一种含分布式电源的配电网扩展规划方法与流程

文档序号:13734897阅读:211来源:国知局
技术领域本发明涉及配电网规划方法的技术领域,尤其是一种含分布式电源的配电网扩展规划方法。

背景技术:
随着经济的增长和工业技术的快速发展,社会用电量也在迅速增加,当现有网络不能满足所辖区内日益增长的负荷需求或者某些用户对供电可靠性提出更高要求时,就需要对系统进行相应的扩展规划。配电系统扩展规划的主要任务是根据规划期间网络中空间负荷预测的结果和现有网络的基本状况确定最优的系统建设方案,在满足负荷增长和安全可靠供应电能的前提下,使配电系统的建设和运行费用最小。传统的扩展方法通常是增加常规电源的购电量,即在满足未来负荷增长要求以及网络运行约束的前提下,寻找一组最优的决策变量(如变电站位置和容量、馈线的路径和尺寸等),使投资、运行、检修和网损等费用之和最小。分布式发电是一种新型的、很有发展前途的发电和能源综合利用方式,它具有节省投资、降低损耗、提高系统可靠性、效率高、能源种类多样等优点,同时其位置灵活、分散的特点极好地适应了分散电力需求和资源分布,它不但可用于电力调峰、建造备用电站或热电联供电站,又可实现边远地区独立发电,近年来得到电力工业领域的广泛关注。随着分布式发电的出现,规划人员在制定增容方案时有了更多选择,不仅仅是新建变电站和馈线,还可以将分布式发电纳入新的选择,以实现更为显著的效益。将分布式发电和电网相结合是节省投资成本、提高能源利用效率、增强电力系统可靠性和灵活性的重要方式。分布式发电持续迅猛地发展势头以及其在系统中不合理的大量渗透将对电网产生严重影响,从这个方面看,也要求电网规划人员必须对计及分布式发电的配电网规划进行前瞻性的研究。当大量的分布式电源出现在规划方案中时,大量的随机变化使得系统的复杂性大大地增加,传统的规划方法没有充足的能力解决包含分布式电源的规划问题,这主要是因为传统的规划方法都不同程度地将规划问题进行了简化,对于规划中客观存在的难以定量表达的不确定性因素缺乏较好的处理方法。主要表现在以下几个方面:(1)分布式电源的出现会使电力系统的负荷预测、规划和运行要面对比过去更大的不确定性。传统的配电网规划一般情况下是按照“负荷预测一电源规划一网络规划”的步骤进行的。在负荷预测的时候,不仅要知道负荷总量预测值,还应该清楚负荷分布和增长的规律。而大量的用户安装分布式电源为其提供电能,必然对整个电力系统的负荷增长模式产生影响,使得配电网规划人员更加难于准确预测负荷的增长情况,从而对配电网规划造成影响。(2)配电网规划一般考虑5~20年,在此年限内,通常假定电网负荷逐年增长,新的中压、低压节点不断出现,需要增建一个或更多的变电所。由于规划问题的动态属性同其维数密切相关(通常几千个节点需要同时考虑),若再出现许多发电机节点,使得在所有可能的网络结构中寻找到最优的网络布置方案(即可以使建造成本、维护成本和电能损耗最小的方案)就更加困难。(3)对于想在配电网安装分布式电源的用户或独立发电公司,他们与想维持系统现有的安全和质量水平不变的配电网公司之间存在一定的冲突。因为有大量分布式电源接入配电系统并网运行,这将对配电网系统结构产生深刻影响,对大型发电厂和输电的依赖逐步减少,原有的单向电源馈电潮流特性发生了变化,一系列包括电压调整、无功平衡、继电保护等在内的综合性问题将影响系统的运行。为了维护电网的安全、稳定的运行,必须使分布式电源能够接受调度。要实现这个目标,就需要通过电力电子设备对其进行必要的控制和调节,将分布式电源单元集成到现有的配电系统中,这不但需要改造现有的配电自动化系统,还要由被动到主动(电压调整、保护政策、干扰和接口问题)地管理电网。此外,分布式电源的机组类型及其所采用能源的多样化,使得如何在配电网中确定合理的电源结构、如何协调和有效地利用各类型的电源成为迫切需要解决的问题。分布式电源合理接入配电网可以有效改善配电网电压、减小系统有功网损、提高系统负荷率;反之,如果接入位置和容量不合理,则会影响配电网的安全稳定运行。如何将分布式电源配置与配电网规划相协调,对有效提高资源利用率、保障电网安全可靠运行具有重要意义。

技术实现要素:
本发明要解决上述现有技术的缺点,提供一种成本更小,更高效的含分布式电源的配电网扩展规划方法。本发明解决其技术问题采用的技术方案:这种含分布式电源的配电网扩展规划方法,具体步骤如下:(1)计算现有配电网能够消纳的分布式电源最大容量Pmin,以此作为衡量现有配电网最大承受能力的依据;(2)进行负荷预测,确定规划水平年当地的负荷量PL,根据资源分布和地理环境状况确定规划接入的分布式电源容量PDG;(3)源荷协调:比较负荷量PL与分布式电源容量PDG,若PDG>PL,说明分布式电源容量不能完全被当地负荷消纳,转步骤(4);若PDG<PL,说明分布式电源容量能够完全被当地负荷消纳,转步骤(5);(4)源网协调:比较分布式电源容量PDG与较小值Pmin,若PDG<Pmin,说明现有配电网能够承受接入的分布式电源,转步骤(6);若PDG>Pmin,说明分布式电源容量超过现有配电网承受能力,需要增加变电站容量或新建线路;(5)荷网协调:比较负荷量PL与较小值Pmin,若PL<Pmin,说明现有配电网能够满足负荷的增长,无需扩建;若PL>Pmin,说明负荷的增长超过现有配电网承受能力,需要增加变电站容量或新建线路;(6)根据自然资源分布和地理环境情况,确定允许接入分布式电源的候选位置,在满足电网安全运行的条件下,根据线路上的负荷需求和载流量大小确定分布式电源的接入位置和容量。本发明有益的效果是:本发明使电源与电网有效结合、优势互补、协调发展,在给定分布式电源规划接入容量的情况下,确定分布式电源具体的接入位置,节省电网扩展投资成本,以最小化分布式电源对电网的不利影响,最大化其效益,充分考虑到负荷预测量、分布式电源规划容量、变电站容量和线路载流能力之间的协调配合,在适应负荷增长的同时又能提高分布式电源的主动消纳能力,具有重要的实用价值。附图说明图1是含分布式电源的配电网扩展规划流程;图2是简化后的地理接线图;图3是分布式电源地理位置及候选接入节点。具体实施方式下面对本发明作进一步说明:这种含分布式电源的配电网扩展规划方法,具体步骤如下:(1)计算现有配电网能够消纳的分布式电源最大容量Pmin,以此作为衡量现有配电网最大承受能力的依据;(2)进行负荷预测,确定规划水平年当地的负荷量PL,根据资源分布和地理环境状况确定规划接入的分布式电源容量PDG;(3)源荷协调:比较负荷量PL与分布式电源容量PDG,若PDG>PL,说明分布式电源容量不能完全被当地负荷消纳,转步骤(4);若PDG<PL,说明分布式电源容量能够完全被当地负荷消纳,转步骤(5);(4)源网协调:比较分布式电源容量PDG与较小值Pmin,若PDG<Pmin,说明现有配电网能够承受接入的分布式电源,转步骤(6);若PDG>Pmin,说明分布式电源容量超过现有配电网承受能力,需要增加变电站容量或新建线路;(5)荷网协调:比较负荷量PL与较小值Pmin,若PL<Pmin,说明现有配电网能够满足负荷的增长,无需扩建;若PL>Pmin,说明负荷的增长超过现有配电网承受能力,需要增加变电站容量或新建线路;(6)根据自然资源分布和地理环境情况,确定允许接入分布式电源的候选位置,在满足电网安全运行的条件下,根据线路上的负荷需求和载流量大小确定分布式电源的接入位置和容量。分布式电源接入配电网后会影响电网节点电压、线路潮流、短路电流、可靠性等,影响程度与分布式电源的接入位置和容量有密切关系,因此合理的选择分布式电源接入的位置和容量十分重要。在给定分布式电源规划接入容量的情况下,确定分布式电源具体的接入位置。首先建立配电网扩展规划模型,具体描述如下:①经济性目标函数分布式电源接入配电网一般以经济成本最小为目标,其中主要包括新建线路造价、线路损耗费用以及停电损失费用三部分,因此目标函数为:minFcost=CL+Closs+Coutage=Σi=1nlCPlli+Σi=1nlCPEΔPliT+EENS·CPE---(1)]]>式中,CL为新建线路的造价;Closs为线路损耗费用;Coutage为停电损失费;nDG为接入配电网的分布式电源个数;CDGi为第i个分布式电源的投资成本(万元);CPl为单位长度线路的造价(元/km);li为第i条新建线路长度(km);CPE是单位电价(元/kW);ΔPli为第i条线路的有功损耗(kW);T为线路运行时间(h);EENS为缺供电量(kWh),用线路越限后的切负荷量表示。②安全性约束条件分布式电源接入后的配电网还需满足N-1准则,即网络中任一独立元件因发生故障而被切除后不应造成其他设备过载,因此接入方案结果必须满足N-1校验:m∈ΩN-1(2)其中,m表示模型的解;ΩN-1表示满足N-1校验的接入方案的集合,由电网在不同故障下的潮流平衡约束与设备限额约束组成。下面通过具体算例进行详细说明:以某一供电区域为例,本文给出在分布式电源规划接入量确定的情况下,其最佳接入位置的方案。简化后的地理接线图如图2所示,此区域中各变电站的电压等级和额定容量列于表1。表1变电站电压等级和额定容量当B、C、D变电站因发生故障导致全停时,通过联络开关将负荷转移到相邻线路,由相邻的A变电站继续对这部分负荷供电。分别计算三个变电站全停发生负荷转移后相应线路的负载率和N-1校验结果,结果如表2所示。表2负荷转移后线路的负载率和N-1校验结果由表2可知,当D变电站发生停电,负荷转移到三线后将超过A变电站容量,如果在三线接入分布式电源,则需要的分布式电源容量较大,投资成本高,从经济性角度考虑,比较合适的扩展方法是增加变电站容量;当B变电站和C变电站发生停电,负荷转移后,一线和二线负载率迅速增大,可以考虑在这两条线路上接入分布式电源以增大线路的热稳定裕度,缓解线路载流压力,同时提高分布式电源的消纳能力。冀北地区风力充裕,分布式风力发电发展迅速,在某些区域风电装机容量占当地用电负荷可达80%以上。A变电站所处位置位于乡镇,用电负荷相对较小,而分布式发电发展较快,因此未来几年将出现分布式电源增长率大于负荷增长率的情况,即规划接入的分布式电源容量大于当地负荷量,分布式电源反向向电网送电。根据历史统计资料和负荷预测数据,按照每年1%的负荷增长率,到2020年A变电站负荷将达到6.08MW,当地规划接入的分布式电源容量为15MW,但该区域网架最大能消纳的分布式电源容量仅为12.12MW,因此接入的分布式电源最大容量应为12.12MW。为了提高系统经济性和供电可靠性,需要对分布式电源的接入位置进行优化。若规划的分布式电源全部接入某一条线路,则有三种情形:仅接入一线、仅接入二线或仅接入三线。分别计算这三种情形下,对应线路的负载率,结果如表3所示:表3分布式电源接入后线路负载率由表3可知,一线和二线接入分布式电源后,线路负载率变化较大且超过额定负载,这是因为接入的分布式电源容量较大,远超过线路原负荷,潮流由负荷节点流向电网,导致线路过载;而三线负荷量较大,接入的分布式电源容量抵消了部分负荷量,线路上传输的有功功率和无功功率减小,使得负载率降低。如果分布式电源只接入一线或二线,线路将发生过载,导线将因过热而损坏,严重情况下将扩大事故范围,威胁整个系统的安全稳定运行。因此有必要对分布式电源的接入位置进行合理规划,在满足配电网安全稳定运行的条件下,保证当地增长负荷用电需求的同时提高分布式电源的消纳能力。根据以上分析,分布式电源较适宜接入一线或二线。考虑到当地资源分布和地理环境情况,分布式电源所处位置如图3所示,两条线路各有四个可接入分布式电源的候选节点。根据前文建立的分布式电源接入点优化的经济性模型,为了减小新建线路的造价,分布式电源一般选择就近接入线路。根据图3,候选的接入节点为一线上的节点2和二线上的节点6。本文只考虑一个接入量为12.12MW的分布式电源。假设分布式电源所处位置到节点2和节点6的距离相同,则新建线路造价CL也相同。因此只需比较两种接入方案下三条线路的总损耗和切负荷量,结果列于表4。表4分布式电源接入不同点的三条线路总损耗及切负荷量由表4可知,虽然两种分布式电源接入方案均满足N-1准则,但接入节点2时,节点2与A变电站之间的线路发生过载需要切除线路一线上的负荷,而接入节点6则不会出现线路过载无需切负荷,且线路损耗比接入节点2更小,因此从经济性和安全性角度综合考虑,分布式电源更适合接入二线上的节点6。根据上述分布式电源接入方案,在无需增加变电站容量或新建线路的方式下,能够满足增长负荷的用电需求,节省了投资成本,具有良好的经济效益,在实际工程中是一种可行的实施方案。从经济性和安全性的角度,提出了一种考虑网架最大消纳能力的分布式电源接入配电网方案。首先建立了一种基于潮流约束的分布式电源最大消纳能力计算模型,然后以分布式电源投资成本、新建线路造价、线路损耗费用以及停电损失费用的总和最小为目标,以节点电压、线路载流、功率平衡、N-1校验为约束条件建立了配电网接入配电网优化模型,进而得到分布式电源的最佳接入方案。以冀北电网某一供电区域为算例,结果表明在分布式电源规划容量确定的前提下,利用本方法能得到较合理的分布式电源接入位置,具有重要的实用价值。除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1