感测流经电力线的电流的制作方法

文档序号:6732217阅读:329来源:国知局
专利名称:感测流经电力线的电流的制作方法
技术领域
本发明一般涉及电力线通信(PLC),尤其涉及使用一种电力线电感耦合器来测量电力线上的工频电流,以及经由PLC网络传送所述测量结果,所述相同的电感耦合器是PLC网络的一组件。

背景技术
在电力线通信系统中,工频一般是在50-60赫兹(Hz)的范围内,数据通信信号频率大于1MHz左右,并且一般是在1MHz-50MHz的范围内。用于电力线通信的数据耦合器耦合电力线与诸如调制解调器之类的通信设备之间的数据通信信号。
这种数据耦合器的一种实例是电感耦合器,包括芯子(core)和沿该磁芯的一部分卷绕的线圈。该芯子由磁性材料制成并包括一个孔。所述电感耦合器作为变压器进行操作,并位于电力线上,从而使电力线穿过该孔并充当所述变压器的初级线圈,所述电感耦合器的线圈充当该变压器的次级线圈。所述数据通信信号经由所述芯子在所述电力线与次级线圈之间进行耦合。所述次级线圈接着耦合到所述通信设备上。
一种测量电力线中工频电流的技术是采用一耦合到所述电力线上的电流变压器,其中所述电流变压器具有一通过电表或其它电流感测设备短路的次级线圈(secondary short-circuited)。可替换地,在开路次级线圈(open-circuited secondary)的情况下,初级电流(primarycurrent)感应产生与初级电流成比例的次级电压(secondary voltage)。


发明内容
本发明提供了一种测量由电力线承载的工频电流的参数的方法。所述方法包括(a)通过对来自电力线的通信信号进行耦合的电感耦合器,将流经电力线的工频电流转换成工频电压;(b)将所述工频电压从所述通信信号中分离出来;以及(c)根据所述工频电压确定所述工频电流的参数值。本发明还提供了一种测量所述参数的系统和装置。



图1A说明了一种配置成测量流经电力线的电流的系统。
图1B是图1A的系统的示意图。
图1C是图1A的系统的方框图,并提供了操作通信节点的额外细节。
图2是为PLC信号和电流感应电压信号(current sense voltagesignal)采用了单独的电缆的系统的方框图。
图3是感测第一电力线中的电流并感测第二电力线中的电流的系统的方框图。
图4是配置成测量流经电力线的电流的另一系统的方框图。
图5是通信节点的一部分的示意图,并示出了高通滤波器和低通滤波器的示例性实施方式。
图6是图4的系统的一部分的示意图,并示出了旁路模块的示例性实施方式。
图7是参照电源电压的相位,测量中压电力线的电流的相位的系统的方框图。
图8是配电网的一部分的方框图,其配置成测量在所述配电网内各个位置处的功率参数。

具体实施例方式 伴随着电感耦合器的高频操作,它的次级电路输出包括高频PLC信号和工频电流感应电压,其可被分离并被分别处理。
图1A说明了配置成测量流经电力线103的电流的系统100,以及图1B是配置成测量流经电力线103的电流的系统100的示意图。系统100包括电感耦合器,即耦合器105和通信节点112。
耦合器105包括磁芯,即芯子106,其具有穿过其中的孔108。耦合器105作为电流变压器进行操作,并位于电力线103上,从而使电力线103穿过孔108并充当耦合器105的初级线圈,该初级线圈在图1B中示意性地表示为初级线圈102。耦合器105还包括次级线圈107。次级线圈107经由一对导线110a和110b耦合到通信节点112上,该导线共同指定为次级线圈对110。
电力线103承载(a)工频电流,即在电压13KV以及频率50-60Hz下的200安培的电流;以及(b)PLC信号,这里亦称作数据信号,即具有频率范围1MHz到50MHz的10伏特峰-峰信号。耦合器105经由芯子106感应地耦合电力线103与次级线圈对110之间的信号。更尤其是,耦合器105双向耦合电力线103与次级线圈对110之间的PLC信号,并将来自电力线103的工频电流信号转换成次级线圈对110两端的工频电压。
电力线103承载工频电流,即I101,具有频率f。初级线圈102具有电感Lp和电抗Xp,其中 Xp=2πfLp。
穿过芯子106的电力线103的电抗小于每工频10毫欧。由于涉及在MHz频率上操作的多重问题,因此Lp为一低值。这些包括高频磁芯的相对渗透率以及由仅通过孔108一次的电力线103表示的单匝初级线圈(single turn primary),相对渗透率范围通常在100到1000之内。例如,对于f=60Hz和Lp=3μH来说, Xp=2πfLp=1.13毫欧。
I101流经初级线圈102,以及根据欧姆定律,初级线圈102两端的初级电压降Vp的量值是由下式给定 Vp=XpI101。
次级线圈107两端感应产生次级电压,即工频电压。次级电压,亦称为电流感应电压(current sense voltage)Vs,与初级压降Vp成比例,并由下式给定 Vs=kVp, 其中k是耦合器105的耦合系数。测量Vs允许计算 I101=Vp/Xp=Vs/(kXp)。
定义跨导纳为 Y=1/(kXp), I101可计算为 I101=YVs。
芯磁的B-H曲线开始为直线,从0电流上升到某值,例如200安培,接着随着其进入上升饱和的区域,其斜率开始下降。“低电流”指的是低于该“弯曲(knee)”部的任意电流。对于低电流来说,Y是常量。芯子106在高于I101的某一值时开始饱和,并随着I101增大而导致Y降低。Y对I101的依赖性可被测量,并在下式的计算中被补偿 I101=YVs。
为了说明所涉及的量值,假定工频为f=60Hz,耦合器105具有初级电感Lp=1μH。假设k=0.9。那么 Xp=2πfLp Xp=(2π)(60)(1μH) Xp=377微欧姆 以及 Y=1/(kXp) Y=1/(0.9(377微欧姆)) Y=2950姆欧。
对于I101=200安培电力线电流来说 Vs=kXpI101 Vs=0.9*377微欧姆*200安培 Vs=68毫伏。
对于本实施例,电流测量装置接收该68毫伏的电流感应电压,跨导纳Y=2950姆欧乘以该电流感应电压,并计算电力线电流I101=200安培。经由其跨导纳,耦合器105将所述电力线电流转换成电流感应电压。
通信节点112包括感测该电流感应电压Vs的模块。通信节点112还包括从所述电流感应电压Vs计算I101的模块,然而作为替代,通信节点112可将表示所述电流感应电压Vs的数据传送到另一计算I101的装置中。
图1C是系统100的方框图。通信节点112包括滤波器模块115、调制解调器130、数据处理器135、模拟处理器140、均方根-直流(r.m.s-to-dc)转换器145以及模数转换器(A/D)150。
滤波器模块115包括高通滤波器116和低通滤波器117。高通滤波器116通过PLC信号并阻挡工频电压。低通滤波器117通过工频电压并阻挡PLC信号。低通滤波器117输出经滤波的电流感应电压。该经滤波的电流感应电压实质上和所述电流感应电压Vs相同。
调制解调器130耦合到滤波器模块115,尤其是耦合到高通滤波器116。调制解调器130亦耦合到数据处理器135上。调制解调器130与滤波器模块115以及数据处理器135中的每一个之间进行PLC信号的双向通信。
模拟处理器140从低通滤波器117接收所述经滤波的电流感应电压。模拟处理器140优选地包括变压器和/或放大器(未示出),并缩放(scale)该经滤波的电流感应电压。模拟处理器140输出经缩放的电流感应电压。
均方根-直流转换器145从模拟处理器140接收该经缩放的电流感应电压。所述电流感应电压Vs是一近似正弦电压。对于电流的测量,感兴趣的参数是电流的均方根值,即r.m.s.值。均方根-直流转换器145将所述经缩放的电流感应电压转换成所述电流感应电压的直流(dc)表示。
A/D 150从均方根-直流转换器145接收所述电流感应电压的所述直流表示,并且将其转换成数字输出,即电流感应数据。
数据处理器135从A/D 150接收所述电流感应数据,并计算I101。数据处理器135输出表示I101的值的数据。
调制解调器130从数据处理器135接收所述数据,将该数据调制到PLC信号上,以及经由滤波器模块115、耦合器105和电力线103将所述PLC信号传送到远程监控站点(未在图1C中示出)。任选地,所述电流感应数据和/或I101的所述计算值可输出到通信节点112上的数据端口(未示出)或可视显示器(未示出),从而允许服务人员在现场监控所述线电流(line current)。
回顾可知,在系统100中,电力线103承载工频电流。耦合器105是一电感耦合器,其耦合了来自电力线103的通信信号,并将所述工频电流转换成工频电压。在通信节点112中,滤波器模块115将所述工频电压从所述通信信号中分离出来,并且处理器135根据s所述工频电压确定所述工频电流的参数值。
图2是系统200的方框图,该系统为PLC信号和电流感应电压信号采用了单独的电缆。系统200包括低通滤波器205和通信节点212。通信节点212类似于通信节点112,但不包括滤波器模块115。次级导线对110,从耦合器105,连接到调制解调器130和低通滤波器205。电缆222将低通滤波器205连接到模拟处理器140。
低通滤波器205通过工频电压并阻挡PLC信号。低通滤波器205经由次级导线对110接收电流感应电压Vs,并输出经过滤的电流感应电压给电缆222。因而,低通滤波器205将所述电流感应电压Vs从所述PLC信号分离出来。
模拟处理器140经由电缆222接收所述经滤波的电流感应电压,以及,如同在通信节点112中那样,将所述经过滤的电流感应电压转换成经缩放的电流感应电压。
调制解调器130、数据处理器135、均方根-直流转换器145以及A/D150如在通信节点112中那样操作。
图3是系统300的方框图,该系统300感测电力线103中的I101,以及也感测电力线303中的电流I301。系统300包括电力线103上的耦合器105,以及电力线303上的耦合器305。系统300亦包括信号合并器320、电缆330、次级导线对311、低通滤波器306、电缆323和通信节点312。
耦合器105,如在系统100中那样,(a)耦合次级线圈对110和电力线103之间的PLC信号;以及(b)耦合来自电力线103的功率信号,以及通过感应产生出现在次级线圈对110两端的电流感应电压Vs。
耦合器305耦合次级线圈对311和电力线303之间的PLC信号。另外,耦合器305耦合来自电力线303的功率信号,并感应产生耦合器305的次级线圈(未示出)两端的电力线303的电流感应电压。电力线303的所述电流感应电压出现在次级线圈对311的两端。
合成器320耦合在耦合器105和通信节点312之间的PLC信号,以及耦合在耦合器305和通信节点312之间的PLC信号。当将来自耦合器105和305的PLC信号耦合到通信节点312时,合并器320合成所述PLC信号来产生合并的PLC信号,并将所述合并的PLC信号输出到电缆330上。当将来自通信节点312的PLC信号耦合到耦合器105和/或305上时,合并器320从通信节点312接收合并的PLC信号,并将所述PLC信号发送(route)到耦合器105和305上。使用两个耦合器,即耦合器105和305,适合于,例如(a)提供差分耦合到同一三相馈线(three phasefeeder)的两相上,从而消除电磁辐射;或者(b)耦合到沿两个方向散开的两个馈线上。
调制解调器130经由电缆330耦合到合并器320上来双向传递PLC信号。调制解调器130、数据处理器135、均方根-直流转换器145和模数转换器150如在通信节点112中那样进行运作。
低通滤波器205阻挡PLC信号,以及让来自耦合器105的电流感应电压通过。低通滤波器205输出对应于I101的经过滤的电流感应电压。
低通滤波器306阻挡PLC信号,以及通过来自耦合器305的电流感应电压。低通滤波器306输出对应于I301的经过滤的电流感应电压。
模拟处理器340经由电缆222接收对应于I101的所述经过滤的电流感应电压,以及经由电缆323接收对应于I301的所述经过滤的电流感应电压。模拟处理器340包括模拟多路复用器(未示出)作为其输入电路的一部分,或者包括另一种适当的布置,来处理多个输入信号。
图4是系统400的方框图,该系统400类似于系统100,包括耦合器105和通信节点112。通信节点112在系统400中的操作和在系统100中的操作相同。和系统100相比,系统400包括电路405、旁路模块415和电缆410。电缆410将电路405和旁路模块415中的每一个连接到滤波器模块115上。
电路405表示协同耦合器105一起进行操作的电路,通过PLC信号但阻挡工频信号。这种电路的实例包括电涌抑制器和/或阻抗匹配变压器。
由于电路405阻挡工频信号,旁路模块415为工频信号提供从耦合器105到通信节点112的通道。更尤其是,旁路模块415绕过电路405将所述电流感应电压从耦合器105发送到电缆410。来自电路405的所述PLC信号以及所述电流感应电压被多路复用到电缆410上,在电路405的下游。旁路模块415事实上是一低通滤波器,这样不会显著影响电路405的输入或输出处的所述PLC信号。滤波器模块115经由电缆410接收所述经多路复用的信号,以及通过高通滤波器116和低通滤波器117的操作,解复用所述PLC信号和所述电路感应电压。
图5是通信节点112的一部分的示意图,其示出了高通滤波器116和低通滤波器117的示例性实施方式。
调制解调器130包括变压器520,该变压器520包括初级线圈515。变压器520的次级线圈耦合到调制解调器130内的通信电路上。
高通滤波器116包括串接在初级线圈515上的电容器510。电容器510、初级线圈515和调制解调器输入阻抗Zin 540一起构成高通滤波器。
低通滤波器117包括扼流圈(choke)525和电容器530。扼流圈525传导所述电流感应电压信号(即,低频信号),以及阻挡PLC信号。电容器530滤除任何残余的高频成分。
图6是系统400的一部分的示意图,并示出了旁路模块415的示例性实施方式。这里,示出旁路模块415包括扼流圈605、变压器615和电容器625。
如上面所提到的,电路405通过PLC信号,但阻挡工频信号。扼流图605为所述电流感应电压信号(来自次级线圈对110)提供到变压器615的初级线圈610的低阻抗通道。变压器615是一低频变压器,并且可有不一致的(non-unity)匝数比,从而缩放所述电流感应电压的量值来匹配模数转换器140或均方根-直流145的输入电压范围(参见图1C)。变压器615的次级线圈620和传导电路405的输出处的PLC信号的导线串接。这种配置串接所述PLC信号和电流感应电压,从而多路复用所述PLC信号和电流感应电压来经由电缆410进行多路复用的传送。电容器625具有在毫微法范围内的值,以及充当短路来传导(高频)PLC信号,其对所述(低频)电流感应电压表现为开路。因此,对于低频来说,次级线圈620和电路405的输出串联布置。
图7是系统700的方框图,该系统700用于测量中压电力线的电流的相位,指的是电源电压的相位。系统700包括耦合器105、配电变压器702以及通信节点712。
配电变压器702将来自电力线103的电压转换成较低的电压,并提供电力给房间(premises)740中的负载。因此,配电变压器702经由低压电力线725提供电力给通信节点712。
通信节点712包括滤波器模块115、调制解调器130、模拟处理器140、均方根-直流转换器145、数据处理器135以及模数转换器150,这些都按上述描述进行操作。通信节点712进一步包括鉴相器730和模数转换器750。
鉴相器730确定I101相对于参考相位的相位。更明确地,鉴相器730接收从低压电力线725获取的参考电压,并且亦从模拟处理器140的输出接收放大的电流感应电压。鉴相器730基于从低压电力线725获取的参考电压与来自模拟处理器140的输出的所述放大的电流感应电压之间的相位关系确定I101的相位。鉴相器730输出一电压,该电压表示I101相对于从低压电力线725获取的所述参考电压的相位的相位。
模数转换器750具有两个输入,即(a)来自鉴相器730的输入,即表示I101的相位的电压,以及(b)来自均方根-直流转换器145的输入,即所述电流感应电压的直流表示。模数转换器750将所述两个输入中的每一个输入转换成数字格式,并输出相位数据和电流感应数据。
数据处理器235从模数转换器750接收所述相位数据和所述电流感应数据,并将所述相位数据和所述电流感应数据发送到调制解调器130。
调制解调器130将所述相位数据和所述电流感应数据调制到PLC信号上,并经由滤波器模块115、耦合器105和电力线103将所述PLC信号发送到其它通信节点(未在图7中示出),所述通信节点由电力线103为其一部分的电力线网上的其他耦合器(未在图7中示出)连接。另外,为了在通信节点712所位于的站点处提供服务的人员的利益,该信息可呈现在显示器上,或者呈现在安装在通信节点712上或邻近通信节点712处的数据端口(都没有示出)上。
图8是配电网800的一部分的方框图,配电网800配置成测量配电网800中各个位置处的电力参数。配电网800包括一三相中压电力线,即电力线825,耦合器805、815和830,通信节点840、845和850以及监视器系统855。
耦合器805、815和830都类似于耦合器105。通信节点840、845和850都类似于通信节点712。耦合器805位于位置810处,并耦合到通信节点840上。耦合器815位于位置820处,并耦合到通信节点845上。耦合器830位于位置835上,并耦合到通信节点850上。监视器系统855亦耦合到通信节点850上。
配电变压器837将来自电力线825的相线的电压转换成较低的电压,并提供电力给房间852中的负载。另外,配电变压器837提供电力给通信节点840。通信节点845和850类似地由其它配电变压器(未示出)供电。
耦合器805和通信节点840一起工作来感测位置810处的电流、相位和电压。通信节点840周期性地经由耦合器805、电力线825、耦合器830和通信节点850在PLC信号中将位置810的所述感测值发送到监视器系统855。
耦合器815和通信节点845一起工作来感测位置820处的电流、相位和电压。通信节点845周期性地经由耦合器815、电力线825、耦合器830和通信节点850在PLC信号中将位置820的所述感测值发送到监视器系统855。
耦合器830和通信节点850一起工作来感测位置835处的电流、相位和电压。通信节点850周期性地将位置835处的所述感测值报告给监视器系统855。
监视器系统855在一中央控制位置处,即变电站。监视器系统855接收每个位置810、820和835的所述感测数据,以及绘制电流和整个配电网800的其它电参数的系统范围图(system-wide picture)。监视器系统855包括显示器、分析装置、记录装置和报警系统,该报警系统允许工作人员监视配电网800的操作,当停电时迅速定位以及消除停电,从而提高可靠性并降低配电系统800的电网维护总成本。
注意,耦合器805被附接到电力线825的较低相线上,以及耦合器830被附接到电力线825的中间相线上。PLC信号从一个相耦合到另一个相,这允许相对不依赖于耦合器所处的相线进行通信。
虽然这里将感应描述为感测耦合器所附接的相线上的参数,也可将独立的常规电流传感器(未示出)附接到其它相上,将所述电流传感器的数字输出附接到诸如通信节点840的通信节点上的端口(未示出)上,以及提供更完整的数据集给监视器系统855。类似地,独立的常规电压传感器可附接到低压或中压电力线上,并且将他们的数字数据提供给监视器系统855。因此,如果公用事业公司需要在某一关键电极处的所有电流和电压的完整图像,那么公用事业公司可将其通常使用的这种类型的传感器附接到其它线路(未由通信节点840、845和850所感测),以及一方便地设置的通信节点840、845或850可担当这些额外数据源的数字数据中继。
虽然这里所描述的几种系统被描述为结合电力线参数的感测提供双向数据通信,但是不必须是这种情况。例如,参考图1,在系统100中,当通信节点112测量I101时,电力线103上可能没有出现PLC信号。因而,在测量I101时,经由耦合器105从电力线103耦合的所述信号可仅包括所述工频信号,而不包括PLC信号。此外,不管PLC信号是否出现在电力线103上,通信节点112不必配置成双向通信,而是可仅配置成经由耦合器105进行PLC传输。同样地,通信节点112感测所述工频信号,并随后经由耦合器105在PLC信号中将表示所述感测到的信号的数据发送到远程监控站。此外,可以不必为经由耦合器105的任何PLC配置通信节点112。例如,通信节点112可感测、处理并经由与通信节点112本地连接的接口呈现结果,而不必传递任何数据给任何其它装置。
测量中压电力线或高压电力线上的电流的量值和/或相位、并传递该测量结果的系统,优选地使致命电压和所述测量电路相隔离,并提供保护抵抗这些线路上经常出现的电涌。这里描述的系统包括电感耦合器,该电感耦合器可提供电流测量和通信,因此所述测量数据很容易集中到一中心点来进行分析、报警、记录和故障检测。
虽然已公开了本发明的各种示例性实施方式,但是在不脱离本发明的范围的情况下,可进行各种变化和修改来获得本发明的一些优点,这对于本领域技术人员来说是显而易见的。例如,虽然高通滤波器116、低通滤波器117和旁路模块415在这里描述为用分离的组件(即分离的电容器和分离的电感)进行实施,但是他们可实施为其中由数字信号处理执行各个操作的数字电路。本发明包括所有这种落在所附权利要求的范围内的变化和修改。
权利要求
1、一种方法,包括
经由对来自电力线的通信信号进行耦合的电感耦合器,将流经所述电力线的工频电流转换成工频电压;
从所述通信信号中分离所述工频电压;以及
根据所述工频电压确定所述工频电流的参数值。
2、根据权利要求1所述的方法,
其中所述电感耦合器包括
(a)具有穿过其中的孔的磁芯,其中所述电力线穿过所述孔并充当所述电感耦合器的初级线圈;以及
(b)沿所述磁芯的一部分卷绕的次级线圈,其中在所述次级线圈两端感应产生所述工频电压。
3、根据权利要求1所述的方法,其中所述分离的过程包括让所述工频电压通过阻挡所述通信信号的滤波器。
4、根据权利要求3所述的方法,
其中所述通信信号被发送到让所述通信信号通过并阻挡所述工频电压的电路,以及其中所述方法进一步包括
绕过所述电路发送所述工频电压;
在所述电路的下游将所述工频电压和所述通信信号多路复用到一起来产生经多路复用的信号;以及
在所述确定过程之前,对所述经多路复用的信号进行解复用。
5、根据权利要求1所述的方法,其中所述工频电压具有大约50-60Hz的频率范围,以及所述通信信号具有大于大约1MHz的频率。
6、根据权利要求1所述的方法,其中所述参数选自下列的组,该组包括(a)所述工频电流的量值,以及(b)所述工频电流相对于参考相位的相位。
7、根据权利要求1所述的方法,进一步包括
将所述值调制到合成的通信信号上;以及
经由所述电感耦合器,将所述合成的通信信号耦合到所述电力线上。
8、根据权利要求1所述的方法,
其中所述电感耦合器包括
(a)具有穿过其中的孔的磁芯,其中所述电力线穿过所述孔并充当所述电感耦合器的初级线圈;以及
(b)沿所述磁芯的一部分卷绕的次级线圈,其中在所述次级线圈的两端感应产生所述耦合信号,
其中所述分离过程包括让所述工频电压通过阻挡所述通信信号的滤波器,以及
其中所述方法进一步包括
将所述值调制到合成的通信信号上;以及
将所述合成的通信信号发送到所述电感耦合器上。
9、一种系统,包括
电感耦合器,所述电感耦合器(a)耦合来自电力线的通信信号,以及(b)将流经所述电力线的工频电流转换成工频电压;
滤波器,所述滤波器将所述工频电压从所述通信信号中分离出来;以及
处理器,所述处理器根据所述工频电压确定所述工频电流的参数值。
10、根据权利要求9所述的系统,
其中所述电感耦合器包括
(a)具有穿过其中的孔的磁芯,其中所述电力线穿过所述孔并充当所述电感耦合器的初级线圈;以及
(b)沿所述磁芯的一部分卷绕的次级线圈,其中在所述次级线圈的两端感应产生来自所述工频电压的所述工频电流的所述参数值。
11、根据权利要求9所述的系统,其中所述滤波器让所述工频电压通过并阻挡所述通信信号。
12、根据权利要求11所述的系统,
其中所述通信信号被发送到让所述通信信号通过并阻挡所述工频电压的电路,以及其中所述系统进一步包括
旁路模块,所述旁路模块绕过所述电路发送所述工频电压;
一种装置,所述装置在所述电路的下游将所述工频电压和所述通信信号多路复用到一起来产生经多路复用的信号;以及
一种装置,对所述经多路复用的信号进行解复用,以便所述处理器可确定所述值。
13、根据权利要求9所述的系统,其中所述工频电压具有大约50-60Hz的频率范围,以及所述通信信号具有大于大约1MHz的频率。
14、根据权利要求9所述的系统,其中所述参数选自下列的组,该组包括(a)所述工频电流的量值,以及(b)所述工频电流相对于参考相位的相位。
15、根据权利要求9所述的系统,进一步包括
调制解调器,所述调制解调器将所述值调制到合成的通信信号上,
其中经由所述电感耦合器,所述系统将所述合成的通信信号耦合到所述电力线上。
16、根据权利要求9所述的系统,
其中所述电感耦合器包括
(a)具有穿过其中的孔的磁芯,其中所述电力线穿过所述孔并充当所述电感耦合器的初级线圈;以及
(b)沿所述磁芯的一部分卷绕的次级线圈,其中在所述次级线圈的两端感应产生所述耦合信号,
其中所述滤波器让所述工频电压通过并阻挡所述通信信号,
其中所述系统进一步包括调制解调器,用以将所述值调制到合成的通信信号上,以及
其中经由所述电感耦合器,所述系统将所述合成的通信信号耦合到所述电力线上。
17、一种装置,包括
滤波器,所述滤波器将工频电压从通信信号中分离出来,所述通信信号经由电感耦合器从承载了工频电流的电力线中被耦合;以及
处理器,所述处理器根据所述工频电压确定所述工频电流的参数值。
18、根据权利要求17所述的装置,其中所述滤波器让所述工频电压通过并阻挡所述通信信号。
19、根据权利要求17所述的装置,其中所述工频电压具有大约50-60Hz的频率范围,并且所述通信信号具有大于大约1MHz的频率。
20、根据权利要求17的装置,进一步包括调制解调器,所述调制解调器将所述值调制到合成的通信信号上从而经由所述电感耦合器耦合到所述电力线上。
全文摘要
本发明提供一种测量由电力线承载的工频电流的参数的方法。所述方法包括(a)经由对来自电力线的通信信号进行耦合的电感耦合器,将流经所述电力线的工频电流转换成工频电压;(b)从所述通信信号中分离所述工频电压;以及(c)根据所述工频电压确定所述工频电流的参数值。也提供了一种测量所述参数的系统和装置。
文档编号G08B1/08GK101573737SQ200780025833
公开日2009年11月4日 申请日期2007年4月10日 优先权日2006年7月7日
发明者耶胡达·塞伦 申请人:安比恩特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1