从倾斜成像数据和激光雷达数据创建3D城市模型的制作方法

文档序号:11178445阅读:537来源:国知局
从倾斜成像数据和激光雷达数据创建3D城市模型的制造方法与工艺

本发明涉及根据权利要求1所述的一种用于勘测(survey)城市景观以及创建所勘测的城市景观的3d城市模型的方法、根据权利要求7和14所述的一种用于勘测城市景观以创建3d城市模型的混合3d成像装置、以及根据权利要求13所述的一种计算机程序产品。



背景技术:

3d城市模型(即表示不同地形表面和基础设施的城市区域的数字模型)被用于大量不同的应用领域。在单一框架内,3d城市模型允许显示、管理和分析复杂的城市场景。通常,3d城市模型在各种细节层次(lod)和抽象概念以及多种分辨率下生成。例如,“citygml”是用于表示3d城市对象的公共信息模型,其定义了用于建立模型的五个lod:

·lod0:2.5d轮廓(footprint);

·lod1:由块模型表示的建筑物;

·lod2:具有标准的屋顶结构的建筑物模型;

·lod3:详细的(符合建筑学的)建筑物模型;以及

·lod4:补充有内部特征的lod3。

所述模型通常包括尤其用于创建数字地形模型(dtm)的gis数据、用于建筑物和基础设施元素的高级cad数据、以及用于提供建筑物组件的最高细节层次的bim数据。3d城市模型的应用是多种多样的,例如导航系统、城市规划和建筑、考古学、地理设计、应急管理、游戏或增强现实应用、智能交通系统、财产管理等。

3d城市模型(准备好gis的建筑物)和3d网格的自动创建有助于为智能城市应用提供最新的地理空间基础层,其中纹理化(texture)的且准备好gis的3d模型通常从立体图像和/或透视图生成。在第一步骤中,基于基于图像的点匹配,使用单个全局匹配算法(sgm)或类似技术来生成点云。使用专用软件,以例如基于诸如建筑物轮廓或来自多频谱照相机的数据的附加输入从这些点云中提取3d模型。例如,具有多频谱能力的莱卡rcd30允许生成归一化的差异植被指数图像(ndvi图像)以消除植被,并且因此提高点云内的对象的识别率,例如,通过几何或语义分类。

风景和城市区域的3d表示还可以通过从点云创建网格来实现,所述点云通过使用sgm或类似技术从立体图像提取而生成。在某些情况下,也可以从激光雷达数据中提取对象,然而在城市建模的情况下,诸如建筑物或基础设施的对象通常不是纹理化的并且具有低分辨率。因此,对于城市建模,然而,通常的做法是,这样的网格更可能从天底(nadir)成像和/或倾斜成像生成,因为图像数据提供更好的分辨率并因此提供更多细节。

从成像生成的点云,即使对于非常密集的交叠(密集匹配),通常也显示有效点提取不够好的问题区域。例如,具有低照明条件的遮挡(occlusion)和峡谷、呈现增加的噪声的阴影区域、非常不均匀的区域(诸如植被)以及非常均匀的表面(诸如水)就属于这种情况。在自动3d建筑物模型创建的情况下,这可能导致错误的建筑物识别、错误的地面高度识别和降低的准确性。在3d网格生成的情况下,诸如建筑物边缘上的熔毁、错误的地面高度以及网格内部的树的建模的问题可能发生。

来自激光雷达数据的点云通常没有这样的问题。然而,由于较低的点密度,网格具有非常少的细节,并且通常不是纹理化的。



技术实现要素:

因此,本发明的目标是改进3d城市模型和3d网格的创建。

本发明的目标是普遍地提高从用于创建3d城市模型的立体图像中的对象提取(尤其是建筑物提取)的效率和准确性,其中,该目标是改进从立体图像的点云提取的特定目标。

本发明的另一个目标是减少用于创建3d城市模型的立体成像方法中的点失配,尤其是由均匀表面、植被、遮挡或低照明条件引起的(例如由阴影区域引起的)用于创建3d城市模型的立体成像方法中的点失配。

本发明的一个特定目标是改进地面参考,尤其是改进基础设施高度参考和街道建模。

这些目标通过实现独立权利要求的特征来实现。在从属专利权利要求中描述了以替代或有利方式进一步开发本发明的特征。

本发明涉及一种用于勘测城市景观以及(尤其是根据航空测绘数据)创建所勘测的城市景观的3d城市模型的方法,所述方法包括:

·获取城市景观的区域的成像数据,所述成像数据适于生成3d信息,以及同时获取针对城市景观的区域的激光雷达数据;

·基于成像数据和激光雷达数据生成城市景观的区域的3d点云;以及

·基于3d点云生成具有自动建筑物模型提取的3d城市模型。

这里,同时获取成像数据和激光雷达数据意味着在相同的测量过程期间,尤其是从一个组合装置(即在勘测城市景观时一次性(inonego),而不一定完全时间同步),获取成像数据和激光雷达数据。

所述方法的特征在于,城市景观的区域的3d点云的生成是基于:

·关于3d信息的生成的成像数据的处理;

·基于数据分类的所述成像数据的质量评估,其中所述成像数据的至少一部分被分配给由以下标准中的至少一个定义的第一类:

○用于成像数据的定义的第一分类标准;以及

○在仅基于所述成像数据的第一辅助3d点云内的定义的第二分类标准,尤其是其中,所述辅助3d点云仅由满足所述第一分类标准的成像数据生成,

·第一类的成像数据和与由第一类的成像数据定义的城市景观的区域的部分(fraction)相对应的激光雷达数据的组合,由第一类的成像数据定义的城市景观的区域的部分在下文中称为临界区域,尤其是其中,所述成像数据由所述激光雷达数据替换或补充。

尤其是,第一分类标准和第二分类标准中的至少一个可以基于几何和语义分类中的至少一个,例如,诸如分类成具有阴影(例如,具有低信噪比(s/n))的区域、具有遮挡的区域、具有特定表面纹理的区域(例如,诸如非常均匀的区域,诸如水),以及具有植被的区域中的至少一个。此外,分类可以基于统计特性,例如,诸如噪声背景,尤其借助于s/n阈值,和/或基于用于立体图像处理方法中的点匹配的误差传播模型的阈值。

成像数据和激光雷达数据的组合可以基于以下各项中的至少一个:两个或更多个点云的3d网格,所述点云尤其通过诸如单个全局匹配(sgm)的点匹配算法生成;利用激光雷达数据替换成像数据;利用成像数据替换激光雷达数据;以及基于激光雷达数据生成的参考模型,尤其是包括数字地形模型、数字高程模型和数字表面模型中的至少一个的参考模型。

3d城市模型的生成可以基于用于从点云(尤其从由立体成像生成的点云)提取3d城市模型的通用分类算法,并且所述3d城市模型的提取和生成可以进一步基于gis数据(尤其是用于创建数字地形模型(dtm)的gis数据)、用于建筑物和基础设施元素的高级cad数据、bim数据以及多频谱信息(例如,诸如归一化差异植被指数图像(ndvi图像))中的至少一个。

因此,通过组合立体成像和激光雷达的两个世界中的最佳者,即通过立体成像的高分辨率信息和通过激光雷达的照明独立信息,强烈地改进了3d城市模型的生成,尤其是关于对象提取的效率和准确性。强烈减轻了关于自动3d建筑物模型创建的错误建筑物提取和错误地面高度识别的问题,并且尤其是对于3d网格生成,强烈防止了建筑物边缘上的熔毁、错误的地面高度或网格内部的树的建模。

在根据本发明的方法的特定实施方式中,3d点云的生成进一步基于激光雷达数据的质量评估,其中激光雷达数据的至少一部分被分配给由以下标准中的至少一个定义的第二类:

·在仅基于激光雷达数据的第二辅助3d点云内定义的第三分类标准,尤其是在仅基于临界区域的激光雷达数据的第二辅助3d点云内定义的第三分类标准;以及

·用于将仅基于成像数据的第一辅助3d点云与基于成像数据和激光雷达数据的组合的第三辅助点云进行比较的定义的第一比较标准,尤其是其中,成像数据和激光雷达数据仅仅是临界区域的数据,

其中,第一类的成像数据仅与临界区域的激光雷达数据组合,其中,所述临界区域与由第二类的激光雷达数据定义的城市景观的区域的部分交叠。

因此,在组合针对临界区域的成像数据和激光雷达数据之前,激光雷达数据的质量可以通过激光雷达数据的固有属性来评估,例如,诸如局部分辨率阈值、局部s/n阈值,和/或语义分类成特别好地适合于激光雷达观察的对象,例如,诸如平坦表面。另一方面,可能存在不太适合于激光雷达观察的区域或对象,例如,非常低的反射表面,并因此成像数据与激光雷达数据的组合将引入附加的噪声或系统误差。此外,第一比较标准可以提供质量控制,在某种意义上,与仅基于成像数据的3d点云相比,成像数据与激光雷达数据的组合实际上导致改进的3d点云生成。例如,这样的比较标准可以基于差分s/n阈值、分辨率阈值和/或基于系统误差传播的差分阈值。

通常,从激光雷达数据生成的点云具有低得多的点密度,并且网格具有少得多的细节,并且通常不是纹理化的。因此,在大多数情况下,对于3d城市建模,点云生成主要基于具有高得多的分辨率的立体成像,并且根据本发明,激光雷达数据仅针对例如其中用于经典成像的照明条件不利的临界区域被查阅。然而,根据3d城市模型的期望的细节层次(lod)和/或成像装置的类型,可能存在其中仅可能通过成像数据与激光雷达数据的组合来实现期望的lod的应用。另一方面,例如对于非常低的细节层次的快速查看分析,可能优选的是通过激光雷达数据替换尽可能多的成像数据,例如,因为激光雷达数据的处理可能需要较少的计算能力,尤其是因为激光雷达数据固有地表示点云。

因此,用于将成像数据与激光雷达数据组合的主驱动器也可以基于针对所勘测的城市景观的区域获取的激光雷达数据的总体质量,即不仅仅针对成像数据的临界区域。因此,在本发明的另一实施方式中,3d点云的生成还基于根据数据分类的激光雷达数据的质量评估,其中激光雷达数据的至少一部分被分配给由以下标准中的至少一个定义的第三类:

·在仅基于激光雷达数据的第二辅助3d点云内定义的第四分类标准;

·用于将仅基于成像数据的第一辅助3d点云与基于成像数据和激光雷达数据的组合的第三辅助点云进行比较的定义的第二比较标准,

其中,与由第三类的激光雷达数据定义的城市景观的区域的部分相对应的成像数据与第三类的激光雷达数据进行组合。

同样,激光雷达数据的质量可以通过激光雷达数据的固有属性来评估,例如,诸如局部分辨率阈值、局部s/n阈值,和/或语义分类成特别好地适合于激光雷达观察的对象,例如,诸如平坦表面。另一方面,可能存在不太适合于激光雷达观察的区域或对象,例如,非常低的反射表面,并因此成像数据与激光雷达数据的组合将引入附加的噪声或系统误差。类似于上述第一比较标准的情况,第二比较标准可以提供质量控制,在某种意义上,与仅基于成像数据的3d点云相比,成像数据与激光雷达数据的组合实际上导致改进的3d点云生成。例如,这样的比较标准可以基于差分s/n阈值、分辨率阈值和/或基于系统误差传播的差分阈值。

所述方法的特定实施方式的特征在于,第一分类标准至第四分类标准中的至少一个基于语义分类,尤其是其中,所述语义分类包括语义分类器,该语义分类器定义阴影、具有遮挡的区域、具有植被的区域以及具有均匀表面(尤其是水表面)的区域中的至少一个。对于这些区域,甚至较低分辨率的激光雷达数据也可以提供对点匹配算法的强力支持,例如,通过提供数字表面模型和照明独立信息。语义分类可以包括任何通用语义分类算法,例如,基于几何3d基元、单点识别和边缘跟踪算法的识别、基于概率算法、基础设施模型和用于不同表面纹理的统计模型的对象提取。

在另一实施方式中,第一比较标准至第二比较标准中的至少一个基于信噪比阈值、分辨率阈值和系统误差阈值(尤其是基于用于点失配的误差传播模型的系统误差阈值)中的至少一个。所述阈值可以基于3d城市景观的期望的细节层次,或者它们可以被特别调整用于有效的处理。

由于激光雷达数据通常用作支持数据,例如,针对在基于立体成像生成3d点云时的临界区域,激光雷达数据的获取可以被特别调整为仅针对城市景观的这些临界区域进行,例如,以减少对数据存储和处理能力的要求。因此,在另一实施方式中,基于所勘测的城市景观的先验模型和成像数据的分析中的至少一个,尤其成像数据的质量评估,获取针对所勘测的城市景观内的区域的选定区域(尤其是临界区域)的激光雷达数据。对于城市建模的许多应用,城市的第一估计或第一3d模型在勘测之前可以是可用的。因此,用于获取激光雷达数据的扫描模式可以被特别调整为仅仅覆盖临界区域,但是例如,具有高分辨率的临界区域,尤其是使用帕尔默(palmer)扫描激光雷达装置或具有快速扫描镜的激光雷达装置。此外,所述选择还可以基于成像数据的实时分析和信息,例如,通过成像数据的2d分类或用于生成3d点云的成像数据的质量评估。

描述了根据本发明的方法的另一实施方式,其中用于3d城市模型的3d点云的生成基于摄影测量方法,尤其是半全局匹配算法,其中摄影测量方法适于处理天底图像和/或倾斜图像(尤其是具有30-45度之间的倾斜角的天底图像和/或倾斜图像)、多频谱图像(尤其是rgb和/或rgbn图像)、归一化的差异植被指数图像(ndvi图像)、建筑物轮廓以及包括数字地形模型、数字高程模型和数字表面模型中的至少一个的参考模型中的至少一个。

这里,多频谱图像信息和ndvi图像可以用于具有特定波长和偏振相关反射性质(诸如例如用于植被和水的典型反射信号)的对象的语义区分。建筑物轮廓和参考模型可以尤其提供地面参考,并从而改进基础设施建模。尤其是,可以基于激光雷达数据自动地生成建筑物轮廓和参考模型。

描述另一实施方式,其中通过一个单个混合3d成像装置,尤其是包括尤其具有多频谱波段的天底成像照相机(尤其是恰好一个天底成像照相机)、倾斜成像照相机(尤其是rgb或rgbn照相机,尤其是具有倾斜角度为30-45度的恰好四个倾斜成像照相机)以及激光雷达装置(尤其是恰好一个激光雷达装置)的混合3d成像装置,获取成像数据和激光雷达数据。

因此,在成像数据和激光雷达数据是在相同的勘测测量期间(即一次性地)获取的意义上,该设置提供了成像数据和激光雷达数据二者的有效且同时获取,并且其中成像数据可以容易地在立体方法内进行处理,例如通过半全局匹配,用于创建用于3d城市模型的生成的3d点云。尤其是,这种混合3d成像装置可以安装在一个标准飞机孔中,例如,使用用于稳定用于照相机和激光雷达装置的公共惯性系统的单个稳定系统,并且由单个操作者从单个控制界面进行控制。操作可以由专用的任务规划软件进一步支持,考虑到可勘测的城市景观并提出用于操作激光雷达和成像装置以优化数据获取的建议。

本发明还涉及一种用于勘测城市景观的混合3d成像装置,尤其是用于创建所勘测的城市景观的3d城市模型的空中混合3d成像装置,所述混合3d成像装置包括:

·成像装置,该成像装置用于生成针对城市景观的区域的成像数据,所述成像数据适于生成3d信息,尤其是其中,所述区域从至少两个不同的图像视角进行成像;

·激光雷达装置,该激光雷达装置用于在生成成像数据的同时生成针对城市景观的区域的激光雷达数据;以及

·控制和处理单元,该控制和处理单元适于:

○控制所述成像装置和所述激光雷达装置;

○基于所述成像数据和所述激光雷达数据生成针对所述城市景观的所述区域的3d点云;

○基于所述3d点云生成具有自动建筑物模型提取的3d城市模型。

这里,同时获取成像数据和激光雷达数据意味着在相同的测量过程期间(即在勘测城市景观时一次性地(而不一定完全时间同步))获取成像数据和激光雷达数据。

所述系统的特征在于,所述控制和处理单元适于利用以下步骤生成3d点云:

·处理关于3d信息的生成的成像数据;

·基于数据分类评估所述成像数据的质量,其中所述成像数据的至少一部分被分配给由以下标准中的至少一个定义的第一类:

○用于成像数据的定义的第一分类标准;以及

○在仅基于所述成像数据的第一辅助3d点云内的定义的第二分类标准,尤其是其中,所述辅助3d点云仅由满足所述第一分类标准的成像数据生成,

·将第一类的成像数据和与由第一类的成像数据定义的城市景观的区域的部分(在下文中称为临界区域)相对应的激光雷达数据进行组合,尤其是其中,所述成像数据由所述激光雷达数据替换或补充。

在根据本发明的混合3d成像装置的特定实施方式中,所述控制和处理单元适于利用激光雷达数据的质量评估来生成3d点云,其中激光雷达数据的至少一部分被分配给由以下标准中的至少一个定义的第二类:

·在仅基于激光雷达数据的第二辅助3d点云内的定义的第三分类标准,尤其是在仅基于临界区域的激光雷达数据的第二辅助3d点云内的定义的第三分类标准;以及

·用于将仅基于成像数据的第一辅助3d点云与基于成像数据与激光雷达数据的组合的第三辅助点云进行比较的定义的第一比较标准,尤其是其中,成像数据和激光雷达数据仅仅是临界区域的数据,

其中,第一类的成像数据仅与临界区域的激光雷达数据组合,其中,所述临界区域与由第二类的激光雷达数据定义的城市景观的区域的部分交叠。

在混合3d成像装置的另一实施方式中,所述控制和处理单元适于基于数据分类利用激光雷达数据的质量评估来生成3d点云,其中激光雷达数据的至少一部分被分配给由以下标准中的至少一个定义的第三类:

·在仅基于激光雷达数据的第二辅助3d点云内定义的第四分类标准;

·用于将仅基于成像数据的第一辅助3d点云与基于成像数据和激光雷达数据的组合的第三辅助点云进行比较的定义的第二比较标准,

其中,由第三类的激光雷达数据定义的城市景观的区域的部分相对应的成像数据与第三类的激光雷达数据进行组合。

所述混合3d成像装置的特定实施方式的特征在于,第一分类标准至第四分类标准中的至少一个基于语义分类,尤其是其中,所述语义分类包括语义分类器,该语义分类器定义阴影、具有遮挡的区域、具有植被的区域以及具有均匀表面(尤其是水表面)的区域中的至少一个。

在混合3d成像装置的另一实施方式中,第一至第二比较标准中的至少一个基于信噪比阈值、分辨率阈值和系统误差阈值(尤其是基于点失配的误差传播模型的系统误差阈值)中的至少一个。

在另一实施方式中,混合3d成像装置适于基于所勘测的城市景观的先验模型和成像数据的分析(尤其是成像数据的质量评估)中的至少一个,获取针对所勘测的城市景观内的区域的选定区域(特别是临界区域)的激光雷达数据。

在混合3d成像装置的特定实施方式中,所述控制和处理单元适于利用摄影测量方法(尤其是半全局匹配算法)生成用于3d城市模型的3d点云,并且其中所述控制和处理单元适于处理天底图像和/或倾斜图像(尤其是具有30-45度之间的倾斜角的天底图像和/或倾斜图像)、多频谱图像(尤其是rgb和/或rgbn图像)、归一化的差异植被指数图像(ndvi图像)、建筑物轮廓以及包括数字地形模型、数字高程模型和数字表面模型中的至少一个的参考模型中的至少一个。

在另一实施方式中,混合3d成像装置被构建为一个单个混合3d成像装置,尤其是包括天底成像照相机(尤其是恰好一个天底成像照相机,所述天底成像照相机尤其具有多频谱波段)、倾斜成像照相机(尤其是rgb或rgbn照相机,尤其是具有倾斜角度为30-45度的恰好四个倾斜成像照相机)以及激光雷达装置(尤其是恰好一个激光雷达装置或两个激光雷达装置)的混合成像装置。

本发明还涉及一种用于根据本发明的方法生成所勘测的城市景观的3d城市模型的计算机程序产品,所述计算机程序产品存储在控制和处理单元上,所述控制和处理单元尤其是混合3d成像装置的一部分,并且所述计算机程序产品包括被配置用于以下步骤的程序代码:

·自动地与包括所勘测的城市景观的成像数据和激光雷达数据的数据库通信;

·基于成像数据和激光雷达数据生成城市景观的区域的3d点云,其中所述3d

点云的生成进一步基于:

○基于数据分类的所述成像数据的质量评估,其中所述成像数据的至少一部分被分配给由以下标准中的至少一个定义的第一类:

○用于成像数据的定义的第一分类标准;以及

○在仅基于所述成像数据的第一辅助3d点云内的定义的第二分类标准,尤其是其中,所述辅助3d点云仅由满足所述第一分类标准的成像数据生成,

·将第一类的成像数据和与由第一类的成像数据定义的城市景观的区域的部分(在下文中称为临界区域)相对应的激光雷达数据进行组合,尤其是其中,所述成像数据由所述激光雷达数据替换或补充,

尤其是其中,使得输出可用于根据本发明的混合3d成像装置。

本发明还涉及一种用于城市景观的空中勘测的混合3d成像装置,该混合3d成像装置包括支持天底成像照相机(尤其是具有多频谱波段的天底成像照相机)、倾斜成像照相机(尤其是rgb或rgbn照相机,尤其是具有30-45度的倾斜角度的倾斜成像照相机)以及激光雷达装置的单个传感器平台,其中天底成像照相机和倾斜成像照相机布置在激光雷达装置周围的周边区域上的传感器平台上。

在混合3d成像装置的特定实施方式中,所述传感器平台支持天底成像相机(尤其是具有多频谱波段的天底成像相机,尤其是恰好一个天底照相机)、相对于传感器平台具有30-45度的倾斜角的四个倾斜成像照相机(尤其是rgb或rgbn照相机,尤其是恰好四个倾斜照相机)以及激光雷达装置(尤其是适于帕尔默激光雷达扫描的激光雷达装置,尤其是恰好一个激光雷达装置或恰好两个激光雷达装置),其中,所述四个倾斜成像照相机都具有彼此不同的观察方向,并且其中所述四个倾斜成像相机和所述天底照相机在周边围绕所述激光雷达装置放置,尤其是以大致均匀的角度间隔且距离中心具有共同距离地在周边围绕所述激光雷达装置放置。

在成像数据和激光雷达数据是在相同的勘测测量期间(即一次性地)获取的意义上,该装置设置提供了成像数据和激光雷达数据二者的有效且同时获取,并且其中成像数据可以容易地在立体方法内进行处理,例如通过半全局匹配,用于创建用于3d城市模型的生成的3d点云。尤其是,这种混合3d成像装置可以安装在一个标准飞机孔中,例如,使用用于稳定用于照相机和激光雷达装置的公共惯性系统的单个稳定系统,并且由单个操作者从单个控制界面进行控制。操作可以由专用的任务规划软件进一步支持,考虑到可勘测的城市景观并提出用于操作激光雷达和成像装置以优化数据获取的建议。

根据获取区域,各种传感器平台配置可以能够最好地支持模型的简化生成。因此,混合传感器设置可以根据应用和要勘测的区域而改变。

附图说明

根据本发明的装置、方法和设置以及计算机程序仅通过示例的方式参照附图中示意性示出的工作示例在下面更详细地描述或说明。具体地,

图1a、图1b:用于基于立体成像数据(a)并结合附加建筑物轮廓数据(b)创建3d城市模型的通用立体图像处理步骤;

图2:从立体成像数据生成的通用3d点云,指示点匹配算法的点失配和其它临界区域;

图3:根据本发明的混合3d成像装置的示例性实施方式。

附图的图不应被认为是按比例绘制的。在适当的情况下,相同的附图标记用于相同的特征或具有类似功能的特征。

具体实施方式

图1示出了用于基于立体成像数据并基于立体成像数据与附加模型数据(这里是建筑物轮廓数据)的组合来创建3d城市模型(这里是lod2中的3d城市模型)的通用立体图像处理步骤。

图1a例示出了用于利用点匹配算法4(例如,诸如单个全局匹配(sgm)算法或类似技术)根据从立体成像数据3生成的3d点云2创建3d城市模型1的一般过程。基于3d点云2,专用提取模型5用于提取给定细节层次(lod)的3d城市模型1。通常,这样的提取模型5基于对象分类算法,尤其是基于几何和语义分类,并且通常利用附加输入,诸如建筑物轮廓、用于创建数字地形模型(dtm)的gis数据、用于建筑物和基础设施元素的高级cad数据,以及用于提供建筑物组件的最高细节层次的bim数据。3d城市模型还可以通过从点云创建网格来生成,所述点云通过使用sgm或类似技术从立体图像提取而生成。在某些情况下,也可以从激光雷达数据中提取对象,然而在城市建模的情况下,诸如建筑物或基础设施的对象通常不是纹理化的并且具有低分辨率。因此,对于城市建模,然而,通常的做法是,这样的网格更可能从天底成像和/或倾斜成像生成,因为图像数据提供更好的分辨率并因此提供更多细节。

图1b例示出了利用点匹配算法4根据从立体成像数据3生成的3d点云2的3d城市模型1'的通用创建,其中附加建筑物轮廓数据6用于提取模型5'以生成3d城市模型。建筑物轮廓和/或诸如数字表面模型的参考模型可以尤其提供地面参考,并从而改进基础设施建模。尤其是,可以基于激光雷达数据自动地生成建筑物轮廓和参考模型。

图2示出了例如借助于诸如半全局匹配算法的点匹配算法4从立体成像数据3生成的通用3d点云2。即使对于密集匹配,即对于非常密集的图像交叠,在点云2内也存在点提取效率基本上比点云2的其余部分差的(低于平均值)的区域。例如具有低照明条件的遮挡和峡谷7、呈现增加的噪声的阴影区域8、诸如植被9的非常不均匀的区域(例如因为需要复杂的建模)、以及非常均匀的表面10(例如由于缺乏用于点匹配的定义的参考结构)就属于这种情况。在自动3d建筑物模型创建的情况下,这可能导致错误的建筑物识别、错误的地面高度识别和降低的准确性。在3d网格生成的情况下,诸如建筑物边缘上的熔毁、错误的地面高度以及网格内部的树的建模的问题可能发生。

来自激光雷达数据的点云通常没有这样的问题。然而,由于较低的点密度,网格具有非常少的细节,并且通常不是纹理化的。无论如何,激光雷达数据不依赖于照明条件,并提供第一、第二和第三回程(return)以透视植被。因此,根据本发明,通用(立体)成像数据与激光雷达数据组合,尤其是用于补偿和解决通用立体图像处理(其中点匹配和点提取的精度和效率低于平均水平)的特定问题区域。

根据本发明,激光雷达数据例如用于在低照明区域和遮挡区域中提供地面参考,以及用于改善植被区域和均匀表面区域(例如水)的点匹配。

尤其是,根据本发明,在获取用于立体成像的成像数据的同时获取激光雷达数据。这里,数据的同时获取意味着在相同的测量过程期间(即在勘测城市景观时一次性地)获取成像数据和激光雷达数据。因此,通过组合立体成像和激光雷达的两个世界中的最佳者,即通过立体成像的高分辨率信息和通过激光雷达的照明独立信息,强烈地改进了3d城市模型的生成。

图3示出了根据本发明的用于勘测城市景观并且用于获取用于根据本发明的方法的数据的混合3d成像装置11,即,在同一传感器中组合倾斜成像仪与激光雷达装置,用于同时获取两种数据。这里,混合3d成像装置11可以是可以安装在一个标准飞机孔中的机载传感器装置,其中混合3d成像装置11包括单个稳定平台12,并且其成像和激光雷达子系统可以由一个操作者从单个控制界面进行控制。

这里,混合3d成像装置11包括一个单个传感器平台13,其支持恰好一个天底照相机14(尤其是具有多频谱波段的恰好一个天底照相机14)、恰好四个倾斜rgb或rgbn照相机15(尤其是具有30-45度的倾斜角的恰好四个倾斜rgb或rgbn照相机15)、以及恰好一个激光雷达装置16(尤其是其中,所述激光雷达装置适于提供帕尔默(palmer)扫描)。所述四个倾斜成像照相机15都具有彼此不同的观察方向,并且所述四个倾斜成像照相机15和天底照相机14在周边围绕所述激光雷达装置16布置,尤其是以大致均匀的角度间隔且距离中心具有共同距离。

根据获取区域,各种传感器平台配置可以能够最好地支持模型的简化生成。因此,混合传感器设置可以根据应用和要勘测的区域而改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1