用于一种具有重叠时间址的记录媒介的搜索方法和设备的制作方法

文档序号:6751608阅读:117来源:国知局
专利名称:用于一种具有重叠时间址的记录媒介的搜索方法和设备的制作方法
技术领域
本发明有关于一种用于搜索某种记录媒介方法和设备,该种记录媒介的管理信息区域的位置信息与其程序区域的位置信息相重叠。
背景技术
总的来说,一种盘片型的记录媒介(如CD-RW)具有摆动的记录轨道,在其上于制造阶段或先于由用户在其上记录的任何数据而存储了ATIP(预开槽的绝对时间)帧数据。已知,该ATIP帧数据是由频率调制以某种摆动的形状预先编码在该记录媒介上的。
图1示出了一个一般ATIP帧的示例。每个ATIP帧都承载某几位信息。如在图1中所示,如果ATIP帧的“分”、“秒”和“帧”数据域的第一位(M1、S1和F1)为“000”,则认为这些数据域包含一个ATIP时间码。ATIP时间码是用于记录媒介的位置信息,被用来指示在记录媒介上数据/信息所存储的特定位置。
图2是一个用于某种通用可写盘片的ATIP时间码的图表。如在图2中所示,一个与盘片的程序区域(数据区域)相对应的ATIP时间码TC1线性地从0(零)增大到在该盘片向外方向上的最大值79:59:74。一个与盘片的引入区域(管理信息区域)相对应的ATIP时间码TC2线性地从99:59:74减小到在该盘片向盘中心向内方向上的某个值。
一般而言,盘片的管理信息区域(MIA)(包括引入区域)在时间码尺寸上是约4~5分钟,其时间码范围约从95分钟到99分钟。另一方面,盘片的程序区域范围在时间码尺寸上从0分钟到约80分钟,因为其记录容量为约80分钟。由于在时间码中80分钟与95分钟之间的差距,一般的盘片型记录媒介的管理信息区域的ATIP时间码并不与该记录媒介的程序区域(PA)的时间码重叠。其结果是,在数据记录操作中,用时间码来区分记录媒介的管理信息区域和程序区域。
可是,由于技术的发展,近来常规盘片型记录媒介的存储容量扩展了。由于这一成就,已引入了一种具有99分钟记录容量(程序区域)的记录媒介。但是,记录容量的这种扩展向记录媒介引入了另一个难题。由于这种记录媒介扩展了的容量,其现在就具有了重叠的时间码范围。
图3示出了一幅常规的扩展了容量的可写盘片的ATIP时间码的图表,说明了该盘片的程序区域和管理信息区域之间的时间码重叠范围。
如在图3中所示,有一个用于程序区域的扩展ATIP时间码TC1’和一个用于管理信息区域的ATIP时间码TC2。盘片程序区域的ATIP时间码TC1,的结尾部分与盘片管理信息区域的ATIP时间码TC2重叠,因为该盘片的记录容量已在时间码上扩展到99:59:74。
重叠的ATIP时间码会引起某些严重的问题。举例来说,如果某个ATIP时间码落到重叠ATIP时间码的范围内,由于该时间码可同等地运用于管理信息区域和程序区域,通常会难以也不可能知道盘片的当前记录位置是在管理信息区域还是在程序区域。其结果是,数据可能会被写入盘片上的错误区域。
这一问题的一个例子是,假设向某个盘片设备请求ATIP时间码中95~99分钟之间的某个特定时间址,以便在该盘片引入区域中所请求的时间址处记录信息。可是,如果在跳轨期间某个光头错误地滑到具有95~99分钟时间码的较外面的程序区域,则要写入引入区域(管理信息区域)的信息会被记录到较外面的程序区域中,而这是完全不希望的。而且,即使已对光头运用控制信号来使光头移动到盘片引入区域中所希望的位置,如果某个伺服失效,则光头仍可能错误地移动到盘片的程序区域,而这将导致信息被记录在错误区域中,因为所请求的时间码在盘片的管理信息区域和程序区域都具有适用性。
除了使用ATIP时间码作为盘片的位置信息外,另一种在盘片上标识某个特定位置的方法是使用绝对时间(MM:SS:FF)。已经知道,当数据被记录到某种记录媒介如CD-ROM上时,有一个绝对时间(MM:SS:FF)被写入每个数据块的子Q通道。该绝对时间就是用来在记录媒介上指示位置的位置信息。ATIP时间码与绝对时间的区分是ATIP时间码在盘片上固有地由盘片上物理轨道的摆动来承载,而绝对时间则是在某个记录操作期间所记录的数值。
如果某种记录媒介具有扩展了的99分钟数据记录容量,使在记录媒介的程序区域中的绝对时间扩展到绝对时间(99:59:74),则该记录媒介的管理信息区域的绝对时间将与该记录媒介的程序区域的绝对时间重叠,与在图3中所示出的类似。
总的来说,由于硬件的结构性限制,盘片设备(如记录/复制设备)不能在数据读取(复制)期间监视ATIP帧的时间码。相反,盘片设备被配置来监视写在所复制数据子Q通道中的绝对时间。其结果是,由于如前面所讨论的盘片程序区域与管理信息区域的绝对时间相互重叠,即使标识了正确的绝对时间,仍可能发生将数据读到盘片上错误位置的问题。
举例来说,假定某台主机向某个盘片设备发送一个命令,从盘片的管理信息区域中的某个任意位置读取数据。可在此时,如果在跳轨期间某个光头错误地滑到(具有95~99分钟绝对时间的)较外面的程序区域,则该盘片设备会从不希望的程序区域读取数据,而不是从所希望的管理信息区域,因而会读取错误的信息并提供给主机。

发明内容
因此,本发明的一个目标是提供一种方法和设备,用于访问由当前操作模式中给定的时间信息所对应的某个在管理信息区域与一部分程序区域在时间址上重叠的记录媒介上的确切位置。
本发明的另一个目标是提供一种方法和设备,用于访问某种克服了相关技术领域的问题和限制的记录媒介。
如本发明的某一实施例所述,一种用于在其上两个区域间具有重叠时间范围的记录媒介的搜索方法包括(a)如果在该记录媒介上的某个目标位置落在重叠的时间范围内,则检查当前操作模式;以及(b)根据所检查的当前模式确定该目标位置是在该记录媒介的程序区域还是管理信息区域内。
如本发明的某一实施例所述,一种用于在其上两个区域间具有重叠时间范围的记录媒介的区域确定方法包括(a)从该记录媒介上的某个当前位置读取一个时间址;(b)如果该时间址属于重叠的时间范围,则从该记录媒介或从记录媒介的驱动方法获取附加的信息;以及(c)根据所获取的附加信息确定该当前位置属于哪个区域。
如本发明的某一实施例所述,一种用于在其上两个区域间具有重叠时间范围的记录媒介的搜索设备包括用于如果在该记录媒介上的某个目标位置落在重叠的时间范围内则检查当前操作模式的第一个单元;以及用于根据所检查的当前模式确定该目标位置是在该记录媒介的程序区域还是管理信息区域内的第二个单元。
如本发明的某一实施例所述,一种用于在其上两个区域间具有重叠时间范围的记录媒介的区域确定设备包括用于从该记录媒介上的某个当前位置读取一个时间址的第一个单元;用于如果该时间址属于重叠的时间范围则从该记录媒介或从记录媒介的驱动方法获取附加的信息的第二个单元;以及用于根据所获取的附加信息确定该当前位置属于哪个区域的第三个单元。
通过以后给出的详细描述,本申请的这些或其它目标将变得更为明显。然而,应当理解,在说明本发明的较佳实施例时,详细描述和特定示例仅是以例证方式给出的,因此对于那些本领域的普通技术人员,通过这一详细描述,在本发明的精神和范围内的多种变化和修改将变得明显。


包括来提供对本发明的深入理解的

了本发明的较佳实施例,并与描述一起用于解释本发明的原则,其中图1示出了编码在一般可写盘片的摆动形状轨道中的一种ATIP时间码的格式;图2说明了用于一般可写盘片的ATIP时间码的一个图表;图3说明了用于一般扩展了容量的可写盘片的ATIP时间码的一个图表;图4是如本发明的某一实施例所述的一种盘片驱动器的一幅简化框图,在其中实现了在某种如本发明的某一实施例所述的光记录媒介上搜索的一种方法;图5是一幅说明如本发明的某一实施例所述的在记录模式中记录媒介搜索方法的处理步骤的流程图;图6是一幅说明如本发明的某一实施例所述的在复制模式中记录媒介搜索方法的处理步骤的流程图;图7是一幅说明在多段盘片中几个引入区域具有同一绝对时间范围的图。
具体实施例方式
为使本发明能被充分理解,现在将参照附图来描述其较佳实施例。
图4是如本发明的某一实施例所述的一种盘片驱动器的一幅简化框图。一种在如本发明的某一实施例所述的光盘(如CD类型)或其它光记录媒介上搜索的方法可以在图4的盘片驱动器或其它合适的设备中实现。
如图4中所示,该盘片驱动器包括一个用于旋转光记录媒介或光盘10并检测盘片10的旋转速度的轴驱动器/检测器12;一个用于在其上添加附加数据(如差错校验码(ECC))时将来自外部主机的输入数据转换成记录格式的EFM(八至十五调制)数据的数字记录信号处理单元20a;一个用于将来自数字记录信号处理单元20a的记录格式数据转换成写信号的通道位(CB)编码器30;一个用于产生信号来驱动至少一个LD(激光二极管)或其它光源以写入/读出盘片10的光驱动器31;一个包括该LD和至少一个用于将信号写入可写盘10表面上的标记/空白模式并/或从该盘片10表面读出写入的信号的光头40;一个用于水平地移动光头40并操作光头40中物镜的一个轨迹/聚焦操作的滑动驱动/伺服单元41;一个用于通过过滤和组合由光头40检测到的信号来产生二进制化信号的R/F(无线电频谱)单元50;一个用于用与二进制化信号在相位上同步的自时钟信号来从输出自R/F单元50的二进制化信号中复原出初始数据的数字复制信号处理单元20b;一个从输出自光头40的反射信号中检测低频摆动信号的摆动信号检测器60;一个用于通过解码所检测到的摆动信号来产生ATIP帧的ATIP(预开槽绝对时间)解码器70;以及一台用于单独控制这所有或某些元件以作记录、复制、搜索及其它操作的微型计算机80。盘片驱动器的所有这些部件是连接运转的。
图5是如本发明的某一实施例所述的在记录模式中记录媒介搜索方法的一幅流程图。图5的过程在下面与图4的盘片驱动器的操作一起来解释,并可以由图4的盘片驱动器或其它合适的设备来实现。
如在图5中所示,当一个盘片10(或其它记录媒介)被放置在盘片驱动器中所装备的托盘(未示出)上时(S10),微型计算机80将一个内部2位模式标志设置成“00”,并进行一个对盘片10的初始载入操作(S11)。
模式标志以“b1b0”表示,其中“b1”是第一个位,而“b0”是第二个位。模式标志的第一个位b1以设成0表示“读出”,或以设成1表示“写入”。如果第一个位B1被设成指示“读出”的0,则模式标志的第二个位b0以设成0表示“初始载入”,或以设成1表示“复制”。另一方面,如果第一个位B1被设成指示“写入”的1,则第二个位b0以设成0表示“准备/完成”,或以设成1表示“用户数据记录”。
在初始载入操作中,盘片由轴驱动器/检测器12转动,而滑动驱动/伺服单元41在微型计算机80控制下移动光头40,将其放到靠近盘片10记录表面的位置。在这时,微型计算机80用已知技术(如通过使用由R/F单元50所检测到的峰值水平)来确定所放置的盘片10是一张只读盘片,还是一张可写盘片。微型计算机80还经常为伺服机制调整聚焦/轨迹的偏移,并激活光头40中物镜的伺服操作。
如果盘片10被确定是“可写”类型,则微型计算机80检查盘片10是否是空的。这可以通过使用已知技术(如通过检查有无来自R/F单元50的EFM信号或盘片10的PMA(程序存储器区域)上已记录的信号)来完成。
现在,微型计算机80等待一个来自某台外部主机的命令(如写入命令、读出命令等)。如果接收到一个写入命令(S12),则微型计算机80将模式标志改变成“10”,以指示写入过程的准备阶段,并进行预备操作(S13),使系统适于写入和进行OPC(最佳功率校准)。为了进行OPC,微型计算机80确定光头40的目标位置是PCA(功率校准区域)内的某个时间(如96:14:00)。而后微型计算机80检查模式标志的第二个位b0,以根据该模式标志来确定目标位置是在盘片的管理信息区域(MIA)内还是程序区域(PA)内(S14)。这里,由于微型计算机80确定模式标志的第二个位b0在这时是指示“准备”写入的“0”,因此微型计算机80确定目标位置(所确定的时间)是对于MIA而不是对于PA的,并将光头40(更准确说是光源)移向该目标位置。
而且,在将光头40移向目标位置前,需要检测光头40在盘片10上/下的当前位置(即盘片10上的当前位置)。微型计算机80检查从ATIP解码器70接连输出的ATIP帧中的每个时间码。如果在光头40当前位置的时间码未落在盘片10的重叠时间码范围内(S15),这指示当前位置不在MIA中,则微型计算机80象在常规跳动操作中一样,将光头40向内突跳向目标位置(S15-1),这样就将光头放置到MIA中。
另一方面,如果所检测到的光头40当前位置的时间码落在盘片10的重叠时间码范围内(S15),则要确定光头40的当前位置是在盘片10的MIA还是PA中。为了做到这一点,微型计算机80检查从ATIP解码器70输出的ATIP帧或帧同步信号的周期。如果该周期小于某个预先确定的参考值“TATIP_REF”,则确定光头40的当前位置是在PA内;否则,确定是在MIA内(S16)。这一判定是基于在较外的PA中所检测的ATIP帧比在MIA中检测的更快的事实。较外的PA就是其时间码与MIA的时间码重叠的区域。
如果在步骤S16确定光头40的当前位置是在盘片10的PA内,则微型计算机80在光头40上进行一个长跳操作(S17),以将光头40向内移入所期望的盘片的MIA;否则,就进行一个精细搜索操作(S17),因为当前位置已经接近目标位置。
有时候,光头40可能在某个长跳操作期间由于没曾想到的过高电压而滑动到错误的地方。为解决这一问题,微型计算机80可以有选择地在长跳后再次检查光头40的新位置是否是在MIA内(S18)。为做到这点,如上面所解释的那样,要检查来自ATIP解码器70的ATIP帧或ATIP同步信号的周期。如果所检查的周期大于参考值“TATIP_REF”,则微型计算机80确定已进行了一次恰当的跳转;否则,它就再次如在步骤S16-S18中所讨论的那样进行当前位置检测和跳轨操作。步骤S18和S19可以重复,直至得到所希望的盘片上位置。
在做出了恰当的跳转和精确搜索后(即当盘片上的当前位置在所希望的MIA中后),微型计算机80进行一次在PCA上的写入测试,并从对所写入测试信号的分析中确定某个光写入功率。而后它进入用户数据记录/写入模式。此时,模式标志的第二个位b0被设成“1”(指示“用户数据记录”模式),这就导致模式标志从“10”状态变成“11”(S20)。
为将数据记录到盘片的PA上,微型计算机80检查已写入在PMA中的临时轨道信息,以便确切地了解将输入用户数据记录到盘片上哪里。而后微型计算机80确定这一记录起始位置的时间址。如果所确定盘片10上记录起始位置的时间码落在重叠的时间码范围内,则微型计算机80检查模式标志。在本例中,由于模式标志的第二个位b0是“1”,则微型计算机80认为所确定的记录起始位置是在盘片的PA中(S21)。
然后,微型计算机80控制滑动驱动/伺服单元41将光头40从当前位置跳到所确定的记录起始位置。如果在新跳到的位置检测到重叠的时间码,则如上面在步骤S16所解释的那样,根据ATIP帧或ATIP同步信号的周期验证所跳到的位置是在PA内(S22);否则,就不进行验证操作。相反,参照所新跳到位置的时间码,进行重跳或精确搜索操作。
现在,在光头40到达确切的目标记录位置后,则如下面那样将输入用户数据顺序地记录到盘片10上。
输入用户数据与奇偶位一起,由数字记录信号处理单元20a编码,以形成提高数据记录/复制的可靠性的ECC块。每个ECC块都以EFM格式的串行位从数字记录信号处理单元20a输出到将这些串行位调制成NRZ信号的通道位编码器30。光驱动器31根据所调制的NRZ信号输出PWM(脉冲宽度调制)写入信号,并遵照某种选定的写入策略调节这些PWM写入信号的电平和/或宽度。此时,光驱动器31使用经过上面的OPC所确定的光写入功率。光驱动器31的输出由光头40转换成适当的光束,沿可写盘片10的一条或多条轨道在记录位置形成相应标记和空白。在用户数据按外部主机所请求的那样记录后,微型计算机80将模式标志重置成“00”(S23)。而后处理结束。
如所讨论的那样,在本发明中,在微型计算机80为自身确定目标位置或从外部主机接收到一个跳转命令时,如果所确定的目标位置落在重叠的时间码范围内,则其总是查看模式标志的第二个位b0,以确定该位置是对MIA还是PA的。如果模式标志的第二个位b0是“0”,则确定用于记录的目标位置是在MIA内,而如果模式标志的第二个位b0是“1”,则确定用于记录的目标位置是在PA内。其原因如下如果模式标志的第二个位b0是“0”,则在完成用户数据的记录后,必须将所记录用户数据的管理信息写入MIA的引入区域。如果模式标志的第二个位b0是“1”,则仅仅意味着用户数据的记录位置需要改变到另一个位置。
如果用于记录的目标位置在重叠的时间码区域内,则光头40跳转到上面所确定的MIA或PA内。而后,如前面所解释的那样,根据ATIP帧或同步信号的周期验证所跳到的位置。
如果从所跳到的位置所检测到的ATIP帧的时间码属于重叠的时间码范围,则即使目标位置不是重叠的时间码区域,仍将根据ATIP帧或同步信号的周期来检查所跳到的位置是在MIA中还是PA中。如果光头40所跳到的位置是在MIA中,则微型计算机80驱动光头40向外移动到目标位置。如果所跳到的位置是在PA中,则微型计算机80将光头40向内移动到目标位置。
图6是如本发明的某一实施例所述的在复制模式中记录媒介搜索方法的一幅流程图。图6的过程在下面与图4的盘片驱动器的操作一起来解释,并可以由图4的盘片驱动器或其它合适的设备来实现。
当一个盘片10(或其它记录媒介)被放置在盘片驱动器中所装备的托盘(未示出)上时(S30),微型计算机80将2位模式标志设置成“00”,并进行对盘片10的初始载入操作(S31)。此时,微型计算机80使系统适合于复制特征。举例来说,由于这一调适,ATIP解码器70在复制模式期间不运作。在初始载入操作完成后(S32),微型计算机将模式标志设置成指示“复制”的“01”(S32-1)。
如果在上面S32和S32-1操作中或之后从某台外部主机接收到某个目标时间(目标位置信息)(S33),且该目标时间落在盘片的重叠时间码范围(如95~99分钟)内,则微型计算机80检查模式标志。此时,如果模式标志是“00”,由于模式标志“00”指示该设备还在初始载入阶段,则微型计算机80确定该目标时间是对MIA的。如果模式标志是指示该设备准备好复制的“01”,则微型计算机80确定该目标时间是对PA的(S35)。
在将光头40移向上面所确定的区域(如MIA或PA)中的目标时间前,微型计算机80首先标记光头40对于盘片10的当前位置(即光头40的光源的当前位置)。对于该当前位置标记,微型计算机80检查写在每个数据块的子Q通道中的绝对时间。数据块是由数字复制信号处理单元20b从所复原的数字数据来构造的。
如果所检查的绝对时间不属于重叠的时间码范围(S37),则微型计算机80用某种已知的方法计算适于将光头40从当前位置跳转到目标位置的突跳电压(S37-1),并将所计算的突跳电压运用于滑动驱动/伺服单元41(S50),以将光头40跳转到目标位置。
另一方面,如果在光头40当前位置的绝对时间属于重叠时间码范围(S37),则微型计算机80根据轨道编号来确定光头40的当前位置(S38)。举例来说,微型计算机80检查子Q帧中的“轨道编号”字段“TNO”。如果字段“TNO”为“0”,则微型计算机80认为光头40的当前位置是在MIA内。但如果字段“TNO”不是“0”,则微型计算机80认为光头40的当前位置是在PA内。
而后确定盘片10是否是多段盘片(S39)。如果在步骤39确定盘片10不是多段盘片,则微型计算机80将根据所确定的光头40当前位置和目标位置计算的突跳电压运用于滑动驱动/伺服单元41,以将光头40移动到目标时间的位置(S50),或进行精确搜索操作。
而且,即使子Q帧中的字段“TNO”为“0”,有时候光头40的当前位置也可能不在最里面的引入区域内。这是因为盘片10可能多段写入。在如图7中所示的盘片10是多段盘片的情况下(S39),至少有一个附加的引入区域被创建在PA中,在MIA中最里面的引入区域的旁边。因此,需要用其它方法来大致了解光头40的当前位置(即盘片上的当前位置)(S40)。
对于在步骤S40的这一大致位置标识操作,微型计算机80首先检查当前旋转模式是在恒定角速率(CAV)模式还是恒定线速率(CLV)模式中。如果轴驱动器/检测器12以CLV模式旋转盘片10,则微型计算机80根据从轴驱动器/检测器12输出的FG脉冲的周期来大致估计盘片10上当前位置的半径。这是有可能的,因为在CLV模式中盘片的旋转速度随光头向外移动而减小,而FG脉冲的周期与旋转速度成反比例。
如果盘片10是在CAV模式中,则盘片的线速度因角速度恒定而变化。如此,微型计算机80测量从由数字复制信号处理单元20b从所复原的数字数据构造的EFM数据帧的同步码的周期。由于在CAV模式中盘片的线速度随光头向外移动而增加,而EFM帧同步码的周期与盘片的线速度成反比例,因此从所测量的周期可以大致确定盘片10上的当前位置。
也就是说,如果所检查的子Q帧的字段“TNO”为“0”,则在盘片10是多段盘片的情况下,盘片10上的当前位置根据FG脉冲或EFM帧的同步码的周期来大致确定(S40)。而后微型计算机80将根据大致确定的位置所计算的突跳电压(S41)运用于滑动驱动/伺服单元41,以将光头40移动到目标时间的位置(S50),或进行精确搜索操作。
在光头40突跳到目标位置(S50)后,微型计算机80进行一次位置验证。如果目标时间未落在盘片的重叠时间范围内(S52),并且如果从移动后的光头位置所检测到的子Q帧的绝对时间不落在该重叠时间范围内(S53),则微型计算机80从移动后的位置进入精确搜索操作(S55)。
另一方面,在步骤S53,如果从从移动后的光头位置所检测到的绝对时间属于该重叠时间范围,则再次检查移动后的光头位置,以如在步骤S40中那样根据子Q帧的字段“TNO”(在单段盘片情况下)或根据FG脉冲或EFM帧同步码的周期(在多段盘片情况下)来确定区域(如在MIA或PA内)。
而后,再次计算一个合适的突跳电压并运用于光头40,以将光头40重新移动到盘片上合适的区域(S53-1)。
举例来说,如果从目标时间属于重叠的时间范围(S52),并且如果目标位置是对于PA的最外面部分,则检查从移动后的位置检测到的子Q帧的字段“TNO”是不是“0”,或者FG脉冲或EFM帧同步码的周期是否对应于最外面的区域(在多段盘片情况下),以便验证是正确还是不正确地进行了跳轨(S54)。在作了验证后,微型计算机80在光头40移动后的位置进行精确搜索操作(S55)。
当通过精确搜索找到与目标时间相匹配的确切光头位置后,R/F单元50从盘片上的该位置复制数据,而数字复制信号处理单元20b将所复制的信号复原成原来的数字数据,并将其提供给某台外部主机(S56)。
上面所解释的搜索方法可以有效地防止不正确和不精确的跳轨,以及由于扩展了容量的记录媒介的MIA和PA之间的时间码重叠而引起的其它问题。
对于那些本领域的普通技术人员,显然可以在本发明中作多种修改和变化,而不背离本发明的精神和范围。因此,就想要本发明覆盖其修改和变化,如果这些修改和变化是在所附权利要求及其等价物的范围内。
权利要求
1.一种用于某种在记录媒介上两个区域间重叠时间码范围的搜索方法,其特征在于该方法包含(a)如果某个记录媒介上的目标位置落在重叠时间范围内,则检查当前的操作模式;以及(b)根据所检查到的当前模式确定该目标位置是在记录媒介的程序区域还是管理信息区域内。
2.如权利要求1所述的方法,其特征在于,还包含(c)将光头移向该目标位置;(d)在所移到的目标位置检查来自记录媒介的某个数据块的管理信息;以及(e)根据所检查到的管理信息确定上述步骤(c)的移动是否进行得正确。
3.如权利要求2所述的方法,其特征在于,管理信息是轨道标识信息。
4.如权利要求3所述的方法,其特征在于,如果当前模式指示初始载入模式且上述轨道标识信息不为“1”,则所述步骤(e)确定移动未正确进行。
5.如权利要求3所述的方法,其特征在于,如果当前模式指示数据复制模式且上述轨道标识信息为“0”,则所述步骤(e)确定移动未正确进行。
6.如权利要求1所述的方法,其特征在于,还包含(c)将光头移向该目标位置;(d)在所移到的目标位置检查记录媒介的旋转速度或复制速度;以及(e)根据所检查到的速度确定所述步骤(c)的移动是否进行得正确。
7.如权利要求6所述的方法,其特征在于,所述步骤(d)在恒定角速率(CAV)模式中检查在所复制数据中包括的同步信号的周期。
8.如权利要求6所述的方法,其特征在于,所述步骤(d)在恒定线速率(CLV)模式中检查由记录媒介旋转电机的旋转输出的同步信号的周期。
9.如权利要求1所述的方法,其特征在于,还包含(c)将光头移向该目标位置;(d)在所移到的目标位置检查从记录媒介的摆动形状轨道解码出的数据帧中所包括的同步信号的周期;以及(e)根据所检查到的周期确定所述步骤(c)的移动是否进行得正确。
10.如权利要求1所述的方法,其特征在于,如果当前操作模式是用户数据记录模式,则所述步骤(b)确定该目标位置在程序区域内。
11.如权利要求1所述的方法,其特征在于,如果当前操作模式是在记录或复制阶段的初始模式,则所述步骤(b)确定该目标位置在管理信息区域内。
12.如权利要求1所述的方法,其特征在于,如果当前操作模式是复制记录在程序区域中的数据的复制模式,则所述步骤(b)确定该目标位置在程序区域内。
13.如权利要求1所述的方法,其特征在于,所述重叠时间范围是大约从95到99分钟。
14.如权利要求1所述的方法,其特征在于,还包含(c)检查在记录媒介上当前位置写在子Q通道中的绝对时间;以及(d)确定在当前位置的该绝对时间是否落在该重叠时间范围内。
15.如权利要求14所述的方法,其特征在于,还包含(e)如果所述步骤(d)确定在当前位置的该绝对时间未落在该重叠时间范围内,则进行一次跳转操作。
16.如权利要求14所述的方法,其特征在于,还包含(e)如果所述步骤(d)确定在当前位置的该绝对时间落在该重叠时间范围内,则确定该记录媒介是单段媒介还是多段媒介。
17.如权利要求16所述的方法,其特征在于,还包含(f)如果所述步骤(e)确定该记录媒介是多段媒介,则根据该记录媒介的旋转速度或复制速度来估计在该记录媒介上的当前位置;以及(g)根据所述步骤(f)的估计进行一次跳转操作。
18.如权利要求1所述的方法,其特征在于,重叠时间范围是某种ATIP(预开槽绝对时间)时间码范围或某种绝对时间范围。
19.一种用于某种在其上两个区域间重叠时间码范围的区域确定方法,其特征在于,该方法包含(a)从该记录媒介上的当前位置读取一个时间址;(b)如果读取的时间址属于重叠时间范围,则从该记录媒介或记录媒介的驱动方法获取附加的信息;以及(c)根据所获得的附加信息确定当前位置属于哪个区域。
20.如权利要求19所述的方法,其特征在于,两个区域是该记录媒介的一个最内部的管理信息区域和一个最外部部分的程序区域。
21.如权利要求19所述的方法,其特征在于,所述步骤(b)在记录模式中获取从记录媒介上的摆动形状轨道解码出的数据帧中所包括的同步信号的周期信息。
22.如权利要求19所述的方法,其特征在于,所述步骤(b)在复制模式中获取关于所述记录媒介驱动方法以之旋转该记录媒介的旋转速度的信息。
23.如权利要求19所述的方法,其特征在于,所述步骤(b)在恒定线速率(CLV)模式中获取从记录媒介上的摆动形状轨道解码出的数据帧中所包括的同步信号的周期信息。
24.如权利要求19所述的方法,其特征在于,所述步骤(b)在恒定角速率(CAV)模式中获取在从该记录媒介复制的数据中所包括的同步信号的周期信息。
25.如权利要求19所述的方法,其特征在于,所述步骤(a)、(b)和(c)在跳轨之前和/或之后进行。
26.如权利要求19所述的方法,其特征在于,重叠时间范围是某种ATIP(预开槽绝对时间)时间范围或某种绝对时间范围。
27.一种用于某种在记录介质上的两个区域间重叠时间码范围的搜索设备,其特征在于,该设备包含第一种方法,如果某个记录媒介上的目标位置落在重叠时间范围内,则检查当前的操作模式;以及第二种方法,根据所检查到的当前模式确定该目标位置是在记录媒介的程序区域还是管理信息区域内。
28.如权利要求27所述的设备,其特征在于,还包含第三种方法,用于将光头移向该目标位置;第四种方法,在所移到的目标位置检查来自记录媒介的某个数据块的管理信息;以及第五种方法,根据所检查到的管理信息确定上述第三种方法的移动是否进行得正确。
29.如权利要求28所述的设备,其特征在于,所述管理信息是轨道标识信息,而如果当前模式指示初始载入模式且上述轨道标识信息不为“1”,或如果当前模式指示数据复制模式且上述轨道标识信息为“0”,则所述第五种方法确定移动未正确进行。
30.如权利要求27所述的设备,其特征在于,还包含用于将光头移向该目标位置的第三种方法;用于在所移到的目标位置检查记录媒介的旋转速度或复制速度的第四种方法;以及用于根据所检查到的速度确定所述第三种方法的移动是否进行得正确的第五种方法。
31.如权利要求30所述的设备,其特征在于,所述第四种方法在恒定角速率(CAV)模式中检查在所复制数据中包括的同步信号的周期;而在恒定线速率(CLV)模式中,所述第四种方法检查由记录媒介旋转电机的旋转输出的同步信号的周期。
32.如权利要求27所述的设备,其特征在于,还包含用于检查在记录媒介上当前位置写在子Q通道中的绝对时间的第三种方法;以及用于确定在当前位置的该绝对时间是否落在该重叠时间范围内的第四种方法。
33.如权利要求32所述的设备,其特征在于,还包含第五种方法,如果所述第四种方法确定在当前位置的该绝对时间未落在该重叠时间范围内,则进行跳转操作。
34.如权利要求32所述的设备,其特征在于,还包含第五种方法,如果所述第四种方法确定在当前位置的该绝对时间落在该重叠时间范围内,则确定该记录媒介是单段媒介还是多段媒介;第六种方法,如果所述第五种方法确定该记录媒介是多段媒介,则根据该记录媒介的旋转速度或复制速度来估计在该记录媒介上的当前位置;以及用于根据所述第六种方法的估计进行跳转操作的第七种方法。
35.如权利要求27所述的设备,其特征在于,重叠时间范围是某种ATIP(预开槽绝对时间)时间码范围或某种绝对时间范围。
36.一种用于某种在其上两个区域间重叠时间码范围的区域确定设备,其特征在于,该设备包含第一种方法,从该记录媒介上的当前位置读取一个时间址;第二种方法,如果读取的时间址属于重叠时间范围则从该记录媒介或记录媒介的驱动方法获取附加的信息;以及第三种方法,根据所获得的附加信息确定当前位置属于哪个区域。
37.如权利要求36所述的设备,其特征在于,两个区域是该记录媒介的一个最里面的管理信息区域和一个最外面部分的程序区域。
38.如权利要求36所述的设备,其特征在于,所述第二种方法在记录模式中获取从记录媒介上的摆动形状轨道解码出的数据帧中所包括的同步信号的周期信息。
39.如权利要求36所述的设备,其特征在于,所述第二种方法在复制模式中获取关于所述记录媒介驱动方法以之旋转该记录媒介的旋转速度的信息。
40.如权利要求36所述的设备,其特征在于,所述第二种方法在恒定线速率(CLV)模式中获取从记录媒介上的摆动形状轨道解码出的数据帧中所包括的同步信号的周期信息。
41.如权利要求36所述的设备,其特征在于,所述第二种方法在恒定角速率(CAV)模式中获取在从该记录媒介复制的数据中所包括的同步信号的周期信息。
42.如权利要求36所述的设备,其特征在于,重叠时间范围是某种ATIP(预开槽绝对时间)时间范围或某种绝对时间范围。
全文摘要
提供了一种用于搜索某种记录媒介的方法和设备。该种记录媒介的管理信息区域的位置信息与程序区域的位置信息相重叠。用于在其上两个区域间具有重叠时间范围的记录媒介上确定区域的方法从该记录媒介上的某个当前位置读取一个时间址,如果该时间址属于重叠的时间范围,则从该记录媒介或从记录媒介的驱动方法获取附加的信息,并根据所获取的附加信息确定该当前位置属于哪个区域。因此,本发明防止了由某种扩展了容量的记录媒介上的时间重叠区域引起的错误跳轨。
文档编号G11B27/30GK1495769SQ0314529
公开日2004年5月12日 申请日期2003年6月27日 优先权日2002年6月27日
发明者郑弘朝, 晋哲 申请人:日立-Lg数据存储韩国公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1