光存储器的读/写设备及读/写方法

文档序号:6750543阅读:214来源:国知局
专利名称:光存储器的读/写设备及读/写方法
技术领域
本发明涉及光存储系统,更具体地说涉及从光存储介质读出信息,和将信息写到光存储介质上。
背景技术
光存储系统由光盘驱动器系统和光存储介质,例如光盘组成。光盘驱动器具有光束源,光束分配系统和从光盘读出信息以及将信息记录到光盘上的光束检测系统。光盘驱动器的读写操作功能一般利用光拾取单元(OPU)来完成,光拾取单元被设置成以致光束与光盘的垂线成一定角度,以便辐射和检测。在本说明书中,这种读写操作被称为垂直操作。
现有技术的光拾取单元一般具有激光二极管,光探测器,光学透镜和将透镜放在适当位置以便在读写操作期间正确聚焦和寻轨的音圈。OPU通过使用与电动机连接的滑轨系统径向移动,以访问光盘上的数据轨,或者固定的OPU与和电动机连接的齿轮传动的可旋转定位的光导管连接。当光盘借助于电动机绕其中心旋转,并且OPU或与OPU连接的光导管头径向越过光盘移动时,光盘的数据轨被访问。
现有技术的光拾取单元使用朝向光存储介质的单一光束路径。光导管被用作将光束从光源引向邻近于光盘的数据轨的透镜系统,以及将反射光束从光盘的数据轨引回到邻近于光源的检测系统的通道。在典型的实施例中,偏振光束分光器(或者使用例如半反射镜的类似系统)被用于将光束引向透镜系统。
传统的CD和DVD技术被认为是已知技术,并且为专利和出版文献广泛覆盖;从而,这里不再明确地提及它们。在下面的文献WO99/00793,US4581529,US5481515,US5835458和US6256283中描述了关于现有光拾取单元的非标准解决方案的一些例子。非标准固定臂系统的最新现有技术包括文献WO02/059888A2和WO02/059887A2。
现有技术的OPU系统存在一些限制。可移动的OPU或者齿轮传动的可旋转定位的光导管头的质量较大。尤其是激光源是一个笨重的组件,在现有系统中,激光源的质量以可移动的OPU或者可移动的光导管头为中心。可移动OPU的重量和光盘的纵向运动一起导致散焦和对轨迹角误差敏感的问题。现有技术的许多光存储系统需要系统中的像散来进行误差分析,这也会导致呈使用的像散部件形式的更大的组件总数。所有额外的组件导致系统重量和复杂性增大,这会延长访问时间并增大OPU系统的能耗。就可移动的滑架OPU系统来说,访问时间明显较长。

发明内容
本发明的一个目的是解决现有技术的问题,提供一种使得能够实现轻小的光存储系统的用于从光存储介质读出数据和将数据写入光存储介质的设备和方法。本发明的另一目的是提供一种使光存储系统焦点对准并在数据轨上从而确保可靠操作的,用于从光存储介质读出数据和将数据写入光存储介质的设备和方法。
通过提供一种其中单一光束或多个光束被设置为成角度地横切光存储介质,以便辐射(发射)光束并检测(接收)反射光束的设备和方法,实现本发明的目的。当光束的中心光束基本偏离光存储介质的垂直方向时,所述光束是横切的。
根据本发明,提供一种设备,包括光存储介质驱动器,和至少一个从包含多个数据轨的光存储介质读出数据和将数据写入该光存储介质的访问单元,所述设备包括被设置成产生至少一个第一光束和至少一个第二光束的至少一个光源;被设置成传输并将所述第一光束和所述第二光束引向所述光存储介质的数据轨的传输装置;和被设置成检测从光存储介质的表面反射的光束的检测装置,其特征在于,所述访问单元被设置成在一端三维枢轴转动,所述传输装置和所述检测装置被设置成和所述访问单元的移动一致地移动,所述传输装置被设置成将所述第一光束和所述第二光束横切引向光存储介质的数据轨,所述检测装置被设置成从所述光存储介质的数据轨接收所述第一光束或所述第二光束的反射光束。
根据本发明,提供一种在包括至少一个访问单元的设备中,从光存储介质读出数据和将数据写入光存储介质的方法,所述方法包括下述步骤包含多个数据轨的至少一个光存储介质存储数据;光存储介质驱动器控制设备的操作;至少一个光源产生至少一个第一光束和至少一个第二光束;所述第一光束和所述第二光束被传输并被引向所述光存储介质的数据轨;从光存储介质的表面反射的光束被检测,其特征在于,它还包括下述步骤所述第一光束和所述第二光束被横切引向所述光存储介质的数据轨;来自所述光存储介质的数据轨的所述第一光束或所述第二光束的反射光束被接收,所述访问单元相对于一端的枢轴点三维移动,从而聚焦所述第一和第二光束以及使之寻轨。
本发明的一个优选实施例是一种通信设备和方法,其中访问单元,最好是臂状单元对某一位置是可控的,其中读取光束被横切地引向光存储介质的数据轨,写入光束垂直于所述光存储介质的数据轨,其中通过依据检测器识别的反射光束的强度分布的变化,使光束保持在焦点上以及在数据轨上。根据一个优选实施例,发射光束的光源位于访问单元的一端的枢轴点上或其附近。
在本申请中,三维意味着访问单元相对于垂直(x)和水平(y)轴移动,并在枢轴点相对于纵(z)轴旋转。在本申请中,术语聚焦和保持在焦点上含义相同,术语“寻轨”和保持在数据轨上含义相同。
本发明提供一种实现光学读/写系统的新途径,它能够借助简化光学系统的新的光学组件排列,减少组件总数。根据本发明的活动访问单元能够利用更薄的几何尺寸来制造,从而活动访问单元满足超小型光存储设备中极需的关于小尺寸和低重量的要求。
另外,本发明提供一种新的使光学读/写系统保持在焦点上以及在数据轨上的准确方法。使用被引向光存储介质以及从光存储介质反射的横向光束,和活动访问单元的使用的组合提供一种简单的聚焦和寻轨方法。依据反射光束的强度分布的变化,能够识别聚焦误差和寻轨误差信号。通过读和/或写操作期间同时的横向光束聚焦和寻轨,实现可靠的操作。
另外,根据本发明的更轻更小的活动访问单元还能够实现光存储介质的更快随机访问时间。通过将所有可能的组件(包括光源)固定在访问单元的枢轴点上,访问单元的可移动质量变得更轻。这使移动臂状单元所需的角动量降至最小。通过减少组件总数,根据本发明的方法和设备从而还减少能耗。在本发明的最简单的实现中,光学组件的组件总数可被减到最少。由于组件总数减小,还能够节省空间,并且生产成本降低。
此外,根据本发明的设备和方法不对光存储介质提出任何附加限制,所有现有的光盘介质可被使用。
在从属权利要求中描述了本发明的一些实施例。在附加的报告中描述了本发明的主要物理特征和模拟结果,所述附加报告补充专利申请,但是并不取代专利申请。报告包含本申请中没有考虑的一些详细计算,因为它们被认为是一个特定实施例的细节,而不是和基本发明有关。但是,它们和建立本发明的技术可行性有关。
特别在附加的权利要求中陈述了被认为是本发明的特性的新特征。但是,结合附图和附加的报告,根据具体实施例的下述说明,将就其结构及其操作方法,对发明本身以及其另外的目的和优点有更好的理解。


图1a图解说明根据本发明的一个实施例的设备的侧投影。
图1b图解说明根据本发明的另一实施例的设备的侧投影。
图2a图解说明根据本发明的设备的光学器件设置的一个实施例。
图2b图解说明根据本发明的设备的光学器件设置的另一实施例。
图2c图解说明根据本发明的设备的光学器件设置的另一实施例。
图3a图解说明根据本发明的设备的光学器件设置的简单实施例。
图3b图解说明根据本发明的设备的光学器件设置的另一实施例。
图4a图解说明根据本发明的设备的一个实施例。
图4b图解说明根据本发明的设备的另一实施例。
图4c图解说明根据本发明的设备的又一实施例。
图5图解说明根据本发明的利用两个独立光源的实施例。
图6a图解说明根据本发明的设备的聚焦信号检测的基本原理。
图6b图解说明根据本发明的设备的聚焦信号检测的基本原理。
图6c图解说明根据本发明的设备的聚焦信号识别的基本原理。
图6d图解说明根据本发明的设备的聚焦信号识别的基本原理。
图6e图解说明根据本发明的设备的聚焦信号识别的基本原理。
图7a图解说明根据本发明的设备的寻轨信号检测的基本原理。
图7b图解说明根据本发明的设备的寻轨信号检测的基本原理的侧视图。
图7c图解说明根据本发明的设备的寻轨信号检测的基本原理的侧视图。
图7d图解说明根据本发明的设备的寻轨信号识别的简化基本原理。
图7e图解说明根据本发明的设备的寻轨信号识别的简化基本原理。
图7f图解说明根据本发明的设备的寻轨信号识别的简化基本原理。
图7g图解说明根据本发明的设备的寻轨信号识别的基本原理的顶视图。
图7h图解说明根据本发明的设备的寻轨信号识别的基本原理。
图7i图解说明根据本发明的设备的寻轨信号识别的基本原理。
图7j图解说明根据本发明的设备的寻轨信号识别的基本原理。
图7k图解说明根据本发明的设备的寻轨信号识别的基本原理。
图8图解说明根据本发明的通信设备的方框图。
图9图解说明根据本发明的方法的流程图。
图10a图解说明根据本发明的一个实施例的方法的算法的流程图。
图10b图解说明根据本发明的另一实施例的方法的算法的流程图。
具体实施例方式
图1a图解说明了根据本发明的从光存储介质读出数据和将数据写入光存储介质的设备的主要设置。光存储介质11可以是任意CD型可读和/或可写光盘,例如CD-R、CD-ROM、CD-RW、DVD或者任意其它现有光盘介质或者这种类型的未来实现。光存储介质11包括数据轨,相邻的数据轨由狭窄的区域相互分离开。数据轨可被预先开槽或者压印,并由适当的材料制成,从而在光存储介质上形成可光学分辨的结构。在数据轨上产生足够的光强变化的位模式(bit pattern),例如介质的有凹坑结构构成存储和改变信息的基础。该设备还包括光存储介质驱动器(未示出),它可以是可从市场上获得的任意类型的光存储介质驱动器。
访问单元10在其一端101(这里被称为枢轴点101)三维枢轴转动。三维枢轴转动意味着访问单元在枢轴点相对于垂直轴(x),水平轴(y)和纵向轴(z)移动。从而,访问单元能够相对于其枢轴点沿上-下和横向方向,以及沿和相对于访问单元的枢轴点的旋转轴相关的旋转方向被控制。通过相对于倾斜(z轴)方向控制访问单元,产生访问单元的推挽运动,所述推挽运动使z轴保持垂直于光存储介质的表面。访问单元10最好是臂状单元,它也可被称为转动臂或活动臂。臂在x、y、z方向上的运动可由例如和控制传统CD驱动器中的小透镜的运动的音圈(acoustic loop)类似的音圈控制。可按照多种备选方式实现访问单元;关键点在于光束的方向在x、y、z方向上是可控的。
图1a中图解说明的设备的其它主要单元是发出光束13的光源12,使光束转向光存储介质11的光学组件15,例如反射镜,棱镜或其它适当的光学组件,使光束转向并聚焦光束的另一光学组件16,例如透镜或衍射光学器件(DOE),准直和/或聚焦反射光束的光学组件17,例如透镜或衍射光学器件(DOE),和接收并检测反射光束的检测器部件18。检测器部件18具有两个或更多,最好四个分析聚焦和寻轨信号的检测面。准直光学器件14可被用于准直光束。从光源12到光学组件15、16的光束13的传输可在自由空间中完成,不过也可使用光学组件(未示出),例如波导管,光导管等来传输光束。该设备的所有上面提及的单元12-18被设置成它们与访问单元10的移动相一致地移动,即借助适当的固定装置将它们附着在访问单元上,所述固定装置的一个例子是图1a中的支撑体19。单元12和18还与设备的访问单元10和主控制单元(未示出)电连接。光源12最好位于枢轴点101或其附近,以使移动臂所需的角动量降至最小。
按照上面提及的根据本发明的设备的设置,从光源发出的光束成横切角地被导向光存储介质的数据轨。从光存储介质的表面反射的反射光束由检测器组件18和相关的光学组件17成横切角地接收。由于光束的不同光路的缘故,自然产生照射光和包含数据信号的反射光的分离。
根据该设备的一个实施例,光源12可位于访问单元10的不同于枢轴点101的另一端,即,位于访问单元,最好是臂状单元的端部。在本实施例中,光源以恰当的角度被引向光存储介质的表面,从而不需要任何反射镜来使光束转向。只需要一个DOE16来正确地聚焦光束。和图1a中描述的相比,本实施例需要较小的组件,但是它假定要使用极轻的光源。
图1b图解说明了根据本发明的设备的另一实施例。在设备的该设置中,检测器部件18位于枢轴点101和光源12或其附近。当使用光束的单一光路传播时,还需要在聚焦组件17a之后设置另一光学组件15b,以便使光束转向检测器部件18。也可在检测器部件之前设置检测光学器件14b,用于聚焦反射光束。
根据该设备的另一实施例,也中使用多个光路。图1b图解说明将光束分分成一束以上的分光器组件17b。当使用分光器组件时,需要在检测部件之前的用于多光束13b中的每一束的检测器光学器件14b。在本实施例中,根据光源的类型,光源12可发出单一光路或者多个光路。在光源发出单一光路13a的情况下,分光器组件17可被安装在转向组件15a之前。
图2a-2c图解说明根据本发明的某一实施例的设备的光学器件设置,其中使用两个光束21、22用于读取数据的光束21,和用于写入数据的光束(22)(粗线)。该设备的光学器件设置包括使光束转向的反射镜24、25。代替反射镜,也可使用棱镜或者其它适当的光学组件来使光束转向。在基体23上集成有检测器部件26,透明部件28,例如玻璃部件,和在透明部件之前的衍射光学器件(DOE)27。反射光束33被引向检测器部件26。在图2a和2b中描述的实施例中,用于光束21的反射镜在用于光束22的反射镜24之前,从而读取光束21被设置成在和写入光束22形成的聚焦光束的光斑位置29a不同的位置中,在光存储介质11上形成聚焦光束的另一光斑位置29b。根据一个实施例,存在用于这两个聚焦光束的独立光斑位置,即,读取点29b和写入点29a。这些光斑位置29a、29b可在数据轨上,包括在不同数据轨上的位置相对于彼此任意方向地定位,例如一个光斑可位于另一光斑之前、之后或者旁边。根据本发明的优选实施例,读取光束21被设置成最好在写入光束形成的聚焦光束的光斑位置29a稍前一点在光存储介质11上形成聚焦光束的另一光斑位置29b。
图2a表示本发明的使用横向光束相对于光存储介质读取数据和写入数据的一个实施例。如图2b中所示,本发明的另一实施例相对于光存储介质使用横向光束读取数据,使用垂直光束写入数据。这里横向意味着朝着光存储介质的横向光束,垂直意味着到光存储介质的垂直光束。后面在本说明中描述光束脉冲的同步。读取脉冲和写入脉冲的同步使得聚焦和写入操作能够同时进行。本实施例能够实现写入操作的快速随机访问时间。它提供在超小型设备中极需的极小并且低质量的光拾取单元,并且能够实现快速访问。另外由于组件总数减小,因此减少了成本并且降低了能耗。
图2c图解说明根据本发明的利用两个光束的设备的光学器件设置的另一实施例。在本实施例中,读取光束21和写入光束22击中聚焦光束的相同光斑29。该光学器件的设置与图2a或2b的设置的不同在于反射镜24位于反射镜25之前。如图2c中所示,本发明的本实施例相对于光存储介质,使用横向光束读取数据,使用垂直光束写入数据。其结果是在垂直光束实行写入操作的同时,横向光束实行聚焦和数据轨导引。后面在本说明中说明读取脉冲和写入脉冲的同步。本发明的本实施例还提供在超小型设备中极需的极小并且低质量的光拾取单元。另外由于组件总数减小,因此减少了成本并且降低了能耗。
图3a表示根据本发明的设备的简单光学器件设置的一个实施例,其中通过单个透镜35引导独立的读取光束31和写入光束32以及反射的读取光束33。衍射器件(未示出)可被实现成表面部件。另外,本发明的本实施例相对于光存储介质,使用横向光束读取数据,使用垂直光束写入数据。
图3b表示根据本发明的设备的光学器件设置的一个实施例,其中通过单个透镜35引导独立的读取光束31和写入光束32以及反射的读取光束33。衍射器件(未示出)可被实现成表面部件。另外,光学组件36、37被用于依据光束的偏振或波长,将输入的读取光束31和反射的读取光束33与写入光束32分开。通过使用诸如偏振分光器和分色镜之类组件实现光学组件36、37,并且衍射器件可和这些组件一起使用。本实施例提供规定读取光束和写入光束具有相反的偏振或者不同的波长,并且介质对在这些不同偏振或波长下的光线的反应不同(例如双光子操作)。
图4a图解说明根据本发明的具有一个访问单元41的设备的一个实施例,所述访问单元41最好是臂状单元。在本实施例中,沿着如前所述在枢轴点101一端三维枢轴转动的臂41控制读取光束和写入光束。臂状单元由轻小型电动机43运转。根据本实施例,读取光束被引导并被转向,从而以横切角与光存储介质11相遇,写入光束被引导并被转向,从而垂直于光存储介质11。在图2a、2b、3a和3b中描述的所有光学器件设置可与单臂实现结合使用。这种设置能够同时实现读取和写入操作。即使写入操作较缓慢,它也能够实现读取操作的极快访问时间。
图4b图解说明根据本发明的具有双臂单元的设备的一个实施例。在本实施例中,沿着第一臂41控制读取光束,沿着第二臂42控制写入光束。这两个臂都在枢轴点101一端三维枢轴转动。根据本实施例,读取光束被引导并被转向,从而以横切角与光存储介质11相遇,写入光束被引导并被转向,从而与光存储介质11横断或者垂直。在图2a、2b、3a和3b中描述的所有光学器件设置可与双臂实现结合使用。这种设置能够同时实现读取和写入操作。即使写入操作较缓慢,它也能够实现读取操作的极快访问时间。双臂单元还能够使用类似于现有CD和CD-R驱动器的独立只读驱动器和读/写驱动器。但是,双臂单元稍微增大了设备的重量,但是通过例如借助齿轮系统共享电动机43的一些功能,从而不必要求包括用于两个臂的两个独立电动机,能够使额外的质量降至最小。可使这两个臂机械同步,从而提供更对称的读取和写入操作。
图4c中图解说明了根据本发明的设备的又一实施例。这里,结合根据本发明的一个实施例的用作访问单元的臂状单元41使用传统的滑架单元45。在本实施例中,读取光束由臂状单元引导和转向,从而以横切角与光存储介质11相遇,写入光束由滑架单元45被引导并被转向,从而与光存储介质11垂直。臂状单元在枢轴点101一端三维枢轴转动。和图4a中描述的单臂单元及图4b中描述的双臂单元相比,本实施例向设备增加了更大的重量,因为滑架单元45和臂状单元41需要独立的电动机43、44。图4b和4c中所示的实施例不是本发明的最佳方式,因为它们增大了设备的重量、成本和复杂性,并且写入操作使用如图4c中所示的传统的光学拾取单元(OPU),它们具有在本发明的背景技术中描述的问题。
图5图解说明了本发明的一个实施例,其中独立的光束或光路56、58由两个独立的光源51、52产生。根据本发明,光束路径56、58被引向访问单元50,如前在本说明中所述。在本实施例中,独立的光源51、52由同步装置55同步,以保证读/写操作的高精度。在图10a中描述了具有独立光源的实施例的简化算法的流程图,在图10b中描述了具有独立光源的实施例的另一算法的流程图。
下面说明聚焦和寻轨信号的检测。光束沿着转动臂从光源发出,所述转动臂能够相对于枢轴点三维受控。这意味着转动臂沿上下方向、横向方向和纵向(和旋转轴相关的旋转)方向移动,即,它相对于x、y和z轴枢轴转动。这种设置保证在传播方向上横断光存储介质的表面,但是在横向方向上准确地垂直于光存储介质的表面沿着数据轨而行。访问单元的推挽运动使z轴保持垂直于光存储介质的表面。
使用被引向光存储介质并从光存储介质反射的横向光束和活动臂使用的结合提供简单的聚焦和寻轨能力,因为通过跟踪反射光束的光强分布的变化,能够识别聚焦和寻轨信号。同时的横向光束聚焦和同时的读和/或写操作实现了可靠的操作和快速随机访问时间。
信号处理方法依赖于数级衍射光的存在。反射光束被分成多个子光束,称为衍射级,由从中心光束(衍射级=0)开始的序数指定,并在中心光束的相应两侧被附加正号或负号(-1、+1等)。中心光束(图7b和7c中的粗箭头1b、1b′)是对应于普通几何反射的0级衍射。在第一级近似中,几何光学器件可被用于分析该级的行为(图6a-6e)。侧级的分析(图7b、7c中的细线1a、1c、1a′、1c′、1c″)需要其中考虑衍射的光学建模。但是,同样作为第一级近似,几何光学建模已被用于跟踪衍射级的中央峰值的位置。该中心光束和侧级一起形成现有技术中已知的所谓的“棒球图案”(图7g-7k)。
图6a和6b图解说明根据本发明的设备的聚焦信号检测的基本原理。在图6c-6e(和7d-7f)中描述了检测器部件18,它最好是具有四个检测面18a、18b、18c和18d的四象限(quad)检测器。在图6a中,访问单元10,最好是臂状单元根据需要,相对于光存储介质11移动,以便保持光束在焦点上。图6b表示将光束横向转向光学存储介质的光学器件,例如透镜16,和具有至少两个表面部件的检测器部件18。也可使用更多的检测器和具有不同几何形状的检测器。根据本发明,光学器件16和检测器部件18被设置成借助适当的固定装置沿着臂状单元10移动。因为活动臂的缘故,光学器件16朝着或者远离光存储介质的移动将根据光存储介质11和光学器件16之间的距离,在检测器部件18上移动光斑位置A、B、C。点A′、B′、C′分别是光束在光存储介质上的光斑位置。在图6b中,光斑位置A(A′)表示当反射光束聚焦在光存储介质11的表面上时的情形。对应地,光斑位置B(和B′)表示光存储介质11过于接近检测器(在焦点以上),光斑位置C和(C′)表示光存储介质11过于远离检测器(在焦点以下)。借助检测器之前的光学器件(例如图2a部件28)或者衍射光学器件(例如图2b部件27),光束可以可选地被引向检测器部件18。
下面结合图6c、6d和6e说明通过识别聚焦信号从而控制臂状单元的移动的检测。这些解说明了检测器部件18,最好是具有四个检测面18a、18b、18c和18d的四象限(quad)检测器。数据轨方向由箭头表示。例如,准直的圆形光束可被发出,并由衍射光学器件聚焦到数据层上。反射光束随后由衍射光学器件准直或聚焦到检测器上。来自光存储介质的表面的反射光束由四象限检测器18接收,其四个表面积18a、18b、18c和18d分别对应于光强信号S1、S2、S3和S4。图6c、6d和6e表示一个接收的反射光束是否在焦点上。检测器18上光斑的强度分布和形状在光存储介质的各个位置变化。焦点由沿着四象限检测器的上下方向的中心反射光束的位置确定(存在表现为侧面光斑的另外的衍射级。由于这些侧面光斑被用在寻轨检测中,因此该图中已除去了这些侧面光斑;原则上,它们只对焦点推挽算法增加额外的校准因素)。在图6c中,聚焦信号对准光斑76,光斑76覆盖表面积S2远远大于表面积S3的区域。这意味着反射光束在焦点之上,检测器部件被设置成控制访问单元向下移动。在图6d中,聚焦信号对准光斑76,光斑76覆盖信号S2和S3相等的检测器表面的区域。这意味着反射光束在焦点上,不需要任何校正,从而检测器部件被设置成控制访问单元静止不动。最后,在图6e中,聚焦信号对准光斑76,光斑76覆盖信号S2远远小于信号S3的区域。这意味着反射光束在焦点之下,检测器部件被设置成控制访问单元向上移动。检测器的表面上的棒球图案正在根据改变的焦点进行移动。
图7a、7b和7c图解说明根据本发明的设备的寻轨的基本原理的高度简化的示意图。图7g-7k中表示了更逼真的示意图。图7a-7f表示基本原理的一个实施例的直观表现。在图7a中,访问单元10,最好是臂状单元,相对于光存储介质11横向移动,保持光束在数据轨上。图7b和7c表示形成聚焦光束的透镜16,当反射时,所述聚焦光束产生围绕中心光束的两级衍射。在几何近似中,这些可被模拟成朝着光存储介质11的数据轨70传播的光束1。每个光束随后被反射向具有至少两个,最好四个表面部件的检测器部件18,以便分析寻轨。反射的中心光束在图7b中为1b,在图7c中为1b′。反射的衍射光束分别为1a、1c和1a′、1c′。图7b表示当光束在数据轨上(衍射级-1、0、+1)时的情形,图7c表示偏离数据轨的情形,其中光束1c′反射自数据轨70的边缘(光束1c″)。
下面结合图7d、7e和7f说明通过识别寻轨信号从而控制臂状单元的移动的检测。这些解说明了检测器部件18,最好是具有四个检测面18a、18b、18c和18d的四象限(quad)检测器。数据轨方向由箭头表示。例如,圆形准直光束1可由衍射光学器件聚焦到数据层上。反射光束随后由衍射光学器件准直或聚焦到检测器上。寻轨信号由检测器部件18检测。反射光束的光斑位置在检测器的四个表面上形成棒球图案。检测器18上光斑的强度分布和形状在光存储介质的各个位置变化。通过比较由例如两个象限,例如位于数据轨的相对两侧的表面18a和18d接收的强度,可以识别寻轨特征。来自光存储介质的表面的反射光束(图7b光束1a、1b、1c)由四象限检测器18接收,其四个表面积18a、18b、18c和18d分别对应于光强信号S1、S2、S3和S4。例如,在图7d、7e和7f中,两个反射光束被检测和识别。就偏离数据轨的情况来说,根据图7d和7f,棒球图案变得不对称。在图7d中,在检测器表面18a的区域上的光斑77a的光强高于在表面18d上的光斑77b的强度,对应于信号S1高于信号S4,这意味着光束将偏向数据轨的左侧。这导致检测器部件18被设置成控制访问单元向右移动。在图7f中,在检测器表面18d的区域上的光斑77b的光强高于在表面18a上的光斑77a的强度,对应于信号S4高于信号S1,这意味着光束将偏向数据轨的右侧。这导致检测器部件18被设置成控制访问单元向左移动。在图7e中,在表面积18a和18d中,光斑77a和77b的强度相同,从而光束在数据轨上。不需要任何校正,从而检测器部件被设置成控制访问单元静止不动。检测器的表面上的棒球图案正在根据改变的寻轨进行移动。
反射光斑和棒球图案的细节稍微不同于上面描述的理想情况;例如,当其高于或低于焦点时,中心聚焦光束将变形,而不是保持圆形。另外,必须使用更实际的衍射模型(下面说明)来更逼真地描述读出机制。上面表示的方法适用作定性一级近似。当使用臂状单元的推挽机制时,这些不规则性并不关键;系统目的在于使系统保持其中中心光斑被聚焦在四象限检测器的中心,侧面的棒球图案对称的结构。在最坏的情况下,不规则性可能要求对不同方向上推挽机制的灵敏性的调整,另外需要来自四象限检测器的信号的一定不对称校准(它可在信号处理电子器件中很平常地完成)。类似地,由于臂状单元的运动,检测器可能稍微偏离数据轨;这可由类似的校准来校正,或者在一些情况下甚至可被忽略。
下面表示利用更逼真的衍射模型的读出方案的物理上更准确的表现。下面结合图7g-7k说明根据本发明的本实施例,通过识别寻轨信号从而控制臂状单元的移动的检测。
数据层的数据轨形成周期性的结构,它起反射光栅的作用,如图7g中所示,图7g是图7b的顶视图。图7g图解说明数据轨70和描述成数据轨间隔的光栅周期t。该光栅将输入光束1分成子光束1a、1b和1c,它们被称为衍射级,由其从中心光束1b开始的序数指定,并在中心光束的相应两侧被附加正号1a或负号1c。图7g表示从-I到+I的三个衍射级,这里I是1、2、3等。通过利用第0级(中心反射光束1b)和±第I级之间的干涉产生寻轨信号,所述干涉改变由象限18a和18d接收的强度,如图7h-7j中所示。这里应注意使用了相干光,从而重叠的衍射级的光强可被简单地加在一起,相反当计算象限的全部光强时,必须考虑到衍射级之间的干涉。
图7h-7j图解说明检测器部件18,最好是具有四个检测面18a、18b、18c和18d的四象限(quad)检测器。数据轨方向由箭头表示。寻轨信号被用于在光存储介质的重放期间沿着数据轨而行。在访问单元中产生寻轨信号的一种方法是比较分配有对应于信号S1的检测器表面18a和对应于信号S4的检测器表面18d的检测器部件18的两个象限接收的光强,这里18a和18d位于数据轨的相对两侧。一般来说,光存储介质的几何形状确定当光斑被聚焦到数据轨的侧面时,在这两个象限的哪一个中,光强正在增大和减小。±第I级与第0级部分重叠,如图7h-7j以及图7g中所示,在检测器部件18上形成棒球图案。图7i表示当光斑77被聚焦在数据轨的中心时的情形。从而分别在象限18a和18d中的信号S1和S4相等,因为这种情形是对称的,并且第0级与-第I级和+第I级的干涉是相同的。现在如果光斑77聚焦在数据轨的侧面,那么它改变检测器上子光束1a或1c的相位。根据光存储介质的结构,以及光束在数据轨的哪一侧,或者-第I级或者+第I级积极地与第0级干涉,即该象限中的光强增大。另一级消极地与第0级干涉,从而该象限中的光强减小。从而,如图7h中所示,和象限18d中的积极干涉相比,象限18a中的消极干涉产生较低的信号,这意味着强度信号S4大于强度信号S1,从而光束将偏向数据轨中心的左侧。对应地,如图7j中所示,和象限18d中的消极干涉相比,象限18a中的积极干涉产生较高的信号,这意味着强度信号S1大于强度信号S4,从而光束将偏向数据轨中心的右侧。检测器的象限中的积极干涉和消极干涉的幅度,从而信号的幅度正比于光斑77到导致在距离函数中变化的信号的数据轨的距离。象限强度的不均衡可被检测,并被用于产生使光束聚焦在数据轨上所需的寻轨信号。
访问单元,最好是臂状单元的旋转改变检测器和数据轨的对准,系统必须能够容忍这一点。未对准可被优化到小于10度,系统可被设计成容忍这一点。未对准对称地改变检测器上的强度分布,如图7k中所示。光斑的相等面积,从而+第I级和-第I级的强度从象限18a和18d偏移到象限18b和18c。由于其缘故,用于计算寻轨信号的象限18a和18d之间的相对强度,以及用于计算聚焦信号的象限18b和18c之间的相对强度并不改变,可照常计算信号。在图7c中,未对准被夸大,根据所进行的测试,一般将小于10度。
在优选实施例中,某一光束被用于既提供聚焦信号又提供跟踪信号。另外,三束或多束或其它类型的操纵可被用于提供聚焦和跟踪信号。本发明的设备对访问单元的移动所造成的角误差不是很敏感,因为棒球图案只是被稍微旋转。
通过使用例如具有四个表面部件的四象限部件,借助模拟,例如功能电模拟信号计算,能够研究聚焦信号和跟踪信号。实际信号的详细计算和执行推挽操作所需的灵敏性和校准需要衍射建模,而不是这里表示的简化的几何模型。但是,向模型加入衍射只影响详细结果,而不影响基本原理。注意在真实系统中,可能存在这里未论及的其它光学现象,例如来自凹槽边缘的另外的衍射;因为这些是二级现象,它们可能并不显著。在这些现象不显著的情况下,通过另外的信号处理能够处理这些现象;具体的信号处理取决于特定实施例的细节,这里并不论及。
图8图解说明根据本发明的通信设备800,它包括光存储介质驱动器81和至少一个用于从光存储介质82读出数据和将数据写入光存储介质82的访问单元83。通信设备还包括至少一个发出光束的光源,发射、引导、转向和聚焦光束的光学组件85,和检测反射光束的检测器部件86。光源84,例如半导体激光器被用于提供相对于光存储介质82读写数据所需的光束。当光束从光源发出时,它会发散,即发出的光束变宽。为了将足够的光束从光源传送到所需的距离,使用光学组件85来限制光束的扩大。最好,光学组件85被用于准直或聚焦发出的光束。准直的光束可被用于在自由空间中长距离传播光束,聚焦可被用于将光束成像到光导管或波导管上。另外,光学组件85被用于重定向光束并将光束聚焦到光存储介质的数据轨上。在检测器之前,光学组件85被用于将反射光束收集到检测器组件。结合图1a、1b、2a、2b、3a和3b更详细地讨论了这些光学组件(这里仅用数字85表示)。
在图8中,根据图1a和1b中所示,访问单元83相对于垂直轴(x),水平轴(y)和纵轴(z)在其一端(枢轴点)三维枢轴转动。从而访问单元能够至少相对于其枢轴点沿上下、横向和倾斜方向受控。访问单元83,光学组件85和接收并检测反射光束的检测器部件86和结合图1a、1b、2a和2b说明的相同。它们被设置成和访问单元的移动一致地移动,即,借助恰当的坚固装置,它们被固定到访问单元上。单元84和86还与设备的访问单元83和主控制单元(未示出)电连接。光源84最好位于访问单元的枢轴点或其附近。根据上面提及的设备的设置,从光源发出的光束成横切角地被导向光存储介质的数据轨。从光存储介质的数据轨反射的反射光束成横切角地由检测器部件86和相关的光学组件85接收。前面结合图1a-5说明的设备的所有实施例还与根据本发明的通信设备80相关。另外,聚焦误差校正(图6)和寻道误差校正(图7a和7b)的基本原理与根据本发明的通信设备相联系。
根据本发明的另一实施例,光源84可位于访问单元的不同于枢轴点的另一端,即,在访问单元的端部,来自光源的光束成横切角地被引向数据轨。这种实现减小了静止组件总数,因为反射镜15、15a(图1a和1b)可被省略,衍射光学器件DOE16(图1a和1b)可被用于聚焦光束。但是,这种实现需要比目前的技术能获得的更小尺寸和更小重量的光源。
图9图解说明根据本发明的从光存储介质读出数据,和将数据写入光存储介质的方法的流程图。在第一步骤901中,光源产生光束。如果使用两个或更多的独立光源,那么根据步骤903,通过使激光源同步,使光束同步。后面在本说明中描述使用的同步算法。在步骤905中,发出的光束可被准直,随后在步骤907中发射准直后的光束。根据步骤909,发出的光束被引向并被横向转向光存储介质的数据轨。之后,在步骤911中,来自光存储介质的数据轨的反射光束被传送,随后在步骤913中检测反射的光束。根据步骤915和916,检测聚焦误差,如果需要校正,那么根据步骤919,由访问单元的移动进行恰当的校正,之后重复步骤909-916。根据步骤917和918检测寻轨误差,如果需要校正,那么根据步骤920,由访问单元的移动进行恰当的校正,之后重复步骤909-918。当聚焦和寻轨被校正时,根据步骤921,执行利用成横切角度的光束的读和/写操作。
注意在该算法的解说中省略了z方向上的控制,因为它没有提出任何显著的新颖性;它是简单的推挽算法,所述推挽算法通过寻找反射信号的对称性,保持光束被正确对准。另外注意各个方向(x、y、z)上的控制的采样频率可能非常不同,从而图9只是实际算法的高度理想的表现(其中以x、y、z方向上的采样速率进行的采样可以不同)。但是,这种理想化足以表现本发明的显著特征,各种改进被看作特定的实施例。
根据各上推挽循环(x、y、z方向上)的同步分析,还可得到更复杂的算法。这些算法被看作本发明的特定实施例和改进,不再详细论及。
图10a图解说明根据本发明的如果使用两个独立光源的方法的同步算法。可能需要独立的初始化例程。在第一步骤111中,第一光源被打开,随后在步骤113中,检测第一光源的光束的位置。在步骤115中进一步检查该位置在数据轨上,在步骤117中,检查该位置在焦点上。如果步骤115和/或117中的回答是否定的,那么根据步骤116和118进行恰当的校正。在步骤119中,第二光源被打开,从而第一光源可能被关闭,或者第一光源保持一直打开。在步骤120中进行第二光源的操作,在成功的操作121之后,在步骤123中关闭第二光源。之后第一光源(被打开)并继续中断之前它正在进行的操作。作为根据本发明的该方法的一个例证实施例是其中第一光源被用于读取操作,第二光源被用于写入操作的情形。根据该例子中,读取光束可以是脉冲的,从而当写入光束被打开时,读取光束是关闭的,或者读取光束可以一直保持打开。能量最佳并且热最佳脉冲实现取决于物理实现的细节。
另外也可使用其它类型的同步算法。图10b说明根据本发明的如果使用两个独立光源的方法的另一实施例的同步算法。可能需要独立的初始化例程。在第一步骤131中,第一光源被打开,随后在步骤133中,检测第一光源的光束的位置。在步骤135中进一步检查该位置在数据轨上,在步骤137中,检查该位置在焦点上。如果步骤135和/或137中的回答是否定的,那么根据步骤136和138进行恰当的校正。在步骤139中,第二光源被打开,从而第一光源保持打开,但是读/写操作被中断一段时间。根据步骤141和142,在所述一段时间过去之前,在步骤140中执行第二光源的操作。现在在步骤143中,第一光源从当操作被中断时它所在的位置开始继续读/写操作,第二光源的读/写操作被中断。根据本实施例,这两个激光源同时打开。
根据本发明,具有前述类型的一个或多个光束的其它实施例也是可能的,它们是这些实施例的直接扩展,不过这里不再详细论及。
本发明并不局限于上面描述的实施例。虽然这里为了说明起见,公开了本发明的一个优选实施例,但是对于本发明所属领域的技术人员来说,各种改变、修改、变化、替换和等同物完全或者部分是显而易见的。因此,本发明只由附加的权利要求的特征和范围限定。
权利要求
1.一种设备,包括光存储介质驱动器(81)以及至少一个访问单元(83),所述访问单元从包含多个数据轨(70)的光存储介质(82)读出数据和将数据写入所述光存储介质(82),所述设备包括被设置成产生至少一个第一光束(21、31)和至少一个第二光束(22、32)的至少一个光源(84);被设置成传输并将所述第一光束和所述第二光束引向所述光存储介质的数据轨的传输装置(85);和被设置成检测从所述光存储介质的表面反射(33)的光束的检测装置(86),其特征在于,所述访问单元(10、50、83)被设置成在一端三维枢轴转动,所述传输装置(14、15、16、85)和所述检测装置(17、18、86)被设置成和所述访问单元的移动一致地移动,所述传输装置(14、15、16、85)被设置成将所述第一光束和所述第二光束横切引向所述光存储介质的数据轨,所述检测装置(17、18、86)被设置成从所述光存储介质的数据轨接收所述第一光束或所述第二光束的反射光束。
2.按照权利要求1所述的设备,其特征在于,所述访问单元(10、50、83)被设置成能够受控地到达这样的位置,即在所述位置上,所述第一光束(21、31)和所述第二光束(22、32)从所述传输装置(14、15、16、85)传向光存储介质(11、82)的所述数据轨,来自所述光存储介质的数据轨的所述第一光束或所述第二光束的反射光束(33)被所述检测装置(17、18、86)接收,从而在所述光存储介质的数据轨上形成基于所述第一光束、所述第二光束和所述第一光束或所述第二光束的所述反射光束的至少一个第一聚焦光束和至少一个第二聚焦光束。
3.按照权利要求2所述的设备,其特征在于,所述第一聚焦光束被设置成在光存储介质(11)的数据轨上形成至少一个第一点(29a),所述第二聚焦光束被设置成在所述光存储介质(11)的数据轨上形成至少一个第二点(29b)。
4.按照权利要求3所述的设备,其特征在于,所述第一点被设置成位于所述光存储介质的数据轨上不同于所述第二点的位置。
5.按照权利要求3或4所述的设备,其特征在于,所述第一点被设置成位于所述光存储介质的数据轨上稍前于所述第二点的位置。
6.按照权利要求3所述的设备,其特征在于,所述第一点和所述第二点被设置成位于光存储介质的数据轨上的同一个同交叉点(29)。
7.按照权利要求1-6任意之一所述的设备,其特征在于,所述传输装置被设置成将所述第一光束横切引向所述光存储介质的数据轨,将所述第二光束垂直引向所述光存储介质的数据轨。
8.按照权利要求7所述的设备,其特征在于,所述第一光束被设置成从所述光存储介质的数据轨读出数据,所述第二光束被设置成将数据写入所述光存储介质的数据轨。
9.按照权利要求1-8任意之一所述的设备,其特征在于,至少一个光源(12)被设置成位于所述访问单元(10)的枢轴点(101)或其附近。
10.按照权利要求1-9任意之一所述的设备,其特征在于,所述传输装置(14、15、16)包括将所述第一光束和所述第二光束转向光存储介质(11)的数据轨的至少一个第一光学组件(15、15a、24、25、36),以及使所述第一光束和所述第二光束横切转向所述光存储介质的数据轨,并使之聚焦的至少一个第二光学组件(16、27、28、35)。
11.按照权利要求10所述的设备,其特征在于,所述传输装置(14、15、16)还包括用于所述光源(12)的准直光学器件(14、14a),将发出的光线分成多个光束的分光光学器件,以及与所述第二光学组件(16、27、28、35)有关的聚焦光学器件。
12.按照权利要求10所述的设备,其特征在于,所述第一光学组件和所述第二光学组件是使所述第一光束横切转向所述光存储介质的数据轨并使之聚焦,以及使第二光束垂直转向所述光存储介质的数据轨并使之聚焦的单个透镜(35)。
13.按照权利要求10所述的设备,其特征在于,所述第一光束和所述第二光束被设置成具有相反的偏振。
14.按照权利要求10所述的设备,其特征在于,所述第一光束和所述第二光束被设置成具有不同的波长。
15.按照权利要求1-14任意之一所述的设备,其特征在于,所述第一光束被设置成由第一激光源(51)产生,并由第一传输装置(56)传输;所述第二光束被设置成由第二激光源(52)产生,并由第二传输装置(58)传输;所述第一激光源和所述第二激光源被设置成由同步装置(55)同步。
16.按照权利要求15所述的设备,其特征在于,所述第一传输装置(56)和所述第二传输装置(58)被设置成使用相同的第一和第二光学组件(15、16)。
17.按照权利要求1-16任意之一所述的设备,其特征在于,所述检测装置(17、18)包括检测所述第一光束或所述第二光束的反射光束的至少一个检测器部件(18),以及使所述第一光束或所述第二光束的所述反射光束转向并聚焦的第三光学组件(17)。
18.按照权利要求17所述的设备,其特征在于,所述检测装置(17、18)还包括使所述第一光束或所述第二光束的所述反射光束转向所述检测器部件(18)的第四光学组件(15b),位于所述检测器部件之前的聚焦光学器件(14b),以及将所述第一光束或所述第二光束的所述反射光束分成多个光束的分光光学器件(17b)。
19.按照权利要求17或18所述的设备,其特征在于,所述检测器部件(18)包括检测所述第一光束或所述第二光束的反射光束(1a、1b、1c)的聚焦信号和寻轨信号的至少两个检测器表面(18a、18b、18c、18d)。
20.按照权利要求17-19任意之一所述的设备,其特征在于,所述检测器部件(18)被设置成由所述检测器部件的检测器表面(18a、18b、18c、18d)检测从所述光存储介质(11)的表面接收到的、所述第一光束或所述第二光束的反射光束(1a、1b、1c)的至少一个聚焦信号和至少一个寻轨信号,所述检测器部件被设置成根据所述检测器表面检测的所述聚焦信号和所述寻轨信号,控制所述访问单元(10)的移动,以使所述第一光束和所述第二光束保持在焦点并在数据轨上。
21.按照权利要求17-20任意之一所述的设备,其特征在于,所述检测器部件(18)被设置成由所述检测器部件的检测器表面(18a、18b、18c、18d)检测识别从所述光存储介质的表面接收到的、所述第一光束或所述第二光束的反射光束的至少一个聚焦信号和至少一个寻轨信号的强度分布的变化,所述检测器部件被设置成依据所述强度分布的变化,控制所述访问单元的移动,以使所述第一光束和所述第二光束保持在焦点并在数据轨上。
22.按照权利要求18-21任意之一所述的设备,其特征在于,在所述检测器部件(18、26)之前的所述聚焦光学器件(17、28)包括衍射光学器件(27)。
23.按照权利要求1-22任意之一所述的设备,其特征在于,所述传输装置(14、15、16)和所述检测装置(17、18)还包括被设置成沿着所述访问单元传输所述第一和第二光束和/或所述第一光束或所述第二光束的所述反射光束的波导管或光导管(13)。
24.按照权利要求1-23任意之一所述的设备,其特征在于,所述访问单元(10、50、83)是臂状单元(41)。
25.按照权利要求1-23任意之一所述的设备,其特征在于,所述设备包括从所述光存储介质读出数据的第一访问单元,以及将数据写入所述光存储介质的第二访问单元,其中所述第一访问单元和所述第二访问单元是下述之一臂状单元(41)、滑架单元(45)或者臂状单元和滑架单元的任意组合(41、42、45)。
26.按照权利要求1-25任意之一所述的设备,其特征在于,所述设备(80)是通信设备。
27.一种在包括至少一个访问单元的设备中,从光存储介质读出数据和将数据写入所述光存储介质的方法,所述方法包括下述步骤包含多个数据轨的至少一个光存储介质存储数据;所述光存储介质驱动器控制设备的操作;至少一个光源产生至少一个第一光束和至少一个第二光束(901);所述第一光束和所述第二光束被传输并被引向所述光存储介质的数据轨(907);从所述光存储介质的表面反射的光束被检测,其特征在于,还包括下述步骤所述第一光束和所述第二光束被横切引向所述光存储介质的数据轨(909);来自所述光存储介质的数据轨的所述第一光束或所述第二光束的反射光束被接收(911、913);和所述访问单元相对于一端的枢轴点三维移动,从而聚焦所述第一和第二光束以及使之寻轨(915、916、917、919、920)。
28.按照权利要求27所述的方法,其特征在于,包括所述访问单元可控地到达这样的位置的步骤,即在所述位置上,所述第一光束和所述第二光束被传输,所述第一光束或所述第二光束的反射光束被检测(913),从而根据所述第一光束、所述第二光束和所述第一光束或所述第二光束的所述反射光束,在所述光存储介质的数据轨上形成的至少一个第一聚焦光束和至少一个第二聚焦光束(915)。
29.按照权利要求28所述的方法,其特征在于,包括所述第一聚焦光束在所述光存储介质的数据轨上形成至少一个第一点(29a),所述第二聚焦光束在所述光存储介质的数据轨上形成至少一个第二点(29b)的步骤(915)。
30.按照权利要求29所述的方法,其特征在于,包括所述第一点定位于所述光存储介质的数据轨上不同于所述第二点的位置的步骤。
31.按照权利要求29或30所述的方法,其特征在于,包括所述第一点定位于所述光存储介质的数据轨上稍前于所述第二点的位置的步骤。
32.按照权利要求29所述的方法,其特征在于,包括所述第一点和所述第二点定位于所述光存储介质的数据轨上的同一个交叉点(29)的步骤。
33.按照权利要求27-32任意之一所述的方法,其特征在于,包括所述第一光束被传输并被横切引向所述光存储介质的数据轨,所述第二光束被垂直引向所述光存储介质的数据轨的步骤(909)。
34.按照权利要求33所述的方法,其特征在于,包括所述第一光束从所述光存储介质的数据轨读出数据,所述第二光束将数据写入所述光存储介质的数据轨的步骤。
35.按照权利要求27-34任意之一所述的方法,其特征在于,包括至少一个第一光学组件将所述第一光束和所述第二光束转向所述光存储介质的数据轨,至少一个第二光学组件使所述第一光束和所述第二光束横切转向所述光存储介质的数据轨并使之聚焦的步骤(909)。
36.按照权利要求35所述的方法,其特征在于,还包括准直光学器件准直所述光源,分光光学器件将发出的光线分成多个光束(905),聚焦光学器件与所述第二光学组件共同聚焦光束(915)的步骤。
37.按照权利要求35所述的方法,其特征在于,包括所述第一光学组件和所述第二光学组件是使所述第一光束横切转向所述光存储介质的数据轨并使之聚焦,以及使第二光束垂直转向所述光存储介质的数据轨并使之聚焦的单个透镜的步骤(909)。
38.按照权利要求35所述的方法,其特征在于,所述第一光束和所述第二光束具有相反的偏振。
39.按照权利要求35所述的方法,其特征在于,所述第一光束和所述第二光束具有不同的波长。
40.按照权利要求27所述的方法,其特征在于,所述方法包括下述步骤第一激光源产生所述第一光束,第二激光源产生所述第二光束(901);和所述第一激光源和所述第二激光源被同步(903),其中所述同步步骤(903)包括下述步骤-所述第一激光源和所述第二激光源被单独地初始化,-所述第一激光源打开(111),-所述第一激光源发出所述第一激光束,查找第一点的位置以便进行读/写操作(113),-分析所述第一点的位置(115、117),-分析所述第一点的聚焦和寻轨(116、118),-所述第二激光源打开(119),-所述第二激光源发出所述第二激光束,查找第二点的位置以便进行读/写操作(120、121),和-在所述读/写操作之后,所述第二激光源关闭(123)。
41.按照权利要求40所述的方法,其特征在于,所述同步步骤包括下述步骤所述第二激光源打开,导致所述第一激光源在所述第一点进入中断模式,并且持续预定的时间周期(139),在所述预定的时间周期之后,所述第一激光源从所述第一点继续读/写操作,所述第二激光源进入中断模式(141、143)。
42.按照权利要求27-41任意之一所述的方法,其特征在于,包括至少一个检测器部件检测所述第一光束或所述第二光束的反射光束,第三光学组件转向并聚焦所述第一光束或所述第二光束的所述反射光束的步骤(915、917)。
43.按照权利要求42所述的方法,其特征在于,还包括第四光学组件使所述第一光束或所述第二光束的所述反射光束转向所述检测器部件,位于所述检测器部件之前的聚焦光学器件聚焦,分光光学器件将所述第一光束或所述第二光束的所述反射光束分成多个光束的步骤(915、917)。
44.按照权利要求42或43所述的方法,其特征在于,所述检测器部件包括检测所述第一光束或所述第二光束的反射光束的聚焦信号和寻轨信号的至少两个检测器表面。
45.按照权利要求42-44任意之一所述的方法,其特征在于,所述检测器部件借助所述检测器部件的检测器表面检测从所述光存储介质的表面接收到的、所述第一光束或所述第二光束的反射光束的至少一个聚焦信号和至少一个寻轨信号,所述检测器部件根据所述检测器表面检测的所述聚焦信号和所述寻轨信号,控制所述访问单元的移动,以使所述第一光束和所述第二光束保持在焦点并在数据轨上。
46.按照权利要求42-45任意之一所述的方法,其特征在于,所述检测器部件通过所述检测器部件的检测器表面检测识别从所述光存储介质的表面接收到的、所述第一光束或所述第二光束的反射光束的至少一个聚焦信号和至少一个寻轨信号的强度分布的变化,所述检测器部件依据所述强度分布的变化,控制所述访问单元的移动,以使所述第一光束和所述第二光束保持在焦点并在数据轨上。
47.按照权利要求27-46任意之一所述的方法,其特征在于,所述访问单元是臂状单元。
48.按照权利要求27-46任意之一所述的方法,其特征在于,包括第一访问单元从光存储介质读出数据,第二访问单元将数据写入光存储介质的步骤,其中所述第一访问单元和所述第二访问单元是下述之一臂状单元、滑架单元或者臂状单元和滑架单元的任意组合。
49.按照权利要求27-48任意之一所述的方法,其特征在于,所述设备是通信设备。
全文摘要
公开一种相对于光存储介质(11)读/写信息的方法和可小型化设备。设备包括与访问单元(10)固定在一起的一个或多个光源(12),所述访问单元(10)被设置成能够受控地到达某一位置,其中光束(21、22)被横切地传向光存储介质,反射光束(33)由检测器部件(18、26)分析,检测器部件(18、26)还通知访问单元移动或者静止不动,以使光束保持在焦点和在数据轨上。由于组件总数减少和访问单元几何形状细小的缘故,根据本发明的设备能够以小尺寸和低重量实现。根据本发明的通信设备(80)可被实现以满足超小型通信设备的极需。
文档编号G11B7/14GK1695184SQ02829959
公开日2005年11月9日 申请日期2002年11月27日 优先权日2002年11月27日
发明者雅克·马克拉, 简恩·卡里·埃基奥, 桑纳·埃基奥, 卡里·尤哈尼·卡塔亚, 泰姆·阿拉尤基 申请人:诺基亚公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1