电力系统暂态稳定预防控制方法及系统与流程

文档序号:18510873发布日期:2019-08-24 09:06阅读:296来源:国知局
电力系统暂态稳定预防控制方法及系统与流程

本发明涉及电力系统控制技术领域,更具体地,涉及电力系统暂态稳定预防控制方法及系统。



背景技术:

目前,电力系统的安全稳定运行是现代社会正常运转的重要基础。电力系统的暂态稳定性就是用来衡量在发生大扰动后,电力系统回到原来的稳定状态或者进入新的稳定状态的能力。

为了保障电力系统具有较高的暂态稳定性,可以从增加继电保护装置、改善电网拓扑结构、预防控制等方面着手。其中,预防控制是在电网日常运行中所使用的非常重要的手段,具体而言就是通过调整发电机出力、投切辅助设备来改善电网潮流分布,让电网进入暂态稳定性更好的工作状态,使得发生大扰动后,电网能够保持暂态稳定而不至于失去同步。传统的预防控制主要包含基于经验的预防控制方法和基于优化模型求解的预防控制方法。基于经验的预防控制方法即为,调度员会记忆电网不同运行方式下对应的预防控制措施,然后在电网实时调度中,根据这些固定的规则、自己的经验和辅助的专家软件,对发电机的出力进行合理的调整。基于优化模型求解的预防控制方法则是需要对预防控制进行数学建模求解。

然而,基于经验的预防控制方法规则僵硬,调整策略不够精细,调度员掌握的预防控制措施需要长期培养且不够精准,人工调度的响应速度也比较慢。基于优化模型求解的预防控制方法在大规模电网的条件下建模难度较高,求解效率低。在电网运行方式愈加多样化、复杂化的情况下,上述两种预防控制方式愈加不适应电网的需求。



技术实现要素:

为克服上述问题或者至少部分地解决上述问题,本发明实施例提供了一种电力系统暂态稳定预防控制方法及系统。

第一方面,本发明实施例提供了一种电力系统暂态稳定预防控制方法,包括:

获取电力系统的目标电力潮流数据,所述目标电力潮流数据包括:所述电力系统内各负荷的有功功率、各负荷的无功功率以及所述电力系统内各各发电机的有功出力;

将所述目标电力潮流数据输入至预设生成对抗网络模型中的生成器,由所述生成器对所述目标电力潮流数据中各发电机的有功出力进行调整,并输出调整后的、使所述目标电力潮流数据处于暂态稳定状态下各发电机的有功出力;

其中,所述生成器基于多个目标电力潮流数据样本训练得到。

优选地,所述生成器具体通过如下方法训练得到:

将多个目标电力潮流数据样本分别输入至所述生成器中,由所述生成器对每个目标电力潮流数据样本中各发电机的有功出力进行调整,并输出调整后的每个目标电力潮流数据样本中各发电机的有功出力;

基于调整后的每个目标电力潮流数据样本中各发电机的有功出力对相应的目标电力潮流数据样本进行更新,判断更新后的每个目标电力潮流数据样本是否处于稳定状态,并基于判断结果计算所述预设生成对抗网络模型的损失函数;

当所述损失函数取值最小时,训练结束。

优选地,所述损失函数具体为:

其中,loss为所述预设生成对抗网络模型的损失函数,m为所述电力潮流数据样本的数量,y(i)为第i个电力潮流数据样本对应的状态参数,为更新后的第i个电力潮流数据样本对应的状态参数,所述状态参数用于表征电力潮流数据所处的稳定状态或非稳定状态。

优选地,所述预设生成对抗网络模型还包括:判决器;

所述判决器用于判断更新后的每个目标电力潮流数据样本是否处于稳定状态。

优选地,还包括:

基于反向传播算法训练所述预设生成对抗网络模型,在训练过程的每一次迭代中,对所述判别器和所述生成器先后分别进行梯度更新。

优选地,还包括:

基于调整后的每个目标电力潮流数据样本中各发电机的有功出力以及调整前的每个目标电力潮流数据样本中各发电机的有功出力,对所述损失函数进行优化。

优选地,优化后的所述损失函数具体为:

其中,loss*为优化后的所述损失函数,loss为所述损失函数,m为所述目标电力潮流数据样本的数量,为调整后的第i个目标电力潮流数据样本中第j台发电机的有功出力,pgenerator(i,j)为调整前的第i个目标电力潮流数据样本中第j台发电机的有功出力,n为调整前以及调整后的第i个目标电力潮流数据样本中发电机的数量,λ为权重常数。

第二方面,本发明实施例提供了一种电力系统暂态稳定预防控制系统,包括:目标电力潮流数据获取模块和发电机有功出力确定模块。

目标电力潮流数据获取模块用于获取电力系统的目标电力潮流数据,所述目标电力潮流数据包括:所述电力系统内各负荷的有功功率、各负荷的无功功率以及所述电力系统内各各发电机的有功出力;

发电机有功出力确定模块用于将所述目标电力潮流数据输入至预设生成对抗网络模型中的生成器,由所述生成器对所述目标电力潮流数据中各发电机的有功出力进行调整,并输出调整后的、使所述目标电力潮流数据处于稳定状态下各发电机的有功出力;

其中,所述生成器基于多个目标电力潮流数据样本训练得到。

第三方面,本发明实施例提供了一种电子设备,包括:

至少一个处理器、至少一个存储器、通信接口和总线;其中,

所述处理器、存储器、通信接口通过所述总线完成相互间的通信;

所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令,以执行第一方面提供的电力系统暂态稳定预防控制方法。

第四方面,本发明实施例提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行第一方面提供的电力系统暂态稳定预防控制方法。

本发明实施例提供的一种电力系统暂态稳定预防控制方法及系统,通过预设生成对抗网络模型中的生成器对目标电力潮流数据中各发电机的有功出力进行调整,使得电力系统处于暂态稳定状态。与人工调节方法相比,其调整精度高,泛化能力较强;与基于优化模型求解的调整方法相比,其建模复杂度低,在线应用效率高。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的一种电力系统暂态稳定预防控制方法的流程示意图;

图2为本发明实施例提供的一种电力系统暂态稳定预防控制方法中预设生成对抗网络模型中判别器和生成器的结构示意图;

图3为本发明实施例提供的一种电力系统暂态稳定预防控制系统的结构示意图;

图4为本发明实施例提供的一种电子设备的结构示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示,本发明实施例提供了一种电力系统暂态稳定预防控制方法,包括:

s1,获取电力系统的目标电力潮流数据,所述目标电力潮流数据包括:所述电力系统内各负荷的有功功率、各负荷的无功功率以及所述电力系统内各各发电机的有功出力;

s2,将所述目标电力潮流数据输入至预设生成对抗网络模型中的生成器,由所述生成器对所述目标电力潮流数据中各发电机的有功出力进行调整,并输出调整后的、使所述目标电力潮流数据处于暂态稳定状态下各发电机的有功出力;

其中,所述生成器基于多个目标电力潮流数据样本训练得到。

具体地,本发明实施例中提供的电力系统暂态稳定预防控制方法,主要解决当前电力系统预防控制方法精细度不够、效率较低的问题。旨在可以将电力系统暂态状态由暂态不稳定状态控制调整至暂态稳定状态。电力系统是把很多的发电站、变电站、配电站、用户等由输电和配电线路连接起来形成的系统。电力系统的电力潮流是指电力系统在运行时,在电源电势激励作用下,电流或功率从电源通过系统各元件流入负荷,分布于电力网各处。电源电势是由发电站端产生,其中一部分在经过输配电线、变电站和配电站时损失掉,剩下的绝大部分最终被负荷所消耗。

对于电力系统中的每一节点来说,均具有节点注入有功功率p、节点注入无功功率q、节点电压幅值v以及节点电压相角θ这四个潮流量。电力系统暂态状态可以通过电力系统中所有节点在某一时刻的电力潮流数据的状态表示,若电力系统中所有节点在某一时刻的电力潮流数据处于稳定状态,则表明电力系统在该时刻处于暂态稳定状态,若电力系统中所有节点在该时刻的电力潮流数据均处于非稳定状态,则表明电力系统在该时刻处于暂态非稳定状态。需要说明的是,本发明实施例中确定电力系统是否处于暂态稳定状态以及确定某一时刻的电力潮流数据是否处于稳定状态,均可通过现有技术中提供的方法实现,不属于本发明实施例的改进点,本发明实施例中在此不作具体限定。

深度神经网络是非线性拟合能力非常强的概率分布模型,可以从训练数据中学习到非常复杂的函数关系。然而,一般的神经网络(例如全连接神经网络、卷积神经网络等)主要面向判别式任务,例如人脸识别、语音识别、图像分类等,却并不适合生成式任务,例如图像生成等。而生成对抗网络(generativeadversarialnetworks,gan)适合生成式任务,例如本发明实施例中预防控制决策的自动生成问题。因此,本发明实施例中采用gan作为基础架构构建预设生成对抗网络模型,通过其中的生成器实现对目标电力潮流数据中各发电机的有功出力进行调整。gan由两个神经网络模块组成,分别是生成器和判别器,对于gan来说,生成器的输入和输出均为向量,若直接将电力系统中所有节点的电力潮流数据以节点潮流向量(p,q,v,θ)的形式输入至gan中的生成器中,其中,p为电力系统中所有节点注入有功功率形成的矩阵、q为电力系统中所有节点注入无功功率形成的矩阵、v为电力系统中所有节点电压幅值形成的矩阵,θ为电力系统中所有节点电压相角形成的矩阵。gan中的生成器并不能直接输出符合物理规律的潮流向量,而只能输出潮流计算的已知条件,然后再代入额外的潮流计算模块中计算出符合物理规律的潮流向量。但是,插入潮流计算模块在代码上实现非常困难,一方面很难利用现成的深度学习函数库对潮流计算模块自动求导,因而无法进行梯度更新,另一方面即使直接编写自定义代码对潮流计算模块求导,每一次梯度更新也会涉及大量非线性方程的求解,这些求解很可能收敛很慢甚至不收敛。

基于此,本发明实施例中对节点潮流向量(p,q,v,θ)中的自变量和因变量进行分离,本发明实施例中假设电力系统中pv节点电压幅值v、平衡节点电压幅值v与相位角θ均为定值,则节点潮流向量(p,q,v,θ)将是电力系统中各负荷有功功率pload、各负荷无功功率qload和各发电机有功出力pgenerator的函数,其中,pload为电力系统中所有负荷有功功率形成的矩阵,qload为电力系统中所有负荷无功功率形成的矩阵,pgenerator为电力系统中所有发电机有功出力形成的矩阵。

为了研究暂态稳定的节点潮流向量(p,q,v,θ)所服从的概率分布,只需研究在负荷固定的情况下,能使系统暂态稳定的各发电机出力pgenerator所服从的条件概率分布函数,记作:f(pgenerator|pload,qload),训练好的gan能隐式地学习到不同负荷下pgenerator服从的条件概率分布函数f(pgenerator|pload,qload),并形成从概率密度低的区域到概率密度高的区域的映射,概率密度低的区域对应于gan中生成器调整前的各发电机出力pgenerator,概率密度高的区域对应于gan中生成器调整后的各发电机出力

因此,本发明实施例中采用潮流特征向量(pload,qload,pgenerator)作为预设生成对抗网络模型中的生成器的输入,而将节点潮流向量(p,q,v,θ)中其他与潮流特征向量(pload,qload,pgenerator)具有函数关系的变量被隐式地表达在预设生成对抗网络模型中。预设生成对抗网络模型中的生成器调整潮流特征向量(pload,qload,pgenerator)中的pgenerator得到并输出,可以避免预设生成对抗网络模型中的生成器无法生成符合物理规律的潮流向量,以及难以在预设生成对抗网络模型中插入潮流计算模块的难题。

本发明实施例中所说的目标电力潮流数据即是指电力系统内各负荷的有功功率、各负荷的无功功率以及电力系统内各发电机的有功出力,用向量表示即为潮流特征向量(pload,qload,pgenerator)。目标电力潮流数据可以是处于稳定状态或处于非稳定状态的电力潮流数据。本发明实施例中可以通过目标电力潮流数据是否处于稳定状态来表征电力系统是否处于暂态稳定状态。将目标电力潮流数据输入至预设生成对抗网络模型中的生成器中,由生成器对目标电力潮流数据中各发电机的有功出力进行调整,旨在使调整后的电力系统处于暂态稳定状态,此时输出电力系统中各发电机的有功出力,按照输出的电力系统中各发电机的有功出力对电力系统中各发电机进行调节,即可以使电力系统处于暂态稳定状态。当输入的目标电力潮流数据处于稳定状态,说明此时电力系统已经处于暂态稳定状态,则输出的电力系统中各发电机的有功出力对电力系统中各发电机进行调节后的电力系统的稳定状态更优于调节前的稳定状态;当输入的目标电力潮流数据处于非稳定状态,说明此时电力系统并未处于暂态稳定状态,即处于暂态非稳定状态,则输出的电力系统中各发电机的有功出力对电力系统中各发电机进行调节后的电力系统可处于稳定状态。

本发明实施例中预设生成对抗网络模型中的生成器是基于电力系统的多个目标电力潮流数据样本训练得到,具体是将多个目标电力潮流数据样本分别输入至预设生成对抗网络模型中的生成器中,实现对生成器的非监督式训练。其中,目标电力潮流数据样本的数量可以根据需要进行设置,本发明实施例中对此不作具体限定。本发明实施例中可以优选非稳定状态的目标电力潮流数据样本对预设生成对抗网络模型中的生成器进行训练。

传统的gan采用是噪声数据进行训练,其目的是让gan中的生成器能根据噪声数据生成尽量逼近真实数据的伪造数据,相当于让生成器凭空创造出“真实数据”。而本发明实施例中采用的是非稳定状态的目标电力潮流数据样本对预设生成对抗网络模型中的生成器进行训练,使预设生成对抗网络模型中的生成器能够对非稳定状态的目标电力潮流数据样本中各发电机的有功出力进行调整,得到稳定状态的目标电力潮流数据样本,相当于使预设生成对抗网络模型中的生成器学会如何调整电力系统的暂态稳定状态,重点是调整,而不再是凭空创造。

本发明实施例中提供的电力系统暂态稳定预防控制方法,通过预设生成对抗网络模型中的生成器对目标电力潮流数据中各发电机的有功出力进行调整,使得电力系统处于暂态稳定状态。与人工调节方法相比,其调整精度高,泛化能力较强;与基于优化模型求解的调整方法相比,其建模复杂度低,在线应用效率高。

在上述实施例的基础上,本发明实施例中提供的电力系统暂态稳定预防控制方法,所述生成器具体通过如下方法训练得到:

将电力系统的多个目标电力潮流数据样本分别输入至所述生成器中,由所述生成器对每个目标电力潮流数据样本中各发电机的有功出力进行调整,并输出调整后的每个目标电力潮流数据样本中各发电机的有功出力;

基于调整后的每个目标电力潮流数据样本中各发电机的有功出力对相应的目标电力潮流数据样本进行更新,判断更新后的每个目标电力潮流数据样本是否处于稳定状态,并基于判断结果计算所述预设生成对抗网络模型的损失函数;

当所述损失函数取值最小时,训练结束。

具体地,本发明实施例中,首先将多个目标电力潮流数据样本分别输入至预设生成对抗网络模型中的生成器中,设目标电力潮流数据样本的数量为m,电力系统中有n个发电机。对于第i(1≤i≤m)个目标电力潮流数据样本来说,其对应的潮流特征向量为(pload(i),qload(i),pgenerator(i)),pgenerator(i)是包括n个元素的矩阵,由于电力系统中的负荷是确定的,本发明实施例中对电力系统中的负荷数量不作具体限定。将(pload(i),qload(i),pgenerator(i))输入至预设生成对抗网络模型中的生成器中,由预设生成对抗网络模型中的生成器对第i个目标电力潮流数据样本中的n个发电机的有功出力进行调整,即对pgenerator(i)进行调整,并输出调整后的每个目标电力潮流数据样本中的n个发电机的有功出力,即输出然后基于调整后的每个目标电力潮流数据样本中的n个发电机的有功出力对相应的目标电力潮流数据样本(即第i个目标电力潮流数据样本)进行更新,即目标电力潮流数据样本中其他数据不变,仅仅将n个发电机的有功出力替换为调整后的n个发电机的有功出力,对第i个目标电力潮流数据样本更新后可得到对应的潮流特征向量然后判断更新后的每个目标电力潮流数据样本是否处于稳定状态,为将每个目标电力潮流数据样本是否处于稳定状态的判断结果应用于运算中,本发明实施例中引入状态参数y,更新前的第i个目标电力潮流数据样本对应的状态参数用y(i)表示,更新后的第i个目标电力潮流数据样本对应的状态参数用表示。当状态参数取值为a时,说明为稳定状态,当状态参数取值为b时,说明为非稳定状态。其中,a和b的取值可以根据需要进行设定,本发明实施例中仅以a=1、b=0为例进行说明,即当y(i)=1时,表示更新前的第i个目标电力潮流数据样本处于稳定状态,当y(i)=0时,表示更新前的第i个目标电力潮流数据样本处于非稳定状态。当时,表示更新后的第i个目标电力潮流数据样本处于稳定状态,当时,表示更新后的第i个目标电力潮流数据样本处于非稳定状态。最后,基于判断结果计算预设生成对抗网络模型的损失函数,当损失函数取值最小时,训练结束。预设生成对抗网络模型的损失函数的具体形式可以根据需要进行选取,本发明实施例中对此不作具体限定。

本发明实施例中提供的预设生成对抗网络模型中的生成器的训练方法,是一种非监督式训练方法,当损失函数取值最小时,训练结束,可以使得训练更加快速,缩短训练时间。而且训练过程和结果不受外界因素影响,训练得到的生成器的调整效果更加准确。

在上述实施例的基础上,本发明实施例中提供的电力系统暂态稳定预防控制方法中,不考虑电力系统中各发电机调整量的约束时可采用交叉熵(crossentropy)作为预设生成对抗网络模型的损失函数,即如公式(1)所示。

其中,loss为所述预设生成对抗网络模型的损失函数,m为所述电力潮流数据样本的数量,y(i)为第i个电力潮流数据样本对应的状态参数,为更新后的第i个电力潮流数据样本对应的状态参数,所述状态参数用于表征电力潮流数据所处的稳定状态或非稳定状态。

在上述实施例的基础上,本发明实施例中提供的电力系统暂态稳定预防控制方法中,为了考虑电力系统中各发电机的有功出力调整量的约束,保证实际调度中在电力系统处于暂态稳定状态的同时,尽量减少电力系统内各发电机的有功出力调整幅度,需要对上述公式(1)所示的损失函数进行优化。本发明实施例中在上述公式(1)所示的损失函数中引入惩罚项。惩罚项表达式为:

也就是说,本发明实施例中基于调整后的每个目标电力潮流数据样本中各发电机的有功出力以及调整前的每个目标电力潮流数据样本中各发电机的有功出力,对公式(1)所示的损失函数进行优化。优化后的损失函数如公式(3)所示。

其中,loss*为优化后的所述损失函数,loss为所述损失函数,m为所述目标电力潮流数据样本的数量,为调整后的第i个目标电力潮流数据样本中第j台发电机的有功出力,pgenerator(i,j)为调整前的第i个目标电力潮流数据样本中第j台发电机的有功出力,n为调整前以及调整后的第i个目标电力潮流数据样本中发电机的数量,λ为权重常数,即惩罚项的权重常数,可以根据权重常数控制约束程度的强弱。权重常数的具体取值可以根据需要进行设定,本发明实施例中对此不作具体限定,例如0.1、02、0.3等。

在上述实施例的基础上,本发明实施例中提供的电力系统暂态稳定预防控制方法中,所述预设生成对抗网络模型还包括:判决器;

所述判决器用于判断更新后的每个目标电力潮流数据样本是否处于稳定状态。

具体地,本发明实施例中,当判决器的判断结果是更新后的第i个目标电力潮流数据样本处于稳定状态,则输出当判决器的判断结果是更新后的第i个目标电力潮流数据样本处于非稳定状态,则输出

在上述实施例的基础上,本发明实施例中提供的电力系统暂态稳定预防控制方法中,上述的判决器可通过如下方法进行训练。

选取多个目标电力潮流数据样本,多个目标电力潮流数据样本中既包括处于稳定状态的,也包括处于非稳定状态的,所处的状态用状态参数的不同取值表示。分别将多个目标电力潮流数据样本作为判决器的输入,将每个目标电力潮流数据样本所处的状态对应的状态参数取值作为输出,对判决器进行训练。当判决器的判决准确度达到预设值时,训练结束。其中,判决准确度可以根据需要进行设定,本发明实施例中对此不作具体限定,例如可以将判决准确度设置为95%、99%等。

在上述实施例的基础上,本发明实施例中提供的电力系统暂态稳定预防控制方法中,还包括:

基于反向传播算法训练所述预设生成对抗网络模型,在训练过程的每一次迭代中,对所述判别器和所述生成器先后分别进行梯度更新。

具体地,本发明实施例中利用判决器对生成器进行训练,即:

将电力系统的多个目标电力潮流数据样本分别输入至所述生成器中,由所述生成器对每个目标电力潮流数据样本中各发电机的有功出力进行调整,并输出调整后的每个目标电力潮流数据样本中各发电机的有功出力;

基于调整后的每个目标电力潮流数据样本中各发电机的有功出力对相应的目标电力潮流数据样本进行更新,将更新后的每个目标电力潮流数据样本分别输入至判决器中,通过判决器判断更新后的每个目标电力潮流数据样本是否处于稳定状态,若处于稳定状态则输出否则输出

然后根据公式(1)或公式(3)计算预设生成对抗网络模型的损失函数,当损失函数取值最小时,训练结束。

此过程中,生成器可以输入暂态非稳定的潮流特征向量,输出经过调整后的潮流特征向量,而判别器输入经过生成器调整的潮流特征向量,输出相应潮流特征向量的状态参数,状态参数取值为0或1。判别器的目标是尽量区分清楚暂态稳定的潮流特征向量和经过生成器调整的潮流特征向量,即让前者得分尽可能高,后者得分尽可能低。而生成器的目标是尽量迷惑判别器,即让其调整后的潮流特征向量在判别器里的得分尽可能高。二者形成二元博弈,博弈的结果是使得判别器无法再区分暂态稳定性良好的潮流特征向量或经过生成器调整的潮流特征向量,此时生成器就隐式地学到了暂态稳定性良好的潮流所服从的概率分布,而生成器中从输入到输出的映射,即是该分布中概率密度低的区域到概率密度高的区域的映射。

如图2所示,为本发明实施例中预设生成对抗网络模型中的判别器和生成器的结构示意图。从图2中可以看出,暂态非稳定的目标电力潮流数据样本对应的潮流特征向量输入至生成器中,由生成器输出调整后各发电机的有功出力,并对潮流特征向量进行更新,将更新后的潮流特征向量输入至判别器中,由判别器输出调整后的潮流特征向量的状态参数。生成器的隐藏层包括全连接层1、全连接层2、全连接层3和全连接层4,每层神经元数量依次为128、64、32和16,每层激活函数均采用leakyrelu函数,并使用batchnormalization函数进行正则化。全连接层5作为输出层,神经元数量为9,激活函数采用relu函数。判别器的隐藏层包括全连接层1、全连接层2、全连接层3、全连接层4和全连接层5,每层神经元数量依次为128、64、32、16和8,激活函数均采用relu函数,全连接层6作为输出层,激活函数采用sigmoid函数,神经元数量为1。

本发明实施例中采用反向传播算法(backpropagation)训练预设生成对抗网络模型,并采用深度学习经典优化算法adam优化训练过程。在训练的每一次迭代中,对判别器和生成器分别进行梯度更新。首先,向判别器先后输入暂态稳定的目标电力潮流数据样本和经生成器调整后输出的各发电机的有功出力更新的目标电力潮流数据样本,分别得到各自的输出值,然后各执行一次反向传播梯度更新,此时只更新判别器参数。然后,向生成器输入暂态非稳定的目标电力潮流数据样本,得到调整后输出的各发电机的有功出力,接着将通过调整后输出的各发电机的有功出力更新的目标电力潮流数据样本输入给判别器,得到输出值之后执行一次反向传播梯度更新,此时冻结判别器的权重,只更新生成器参数。以上算法采用python中的深度学习函数库keras实现。

本发明实施例中的整体思路如下:

为了了解如何调整发电机出力才能提高电力系统的暂态稳定状态,本发明实施例中采用了概率统计和数据驱动的思想。

首先,建立了暂态稳定的电力潮流数据所服从的概率分布模型,它表征了什么样的潮流分布在统计意义下具有更好的暂态稳定性。模型参数待定。

然后,利用仿真软件生成了大量的电力潮流数据样本,利用预设故障集对电力潮流数据样本进行时域暂态仿真,根据仿真结果把电力潮流数据样本分为暂态稳定和暂态非稳定两类,然后把暂态稳定的电力潮流数据样本作为正样本,将暂态非稳定的电力潮流数据样本作为负样本,代入上述概率分布模型中进行统计拟合,得到该概率分布模型参数的统计估计量。

如果某时刻电力潮流数据在上述概率分布模型下概率密度比较低,就通过调整发电机出力,将电力潮流数据调整到概率密度更高的潮流状态。因此,本发明实施例中采用生成对抗网络来隐式地学习暂态稳定的电力潮流数据所服从的概率分布模型,并形成从概率密度低的区域到概率密度高的区域的映射。

如图3所示,在上述实施例的基础上,本发明实施例中提供了一种电力系统暂态稳定预防控制系统,包括:目标电力潮流数据获取模块31和发电机有功出力确定模块32。其中,

目标电力潮流数据获取模块31用于获取电力系统的目标电力潮流数据;

发电机有功出力确定模块32用于将所述目标电力潮流数据输入至预设生成对抗网络模型中的生成器,由所述生成器对所述目标电力潮流数据中各发电机的有功出力进行调整,并输出调整后的、使所述电力系统处于稳定状态的各发电机的有功出力;

其中,所述生成器基于多个目标电力潮流数据样本训练得到。

具体地,本发明实施例中提供的电力系统暂态稳定预防控制系统中各模块的作用与上述方法类实施例中各步骤的操作流程是一一对应的,实现的技术效果也是一致的,本发明实施例中在此不再赘述。

如图4所示,在上述实施例的基础上,本发明实施例中提供了一种电子设备,包括:处理器(processor)401、存储器(memory)402、通信接口(communicationsinterface)403和总线404;其中,

所述处理器401、存储器402、通信接口403通过总线404完成相互间的通信。所述存储器402存储有可被所述处理器401执行的程序指令,处理器401用于调用存储器402中的程序指令,以执行上述各方法实施例所提供的方法,例如包括:s1,获取电力系统的目标电力潮流数据,所述目标电力潮流数据包括:所述电力系统内各负荷的有功功率、各负荷的无功功率以及所述电力系统内各各发电机的有功出力;s2,将所述目标电力潮流数据输入至预设生成对抗网络模型中的生成器,由所述生成器对所述目标电力潮流数据中各发电机的有功出力进行调整,并输出调整后的、使所述目标电力潮流数据处于暂态稳定状态下各发电机的有功出力。

存储器402中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(read-onlymemory,rom)、随机存取存储器(randomaccessmemory,ram)、磁碟或者光盘等各种可以存储程序代码的介质。

在上述实施例的基础上,本发明实施例中提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述各方法实施例所提供的方法,例如包括:s1,获取电力系统的目标电力潮流数据,所述目标电力潮流数据包括:所述电力系统内各负荷的有功功率、各负荷的无功功率以及所述电力系统内各各发电机的有功出力;s2,将所述目标电力潮流数据输入至预设生成对抗网络模型中的生成器,由所述生成器对所述目标电力潮流数据中各发电机的有功出力进行调整,并输出调整后的、使所述目标电力潮流数据处于暂态稳定状态下各发电机的有功出力。

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1