路302相连接。
进一步地,本实施例中,所述的阅读器天线401是一种广义的天线或多个天线单元组成的天线系统,它的功能是有效地接收和辐射一定频率范围的电磁波。也可以是通常的鞭状天线、复合介质天线;也可以是由多个天线组成的高增益的强指向性天线阵。所述的阅读器天线401和所述的射频收发开关460输出端相连接。
所述的语音提示单元410是一种广义的语音发生装置,它的功能是对所述的阅读器400的识别结果给出语音提示。它可以是一个简单的蜂鸣器;也可以是杨声器(或喇叭);也可以是复杂的语音合成设备等。所述的语音提示单元410和所述的嵌入式计算机单元450相连接,相当于它的一个外部设备单元。
所述的查询信号发生器420是一种广义的雷达信号产生单元。它的功能是产生所述阅读器400所需要的查询信号。所述的查询信号发生器420受控于所述的嵌入式计算机单元450,其输出和所述的功率放大器430的输入端相连接。根据体声波多模谐振器的特点,如下四种信号的一种或组合作为查询信号效果较好a)包含所述体声波多模谐振器300工作带宽高频信号频谱分量的短脉冲信号(如δ脉冲信号);b)包含所述体声波多模谐振器300谐振频率点(或非谐振点)的单一高频信号调制的有一定宽度的脉冲信号;c)包含所述体声波多模谐振器300工作带宽的扫频信号调制的有一定宽度的脉冲信号;
d)包含所述体声波多模谐振器300谐振频率点(或非谐振点)的高频编码调制的信号;所述的功率放大器430是一种广义的宽带功率放大单元,它的功能是对所述的查询信号发生器420产生的信号进行功率放大,并将放大后的信号经过所述的射频收发开关460,通过所述的阅读器天线401以电磁波的形式辐射出去。所述的功率放大器430的输出与所述的射频收发开关460的发射输入端相连接。
所述的外部接口控制单元440是一种广义的外围通讯接口控制器,它的功能是作为桥梁建立与所述的嵌入式计算机单元450与外部的通讯,主要是将识别的结果传送给远方的设备或监视系统,远方设备的接口可以是因特网、公共电话网或Wi-Fi、WiMax、GPRS无线网络的适配器。所述的嵌入式计算机单元450通过多线与所述的外部接口控制单元440建立双向连接,并实现控制、编程和数据传输等。
所述的嵌入式计算机单元450是一种完整的计算机系统,包括相应的硬件和系统监控软件。它是所述的阅读器400的心脏部分,它与所述的阅读器的每个相连接,其功能是对整个系统进行控制。它通过控制所述的查询信号发生器420产生所需要的查询脉冲信号,通过控制所述的射频收发开关460控制所述的阅读器天线401的发射或接收状态;它通过与所述的信号检测和解码电路480的通讯,得到射频标签的识别信息;它分别通过所述的显示单元470和语音提示单元410将射频识别的结果通过显示装置和语音装置输出;它通过所述的外部接口控制单元440建立与远方设备的联系,也可以将射频识别的结果同时输出给远方的设备。
所述的射频收发开关460是一种广义的单刀双掷(SPDT)宽带射频开关。它的功能是在发射和接收状态时,切换天线的位置。在发射时,所述的射频收发开关460接通阅读器天线401和所述的功率放大其430;在接收时,所述的射频收发开关460接通阅读器天线401和所述的低噪声放大器490。所述的射频收发开关460的开关切换受控制于所述的嵌入式计算机单元450。所述的射频收发开关460的发射输入端与所述的功率放大器430的输出端相连接,其接收输出端与所述的低噪声放大器的输入端相连接,其射频开关的公共端与所述的阅读器天线401相连接,其控制端与所述的嵌入式计算机单元相连接。
所述的显示单元470是一种广义的显示装置或设备。它的功能就是通过视觉的方式给出射频识别系统的结果。通常的显示单元是CRT显示器、显示屏幕、液晶显示屏幕等。
所述的信号检测和解码电路480是一种广义的信号检测和处理电路。它的功能是将所述的低噪声放大器490输出的信号进行进一步的放大、整形、解调、峰值检波等处理,以得到所期望的识别信号。所述的信号检测和解码电路480受控制于所述的嵌入式计算机单元450,但其输入与所述的低噪声放大器490的输出相连接。
所述的低噪声放大器490是一种广义的宽带射频低噪声放大电路,可以包括一级或多级射频放大器,也可以包括带通滤波器。它的功能是通过所述的阅读器天线401接收到的所述射频标签300的微弱应答信号进行低噪声放大。所述的低噪声放大器490的输入端与所述的射频收发开关460的射频接收端相连接,而其输出端连接所述的信号检测和解码电路480。
权利要求
1.一种非接触无源射频标签,包括射频波信号源和射频天线(301),其特征在于,所述射频信号源采用体声波多模谐振结构,包括由下至上依次分布的体声波谐振腔体(310)、底电极(330)、压电薄膜(340)和顶电极(360);所述体声波谐振腔体(310)是一种体声波传播固体介质,其固体介质材料采用蓝宝石单晶、钇铝石榴石或熔融石英;所述底电极(330)和顶电极(360)均为金属电极,所述的底电极(330)和顶电极(360)与所述的射频天线(301)连接。
2.按权利要求1所述的非接触无源射频标签,其特征在于,所述射频信号源还包括位于体声波谐振腔体(310)和底电极(330)之间的声学耦合层(320);所述声学耦合层(320)是用于声学阻抗匹配的一层或多层声传播介质。
3.按权利要求1所述的非接触无源射频标签,其特征在于,所述射频信号源还包括位于压电薄膜(340)和顶电极(360)之间的绝缘层(350)。
4.按权利要求1所述的非接触无源射频标签,其特征在于,所述压电薄膜(340)是磁控溅射方法生成的压电薄膜,或者是化学微加工方法制作的压电单晶薄膜,或者是用溶胶法制作的压电薄膜。
5.按权利要求1所述的非接触无源射频标签,其特征在于,还包括一在射频天线(301)和射频信号源之间实现阻抗匹配的天线匹配电路(302);所述天线匹配电路(302)一端口与所述的底电极(330)和顶电极(360)连接,另一端口与所述的射频天线(301)相连接。
6.按权利要求1所述的非接触无源射频标签,其特征在于,所述的射频天线(301)采用鞭状天线或复合介质天线,或者采用与所述射频信号源集成在一起的微带天线,或者采用导电油墨制作的线状天线。
7.一种非接触无源射频标签阅读系统,包括阅读器(400)和阅读器天线(401),所述阅读器(400)是一种负责射频标签查询信号的发射和接收的雷达收发设备,其特征在于,所述的阅读器(400)包括语音提示单元、查询信号发生器、外部接口控制单元、射频收发开关、显示单元、信号检测解码电路以及控制上述各单元的嵌入式计算机单元;所述的阅读器(400)还包括连接在查询信号发生器与射频收发开关之间的功率放大器,以及连接在射频收发开关与信号检制上述各单元的嵌入式计算机单元;所述的阅读器(400)还包括连接在查询信号发生器与射频收发开关之间的功率放大器,以及连接在射频收发开关与信号检测解码电路之间的低噪声放大器;所述射频收发开关与所述阅读器天线(401)连接。
8.按权利要求7所述的非接触无源射频标签阅读系统,其特征在于,该阅读系统采用如下四种信号的一种或组合作为查询信号1)包含相应非接触无源射频标签中体声波多模谐振结构工作带宽高频信号频谱分量的短脉冲信号;2)包含相应非接触无源射频标签中体声波多模谐振结构谐振频率点或非谐振点的单一高频信号调制的有一定宽度的脉冲信号;3)包含相应非接触无源射频标签中体声波多模谐振结构工作带宽的扫频信号调制的有一定宽度的脉冲信号;4)包含相应非接触无源射频标签中体声波多模谐振结构谐振频率点或非谐振点的单一高频编码调制的信号。
全文摘要
本发明涉及一种非接触无源射频标签及其阅读系统,射频标签包括射频波信号源、天线匹配电路和射频天线,其特征在于,所述射频信号源采用体声波多模谐振结构,包括由下至上依次分布的体声波谐振腔体、声学耦合层、底电极、压电薄膜、绝缘层和顶电极;所述阅读系统包括阅读器和阅读器天线,所述阅读器是一种负责射频标签查询信号的发射和接收的雷达收发设备。本发明的优点是,能够直接对阅读器的查询信号进行应答,可以工作在300MHz~10GHz的工作范围,并且易于一体化集成。
文档编号G06K7/00GK101064014SQ20061007903
公开日2007年10月31日 申请日期2006年4月30日 优先权日2006年4月30日
发明者乔东海, 汤亮, 宫铭举, 田静 申请人:中国科学院声学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1