一种基于置信规则库推理的矿热炉工况预测方法与流程

文档序号:17541071发布日期:2019-04-29 14:36阅读:250来源:国知局
一种基于置信规则库推理的矿热炉工况预测方法与流程

本发明涉及矿热炉工况预测技术领域,特别是涉及一种基于置信规则库推理的矿热炉工况预测方法。



背景技术:

矿热炉的整个熔炼过程是加料、欠烧、主熔、排气和过烧五种工况之间不断循环的过程。在熔炼初始阶段加料后,物料会积聚在熔池上方,此时处于欠烧工况,需要不断加大输入电能,使物料快速融化;由于大部分物料在此阶段熔融,故将该过程称为主熔工况;在熔炼过程中原料受热融化会释放二氧化碳等气体,气体在熔池内部积聚会促进溶液涌动,危及工人和设备安全,因此有必要定期进行排气操作即排气工况;随着物料熔化,料层变薄,电极将裸露到料层外部会导致热量流失此时处于过烧工况;出现过烧工况后,为了防止大量热能流失,需要进行加料操作即加料工况;因此如何精确高效的在线预测出矿热炉的未来时刻的工况对矿热炉的生产过程控制和节能减排至关重要也为下一步要预测矿热炉的功率需量做铺垫。

目前,我国有关矿热炉冶炼技术工艺粗糙,其控制效果主要依赖于工人的操作水平。由于个人能力的差异和夜间长时间的上班使得工人难以保持高度注意力,这就使得工人可能无法及时准确地判断出工况的切换,从而导致生产过程中断,严重时不仅会导致生产事故的发生也会造成巨大的经济损失。



技术实现要素:

本发明所要解决的技术问题是提供一种基于置信规则库推理的矿热炉工况预测方法,能够准确高效的预测下一时刻的工况,并保证熔炼过程安全与生产效益。

本发明解决其技术问题所采用的技术方案是:提供一种基于置信规则库推理的矿热炉工况预测方法,包括以下步骤:

(1)选取矿热炉的三相熔炼电流、电流均值变化率、各阶段进行的时间和各阶段中不同工况发生的时间作为置信规则推理的特征向量;

(2)采集现场整个熔炼过程的生产数据,并划分训练集与测试集;

(3)采取滑差时间窗对t-5时刻至t时刻的三相熔炼电流求取平均值得到通过电路均值变化率δi1(t)、δi2(t)和δi3(t)来预测t+1时刻的矿热炉工况s(t+1);

(4)将在t时刻的电流均值变化率、三相熔炼电流、临时定时器、冶炼进行的时间、矿热炉工况和预测的t+1时刻的矿热炉工况表示成向量,并将整个熔炼过程中各个时刻的向量组成的向量集;

(5)建立置信规则库反映矿热炉三相电流均值变化率和临时定时器以及冶炼进行的时间与矿热炉工况变量之间的非线性关系;

(6)建立置信规则库优化模模型,将训练集中的电流均值变化率、三相熔炼电流、临时定时器、冶炼进行的时间作为所构建置信规则库的规则输入,推理出工况预估值,用v表示置信规则库模型的参数向量,定义目标函数为其中,表示工况预估值,通过调整置信规则库参数的取值,使得目标函数的值达到0,得到模型的最优参数值;

(7)利用得到的置信规则库优化模模型对矿热炉工况进行预测。

所述步骤(2)和步骤(3)之间还包括采用基于中值数绝对偏差的实时决策滤波算法对采集的生产数据进行滤波的步骤,具体为:建立数据滑动窗口;用冒泡排序法计算出窗口序列的中值;用中值构造一个中值数绝对偏差序列;用冒泡排序法计算出所述中值数偏差序列的中值;通过计算当前测量值x(t)的滤波值y(t),其中,z(t)为窗口序列的中值,l为门限参数,mad(t)=1.4826×m(t)为中值数绝对偏差,m(t)为中值数偏差序列的中值。

所述步骤(5)中置信规则库中的第k条规则表示为:then{(s1,βk,1),…,(s5,βk,5)},其中,符号^表示逻辑与,分别为电流均值变化率的参考值和分别为临时定时器和冶炼进行的时间的参考值及分别为三相熔炼电流的参考值,sn代表第k条规则推理能够得出的全部评价结果;βk,n代表第k条规则后半部分第n个参考值对应的置信度;将t时刻的电流均值变化率、三相熔炼电流、临时定时器、冶炼进行的时间、矿热炉工况作为规则输入向量带入到置信规则库的每条规则rk中,经过推理得到输出结果是激活权重与后项初始置信度经信度融合后得到的置信度值。

所述步骤(6)中置信规则库优化模模型的约束条件包括:(a)规则权重取值区间为[0,1];(b)每条规则的前提属性权重取值区间为[0,1];(c)置信度的不得大于1或小于0;(d)如果第k条规则是完整的,那么输出结果中所有置信度的和等于1;否则小于1。

有益效果

由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明利用置信规则库描述了矿热炉生产过程中的各个工况过程与工业现场生产数据之间存在复杂的非线性映射关系。为了解决根据专家经验给定的置信规则库初始参数不精确的问题,给出非线性优化学习模型提高模型的精度与计算效率,对需要实时工况预测的系统具有更高效的优势。

附图说明

图1是本发明方法的流程图;

图2是本发明中置信规则库优化模型思想图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

本发明的实施方式涉及一种基于置信规则库推理的矿热炉工况预测方法,如图1所示,该方法包括如下步骤:

步骤1:选取矿热炉的三相熔炼电流、电流均值变化率、各阶段进行的时间和各阶段中不同工况发生的时间作为置信规则推理的特征向量。

该步骤中平均变化率公式为为电流平均值,i(t)为t时刻的电流值,t为电流采样周期。

步骤2:电流采样周期设置为1秒,采集现场整个熔炼过程8个小时的生产数据;按8:2的比例划分训练集与测试集。

步骤3:工业测量数据通常含有各种噪声,故此时的电流值并不能反应矿热炉的真实工况,因此需要对熔炼电流的测量值进行滤波处理;本实施方式采用基于中值数绝对偏差的实时决策滤波算法进行滤波。具体实时决策滤波算法如下:

(1)需要建立数据滑动窗口(设宽度为n,通常设为奇数),t为当前时刻:

{d1,d2,…,dn-1,dn}={x(t-n),x(t-n+1),…,x(t-2),x(t-1)}(1)

其中,x(t)是t时刻的测量值;

(2)用冒泡排序法计算出窗口序列的中值z(t);

(3)用中值z(t)构造一个中值数绝对偏差序列:

{m1,m2,…,mn}={|d1-z|,|d2-z|,…,|dn-z|}(2)

(4)用冒泡排序法计算出上述中值数偏差序列的中值m(t);

(5)按下式计算当前测量值x(t)的滤波值y(t)。

上式中的l为门限参数,中值数绝对偏差mad=1.4826×m。

步骤4:采取滑差时间窗,设置滑差时间为1秒,对滤波后的t-5时刻至t时刻共6秒的电流值求取平均值分别为均值变化率和s(t)来预测t+1时刻的矿热炉工况s(t+1)。

进一步的对于步骤4中的s(t+1)表示为矿热炉在t+1时刻的工况,令s(t+1)={s1,s2,s3,s4,s5},其中s1表示欠烧工况,s2表示加料工况,s3表示排气工况,s4表示过烧工况,s5表示主熔工况;选取tc为冶炼过程中的临时定时器,其定时周期为tc秒;ts为冶炼过程进行的时间,t=1,2,...,28800秒,电流单位为a。

步骤5:将步骤4中在t时刻的a、b、c三相电流的均值变化率和熔炼电流及临时定时器和冶炼时间表示成向量,记为可以得到28800个向量,其组成的向量集表示为p={p(t)|t=1,2,...,28800}。

步骤6:建立置信规则库反映矿热炉a、b、c三相电流的均值变化率和tc以及ts与工况变量s之间的非线性关系,其中,置信规则库中的第k条规则可以表示为:

该式包含规则权θk及前提属性权重其中,sn(n=1,2,...n)代表第k条规则推理能够得出的全部评价结果;βk,n(n=1,2,...n;k=1,2,...l)代表第k条规则后半部分第n个参考值dn对应的置信度。若则说明第k条规则是完整的,如果,则说明第k条规则是不完整的。

此外,θk(k=1,2,...l)代表第k条规则权重,刻画了第k条规则权重与其相比较而言的重要性高低;δk,i(k=1,2,..l;i=1,2,...mk)代表第k条规则中第i个前提属性的权重,刻画了每条规则中第i个前提属性与其余相比较而言的重要性高低,其取值范围均为[0,1]。需要指出,置信规则库推理模型要求其全部l条规则相互独立,即全部l个相互独立。

其中,符号∨逻辑或,符号∧表示逻辑与;在本实施方式中选定分别为的参考值和分别为tc、ts的参考值及分别为i1(t)、i2(t)、i3(t)的参考值。结合专家经验与工况分许选定参考值的语义值与量化值如下:

表1语义值与参考值

步骤7:进而根据表1中的参考值可以给出置信规则库的第k条置信规则为:

设定规则权重θk及前提属性权重δk,1,δk,2,δk,3,δk,3,δk,4,δk,5,δk,6,δk,7,δk,8初值均取1,其中置信度βk,n为初始值。列举部分规则如下:

表2置信规则库

步骤8:将tc、ts、i1(t)、i2(t)、i3(t)的值作为规则输入向量带入到置信规则库的每条规则rk中,经过推理可得到输出结果:

其中,是激活权重与后项初始置信度经信度融合后得到的置信度值,计算公式为:

在公式(7)中,

式(7)与(8)中wk为输入规则向量对第k条规则的激活权重,计算公式如下。

其中,

式(9)代表输入信息xi对第k条规则第i个前提属性xi参考值的个体置信度,可以理解为输入信息xi在第k条规则中相对于参考值的置信度。式中k=1,2,...,l,wk∈[0,1]。采用基于规则和效用的输入信息转化方法,计算公式可为:

由式(6)可推理出每个工况预测的结果,将推理结果中置信度数值最大的作为最终的输出结果。

步骤9:为便于理解,假设下表3为三相电流过程数据,作为初始置信规则库的输入样本,由表3可以看出,从数据点122至127,连续6s内,三相电流均值变化率的绝对值均小于(50a),即ts∈l1。

表3过程数据表

在数据点122时

在数据点123时

在数据点124时

在数据点125时

在数据点126时

在数据点127时

由式(11)可知激活了置信规则库中的1-8条规则,通过式(9)可算出1-8规则的机会权重w1=w2=w3=w4=w5=w6=w7=w8=0.125,再由公式(7)与(8)到er推理出的置信结果:β1=0,β2=0,β3=0,β4=0,β5=1。推理结果中β5的置信度数值最大故最终的输出结果为s5=1及此时工况为正常工况。

步骤8:建立置信规则库优化模模型。

将训练集p(t)中tc、ts、i1(t)、i2(t)和i3(t)作为步骤7中所构建置信规则库的规则输入,产生推理出工况预估值s(t);用v表示置信规则库模型的参数向量(βn,k,θk,δi),k=1,2,...,l,n=1,2,...,8,i=1,2,...,8,因此可以这样定义目标函数:

式中,t=28800为步骤(2)中采集样本个数,当输出结果为某一工况时,令某一工况取值为1;s(t)与分别为实际的工况和置信规则库模型的预测工况,t=1,2,...,28800;基于训练样本的优化过程(见图2),就是要通过调整置信规则库参数的取值,使得目标函数的值达到极小,因此可得出模型的最优参数值;优化可通过matlab优化工具箱中的非线性优化函数fmincon实现;在约束条件式(12)-(15)下,找到ξ(v)取最小值时,v中指标参数的最优值;

①规则权重取值区间为[0,1],即

0≤θk≤1,k=1,2,...,l(12)

②每条规则的前提属性权重取值区间为[0,1],即

③置信度的不得大于1或小于0,即

0≤βj,k≤1,j=1,2,...,n,k=1,2,...,l(14)

④如果第k条规则是完整的,那么输出结果中所有置信度的和等于1;否则小于1,即

具有最优指标参数取值的规则库为优化后的置信规则库。优化后的参数确定以后,可通过测试集检验模型均方根误差。

最后可以根据得到优化后的置信规则库对矿热炉工况进行预测。

不难发现,本发明利用专家经验知识、工业现场数据和机理分析挖掘出与工况预测相关特征向量并建立置信规则库,用置信规则库反映输入参数变量与工况输出之间复杂的非线性映射关系;采用实时决策滤波算法对工业数据进行实时滤波,使特征向量更加真实地反映矿热炉内部工况的变化;建立置信规则库非线性优化模型解决了根据专家给定的参数初始值不精确的问题。本发明不仅能提高生产操作智能化水平还能提高生产效率,对后期做功率需量预测实现生产过程节能减排,能效优化调度至关重要。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1