阵面电源纹波对有源相控阵天线电性能影响的快速预测方法与流程

文档序号:15272417发布日期:2018-08-28 22:35阅读:237来源:国知局

本发明属于微波天线领域,具体是阵面电源纹波对有源相控阵天线电性能影响的快速预测方法,用于阵面电源纹波影响下的有源相控阵天线电性能的快速预测。



背景技术:

随着有源雷达技术的快速发展,有源相控阵天线的研制如火如荼,相较于传统的大功率、高电压发射机电源,在有源相控阵雷达系统中转变为大电流的低电压电源向t/r组件供电。由于相控阵雷达对发射机电源体积、重量的要求严格,需要提高电源的集成度,所以一般采用体积小、重量轻、效率高、功耗小的高密度阵面电源来为t/r组件供电。与线性电源体积大、重量大、效率低相比,开关电源的调整管工作在饱和和截止状态,采用高频变压器替代了笨重的工频变压器,因此具有体积小、重量轻、效率高、功耗小、稳压范围广、滤波效率高、高频化、输入抗干扰性好、输出电压稳定等优点,这使其成为相控阵雷达阵面供电电源的首选目标。

虽然开关电源具有以上的优点,但是开关电源的输出纹波电压大,且纹波系数是衡量开关电源性能的的关键指标。对于有源相控阵雷达,阵面供电电源纹波将导致t/r模块输出的激励电流产生幅度差与相位差,进而影响天线的电性能,如增益降低,波束指向不精准等等。因此,阵面电源性能的好坏影响着有源相控阵雷达天线的性能。为保证有源相控阵雷达的性能,预测阵面电源纹波对天线电性能的影响及减小阵面电源纹波是很有必要的。



技术实现要素:

针对上述问题,本发明提供了阵面电源纹波对有源相控阵天线电性能影响的快速预测方法,本发明将以一种典型的全桥式阵面电源作为研究对象,基于全桥式阵面电源纹波系数的路耦合模型、微波放大器件调相灵敏度定义及有源相控阵天线基本电磁分析,分析建立了有源相控阵雷达阵面电源中电路器件参数与天线电性能的数学模型,从而实现快速、准确地预测不同电路器件参数下的阵面电源纹波对天线电性能的影响,同时,可通过天线电性能对阵面电源提出电路器件参数选取要求,从而快速衡量有源相控阵雷达天线的性能是否满足要求,为高性能有源相控阵天线设计提供理论指导。

实现本发明目的的技术解决方案是,阵面电源纹波对有源相控阵天线电性能影响的快速预测方法,该方法包括下述步骤:

(1)确定一种采用全桥式电路拓扑结构的有源相控阵天线阵面电源;

(2)确定阵面电源中电路器件参数;

(3)根据阵面电源中电路器件参数,基于全桥式阵面电源纹波系数的路耦合模型,计算阵面电源纹波系数γ;

(4)确定t/r模块中微波放大器件的调相灵敏度参数kφ(度)及t/r模块理想激励电流相位

(5)根据阵面电源纹波系数γ、理想激励电流相位及调相灵敏度参数kφ(度),计算阵面电源纹波影响下的激励电流相位

(6)确定t/r模块理想激励电流幅度in;

(7)根据阵面电源纹波系数及理想激励电流幅度in,计算阵面电源纹波影响下的激励电流幅度i′n(γ);

(8)根据有源相控阵天线基本电磁分析,确定天线的理想方向图函数e(θ,φ);

(9)基于步骤(5)与步骤(7)分别得到的激励电流相位激励电流幅度i′n(γ)及步骤(8)得到的天线的理想方向图函数e(θ,φ),确定阵面电源纹波下天线的方向图函数e'(θ,φ),建立阵面电源纹波影响下有源相控阵天线电性能与阵面电源电路器件参数的数学模型,可快速计算阵面电源纹波影响下的有源相控阵天线电性能。

所述步骤(1)中,确定有源相控阵天线阵面电源电路拓扑结构为全桥式电路拓扑结构。

所述步骤(2)中,阵面电源中电路器件参数包括变压器初级线圈绕组n1上的输入直流电压vi、并联的四个开关管q1、q2、q3、q4,并联在四个开关管q1、q2、q3、q4上的四个箝位二极管d1、d2、d3、d4,还包括变压器次级线圈绕组n21、n22上的两个整流二极管dr1、dr2,以及并联的输出滤波电感l、输出滤波电容c、等效串联电阻esr和负载电阻r;全桥式阵面电源电路中的电路器件参数,包括开关管的开关频率fs。

所述步骤(3)中,根据阵面电源中电路器件参数,基于全桥式阵面电源纹波系数的路耦合模型γ=f(l,c,esr),计算阵面电源纹波系数γ;

一个纹波周期tγ内,纹波系数表达式有四种可能出现情况,分别如下:

当0<d≤0.25,时;当0.25<d<0.5,时;总纹波系数表达式为:

当0<d<0.25,时;总纹波系数表达式为:

当0<d<0.25,时;当0.25≤d<0.5,时;当0.5≤d<1,时;总纹波系数表达式为:

当0.25<d<0.5,时;当0.5≤d<1,时;总纹波系数表达式为:

所述步骤(5)中,根据阵面电源纹波系数γ、理想激励电流相位及调相灵敏度参数kφ(度),计算纹波影响下的激励电流相位

所述步骤(7)中,根据阵面电源纹波系数γ及理想激励电流幅度in,计算纹波影响下的激励电流幅度i′n(γ):

i′n(γ)=in+δin(γ)

所述步骤(8)中,根据有源相控阵天线基本电磁分析,确定天线的理想方向图函数e(θ,φ):

所述步骤(9)中,基于纹波影响下激励电流的相位幅度i′n(γ)及天线的理想方向图函数e(θ,φ),确定阵面电源纹波下天线的方向图函数e'(θ,φ):

本发明与现有技术相比,具有以下特点:

1.本发明针对阵面电源纹波影响下的有源相控阵天线,基于全桥式阵面电源纹波系数路耦合模型确定了阵面电源纹波系数,分析了纹波影响下阵元激励电流的幅度和相位,结合有源相控阵天线电磁理论,建立了纹波影响下阵面电源电路器件参数与有源相控阵天线电性能的数学模型,实现了电路器件参数变化下不同阵面电源纹波对有源相控阵天线电性能影响的快速预测。

2.本发明建立了阵面电源纹波影响下电路器件参数与有源相控阵天线电性能的数学模型,通过该模型,可定量分析阵面电源电路器件参数与天线电性能之间的影响关系。能够在天线电性能指标要求下,对阵面电源电路器件参数进行设计和优化,为高性能有源相控阵天线设计提供理论指导。

附图说明

图1是本发明阵面电源纹波对有源相控阵天线电性能影响的快速预测方法的流程图;

图2是全桥式阵面电源的电路拓扑图;

图3是有源相控阵天线空间坐标关系图;

图4是矩形栅格平面阵的单元排列示意图;

图5是目标的空间几何关系图;

图6是φ=0°时有源相控阵天线电场方向图(db);

图7是φ=90°时有源相控阵天线电场方向图(db)。

具体实施方式

下面结合附图和实施例对本发明作进一步的详细说明,但并不作为对本发明做任何限制的依据。

如图1所示,阵面电源纹波对有源相控阵天线电性能影响的快速预测方法的流程图,方法具体步骤如下:

步骤1,确定有源相控阵天线阵面电源电路拓扑结构为全桥式电路拓扑结构

确定全桥式阵面电源电路拓扑图,参考图2所示。

步骤2,确定阵面电源中电路器件参数

图2中,确定阵面电源中电路器件参数,包括变压器初级线圈绕组n1上的输入直流电压vi,并联的四个开关管q1、q2、q3、q4,并联在四个开关管q1、q2、q3、q4上的四个箝位二极管d1、d2、d3、d4,还包括变压器次级线圈绕组n21、n22上的两个整流二极管dr1、dr2,以及并联的输出滤波电感l、输出滤波电容c、等效串联电阻esr和负载电阻r;全桥式阵面电源电路中的电路器件参数,包括开关管的开关频率fs,输出滤波电感l,输出滤波电容c,等效串联电阻esr。

步骤3,计算阵面电源纹波系数γ

根据阵面电源中电路器件参数,基于全桥式阵面电源纹波系数的路耦合模型γ=f(l,c,esr),计算阵面电源纹波系数γ:

一个纹波周期tγ内,纹波系数表达式有四种可能出现情况,分别如下:

当0<d≤0.25,时;当0.25<d<0.5,时;总纹波系数表达式为:

当0<d<0.25,时;总纹波系数表达式为:

当0<d<0.25,时;当0.25≤d<0.5,时;当0.5≤d<1,时;总纹波系数表达式为:

当0.25<d<0.5,时;当0.5≤d<1,时;总纹波系数表达式为:

其中,δt为滞后时间;δ为输出滤波电容损耗角;

xc为输出滤波电容容抗;d为阵面电源占空比;l为输出滤波电感值;c为输出滤波电容值;fs为阵面电源开关频率;esr为输出滤波电容等效串联电阻值。

步骤4,确定t/r模块中微波放大器件的调相灵敏度参数及t/r模块理想激励电流相位

确定t/r模块中微波器件调相灵敏度kφ(度)的参数值及假设t/r模块输出的理想激励电流相位值为

步骤5,计算纹波影响下的激励电流相位

根据阵面电源纹波系数γ、理想激励电流相位及调相灵敏度参数kφ(度),计算纹波影响下的激励电流相位

其中,为阵面电源纹波影响下的激励电流相位差。

步骤6,确定t/r模块理想激励电流幅度

假设t/r模块输出的理想激励电流幅度值为in。

步骤7,计算纹波影响下的激励电流幅度i′n(γ)

根据阵面电源纹波系数γ及理想激励电流幅度in,计算纹波影响下的激励电流幅度i′n(γ):

i′n(γ)=in+δin(γ)

其中,δin(γ)为阵面电源纹波影响下的激励电流幅度差。

步骤8,确定天线的理想方向图函数e(θ,φ)

参考图3,根据有源相控阵天线基本电磁分析理论,确定天线的理想方向图函数e(θ,φ):

其中,φn=exp(jkrn·r0)为天线单元空间相位因子;rn为坐标原点到天线单元相位中心的矢径;r0为观察方向p(θ,φ)的单位矢量;fn(θ,φ)为天线单元阵中方向图;in、分别为激励电流的幅度和相位。

步骤9,确定阵面电源纹波下天线的方向图函数e'(θ,φ)

基于纹波影响下激励电流的相位幅度i′n(γ)及天线的理想方向图函数e(θ,φ),确定阵面电源纹波下天线的方向图函数e'(θ,φ):

其中,为阵面电源纹波下的激励电流相位;i′n(γ)为阵面电源纹波下的激励电流幅度;γ为阵面电源纹波系数,γ=f(l,c,esr)。

本发明的优点可通过以下实例进一步说明:

设置:阵面电源中电路器件参数,包括输出滤波电感1μh、输出滤波电容100μf、等效串联电阻esr为10mω。同时,全桥式阵面电源电路中开关频率fs为100khz,占空比d为0.1。有源相控阵天线为10×10面阵,m=10,n=10,单元理想激励电流为imn=1ej0,天线中心频率f=9.375ghz,t/r模块中微波放大器件的调相灵敏度kφ为1.16°,单元间距

根据计算得到:t=1×10-5s。

根据c=100μf、fs=100khz、esr=10mω、t=1×10-5s,计算得到:

由于,d=0.1,满足

因此,阵面电源纹波系数计算公式为:

将c=100μf,l=1μh,esr=10mω,d=0.1,fs=100khz,代入上式,计算可得:γ=4.92%。

矩阵栅格平面阵(参考图4)的阵面电源纹波下天线场强方向图函数为:

式中,参照图5,cosαx=sinθcosφ,cosαy=sinθsinφ;为天线阵元阵中方向图;为考虑天线阵面电源纹波的第(m,n)个单元的馈电电流相位;i′mn(γ)为考虑天线阵面电源纹波的第(m,n)个单元的馈电电流幅度;

根据γ=4.92%,kφ=1.16°,计算得到:

根据i′mn(γ)=imn+δimn(γ),imn=1,γ=4.92%,计算得到:imn'(γ)=0.9508。

通过matlab编程计算得到:10×10面阵在理想情况下与阵面电源纹波下的有源相控阵天线电性能,如下表1所示。此外,10×10面阵在理想情况下与阵面电源纹波下有源相控阵天线电场强度归一化方向图(db)参考图6图7所示。

表1理想电性能与纹波影响下的天线电性能对比

通过本次实例可以看出,本发明提出的一种阵面电源纹波对有源相控阵天线电性能影响的预测方法,可快速、准确地计算阵面电源纹波下有源相控阵天线的电性能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1