压电式压力传感器的制作方法

文档序号:7126030阅读:120来源:国知局
专利名称:压电式压力传感器的制作方法
技术领域
本发明涉及使用压电复合材料的压力传感器,并公开了两种压力传感器。
背景技术
由于压电式压力传感器具有多方面的用途,如水下听音器、应力传感器、振动传感器等等,所以,本发明中所述的许多传感器涉及了压电材料、结构和其他方面。
例如,美国专利4278000、4568851和4849946公布了一种压电电缆。其中,已公布的典型内导电体有单股金属导线、直径0.3毫米的小型多股级联钢导线、导电性聚合物层。鉴于柔软性是压电电缆的最重要的性能,所以当前均以压电聚合物和压电复合物用作压电材料。已公布的典型压电聚合物有聚偏二氟乙烯(PVDF)、聚二氟乙烯和聚三氟乙烯的共聚物(VDF/TrFE)及类似的聚合物。已公布的典型压电复合物有硅橡胶、氯丁橡胶、聚氨酯橡胶及类似含有诸如钛酸铅(PbTiO3)、钛酸铅-锆酸铅(PbTiO3-PbZrO3)固溶体等压电陶瓷粉末的复合物。至于外导体,已公布的有真空沉淀金属薄膜、导电糊膏覆膜、金属薄片、导电橡胶或聚合物层及其他基体。至于防护套,则已公布并付诸实用的是聚乙烯和聚氯乙烯。
为了提高上述压电复合物的物理强度和耐热稳定性,对它们往往需要进行处理。对含有氯丁橡胶和钛酸铅的复合物,在将二者混合后,应置于170℃的温度条件下施以150千克/厘米2的高压处理,这是《Huntaito Kogyo》1990年第22卷第1期第53~54页中所述及的。复合物的另一种处理方法可参见《1984年超声波论文集》第504页和《铁电子学》1988年第77卷第39页。由于这种处理需要专门的设备和工艺方法,所以,理想的是制备出一种无需处理的复合物。
上述压电聚合物和复合物在70~100℃较低温条件下的耐热性是稳定的,但是,如果将同轴电缆置于电热套中加热至100℃以上时,则靠近电热丝附近的温度最高可升至120℃左右,在这种情况下,要求电缆具备120℃的耐热稳定性。
真空沉淀薄膜或涂层薄膜是最合适的外导电体,因为这些基体的机械阻抗较小,但是,制作这些薄膜时,要使用昂贵的专用设备和复杂的工艺。例如,当制作真空沉淀金属薄膜时,要使用装有抽气装置、蒸发装置和其他装置的真空沉淀设备。不仅如此,还需要经过许多工艺过程,诸如控制阀门,控制沉淀过程,以便在压电层圆球表面沉淀出金属薄膜,还要确保压电层表面的光洁度条件,控制沉淀速度、沉淀温度、薄膜厚度等等。使用涂层薄膜也同样需要昂贵的涂膜设备和复杂的工艺。如果使用金属薄片作为外导电体,则不需要昂贵的设备和复杂的工艺,可是,由于金属薄片物理强度较小,往往不易牢固地缠绕在压电层的圆球形表面上,譬如,厚度不足15微米的薄铝片用手就可以轻而易举地折断。导电橡胶或聚合物层的优点在于它们可以像压电层和防护层那样用模压方法制作,可是,如果将它们用作外导电体,也同样需要昂贵的模压设备和复杂的工艺。
另一方面,现已研制成功许多平面式压力传感器。正如《压电陶瓷》(伯纳德·加菲、小威廉R·库克、汉斯·加菲著,学术出版社,1971年版,第262页)中所述,诸如钛酸铅(PbTiO3)、钛酸铅与锆酸铅(PbTiO3-PbZrO3)的固溶体等压电陶瓷等材料,也可以与上述压电聚合物和压电复合物一起用作压电材料。金、钯、铂等金属薄膜已被焙制或蒸敷在压电陶瓷上而用作导体,但是由于压电陶瓷易碎裂的特性,它还不能应用在呈孤形的表面上。

发明内容
本发明的一个目的是提供一种耐热性强的压电复合物,这种材料在制备时无需特殊处理。
本发明的另一个目的是提供一种导体,这种导体既可用作压电电缆中的外导电体,又可用作平面式压力传感器的导电体。
本发明的又一个目的是提供一种电缆,它不仅可以探测压力,还可以探测温度。
根据本发明提供的一种压电式压力传感器,包括夹在两层导电体中间的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末。
根据上述压电式压力传感器的一个实施例,其中所述a-CPE分子量为60,000~150,000。
根据上述压电式压力传感器的一个实施例,其中所述压电式压力传感器具有平面式形状。
根据本发明提供的一种压电电缆,包括内导电体,包围所述内导电体的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末,依附在聚合物薄膜上的金属薄膜所构成的外导电体,所述金属薄膜与所述压电复合物层相接触,但与所述内导电体分离,包围所述外导电体的由绝缘弹性材料制成的防护套。
根据上述压电电缆一个实施例,其中所述a-CPE分子量为60,000~150,000。
根据上述压电电缆一个实施例,其中所述外导电体以部分重叠在所述压电复合物层上的方式缠绕。
根据上述压电电缆一个实施例,其中所述外导电体单独缠绕在所述压电复合物层上。
根据上述压电电缆一个实施例,,其中所述外导电体包括夹在两层金属薄膜中间的聚合物薄膜。
根据上述压电电缆一个实施例,其中一个外部导线用导电粘合剂固定在由所述外导电体构成的一个外层金属薄膜上。
根据上述压电电缆一个实施例,其中一个外部导线通过焊接与一金属丝固定连接,所述金属丝缠绕在所述外导电体上。
根据上述压电电缆一个实施例,其中一个外部导线通过焊接固定连接在一金属丝编织上,所述金属丝编织缠绕在所述外导电体上。
根据上述压电电缆一个实施例,其中所述内导电体包括金属螺旋丝和绝缘微细聚合物纤维。
根据上述压电电缆一个实施例,其中所述外导电体的金属薄膜是铝,而所述聚合物薄膜是对酞酸聚乙烯。
根据本发明提供的一种压力和温度探测电缆,包括内导电体,包围所述内导电体的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末;依附在聚合物薄膜上的金属薄膜所构成的外导电体,所述金属薄膜与所述压电复合物层相接触,但与所述内导电体分离,包围所述外导电体的由绝缘弹性材料制成的防护套。
根据本发明上述压力和温度探测电缆的一个实施例,其中所述a-CPE分子量为60,000~150,000。
根据本发明上述压力和温度探测电缆的一个实施例,其中所述复合物层包括75wt%的a-CPE和25wt%的c-CPE。
根据本发明上述压力和温度探测电缆的一个实施例,其中所述内导电体包括金属螺旋丝和绝缘微细聚合物纤维。
根据本发明提供的一种压力和温度探测装置,包括内导电体;包围所述内导电体的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末;依附在聚合物薄膜上的金属薄膜所构成的外导电体,所述金属薄膜与所述压电复合物层相接触,但与所述内导电体分离;包围所述外导电体的由绝缘弹性材料制成的防护套;压力探测装置,所述压力探测装置连接在内导电体和外导电体之间;连接在电缆两端之间的温度探测装置。
根据本发明上述的压力和温度探测装置的一个实施例,其中所述a-CPE分子量为60,000~150,000。
根据本发明上述的压力和温度探测装置的一个实施例,其中所述内导电体包括金属螺旋丝和绝缘微细聚合物纤维。
本发明提供了两种用压电复合物制作的压力传感器,这种压电复合物含有非晶体的氯化聚乙烯、晶体的氯化聚乙烯和压电陶瓷粉末。第一种传感器是一个压电电缆,它包括一个由金属螺旋丝构成的内导电体,螺旋丝内填充有绝缘的微细聚合纤维;环包在内导电体外围的压电复合物层;依附在聚合物薄膜上的金属薄膜所构成的外导电体,此金属薄膜与上述复合物层相接但不与内导电体相接;环包在外导电体外围的由绝缘的弹性材料构成的防护套。第二种传感器是一个平面式传感器,它包括一块由压电复合物制成的平面板,由依附在聚合物薄膜上的金属薄膜构成的两个导电体夹在中间,各金属薄膜与复合物层相触接但两个金属薄膜相互分离。
如果要求压电电缆既能测定压力同时又能测定温度时,本发明还提供了一种能满足这种要求的电缆,其中,温度是根据内导电体金属螺旋丝的电阻与温度关系而测定的。


图1是本发明所述压电电缆的示意图。
图2是本发明所述压电电缆的又一示意图。
图3是本发明所述压电电缆的示意图,图中显示了外部导线与外导电体的连接方法。
图4是本发明所述压电电缆的示意图,图中显示了外部导线与外导电体的另一种连接方法。
图5是本发明所述压电电缆的示意图,图中显示了外部导线与外导电体的又一种连接方法。
图6是本发明所述压电电缆的示意图,此电缆可同时测定压力和温度。
图7所示为本发明所述新型内导电体电阻与温度的关系。
图8所示为温度与压力测定装置的结构。
图9是本发明所述平面形压电式压力传感器的示意图。
图10是本发明所述另一种平面形压力传感器的剖面图。
具体实施例方式
图1为本发明所述压电电缆的最佳结构,它包括一个由单股金属导线或小型多股级联钢丝构成的内导电体(1);环包在内导电体(1)外围的压电复合物层(2),此复合物层(2)含有非晶体氯化聚乙烯(a-CPE)、晶体氯化聚乙烯(c-CPE)和压电陶瓷粉末;由依附在聚合物薄膜(32)上的金属薄膜(31)构成的外导电体(3),金属薄膜(31)与压电复合物层(2)相触接但不与内导电体(1)相触接;环包在外导电体(3)外围的由绝缘弹性材料制成的防护套(4)。
本发明所述压电电缆是按以下工艺程序制作的。首先,使用滚轧方法将体积占40~70%的生钛酸铅-锆酸铅(PbTiO3-PbZrO3)粉末均匀附加到CPE基板上,然后将经过滚轧的含有陶瓷粉末的复合物板切割成小片,再将这些小片与内导电体(1)不断模压形成压电复合物层(2),继而将外导电体(3)缠绕在压电复合物层(2)的外围,并使金属薄膜(31)与压电复合物层(2)相触接。环包在外导电体外围(3)的防护套也是经过不断模压而成形的。最后,在80~120℃的环境下对内、外导电体(1,3)二者之间施加3~10千伏/毫米的高压直流电场的、使压电复合物层(2)产生极化。
从晶体结构上说,CPE分为a-CPE和c-CPE两类。当使用a-CPE作为CPE基板并在其上附加压电陶瓷粉末时,其优点是可以在此基板上附加占体积多达80%的压电陶瓷粉末,且切割的小片易于模压,经过模压的复合物层(2)异常柔软。但是,由于这种复合物层(2)的硬度很低,在80℃以上温度中容易变形,所以根本没有生产意义。为了使这种复合物层(2)具备足够的硬度,在120℃温度中不致发生变形,就要使用上述复杂的工艺方法对它进行处理。另一方面,当使用c-CPE作为CPE基板并在其上附加压电陶瓷粉末时,其优点是这种复合物层(2)具有足够的硬度,在120℃温度中不致变形,所以对它不需要进行处理。但是,这种复合物层(2)的缺点在于被切割的小片只含有占体积40%的压电陶瓷粉末,因而不易被模压。本发明提供的复合物层(2)是由a-CPE和c-CPE两种材料制作的,所以它具有两种CPE的优点,即它不仅不需要进行处理,而且可以附加占体积多达70%的压电陶瓷粉末。
如上所述,本发明提供的复合物包括a-CPE、c-CPE和压电陶瓷粉末三种成分,因此,经过模压的复合物层(2)的压电特性和物理特性取决于a-CPE和c-CPE的分子重量和结晶度,两种CPE的体积比和压电陶瓷粉末的数量多少。如果分子重量和结晶度比较低,则难以确保复合物层(2)具有足够的硬度并在120℃温度中不发生变形。与此相反,如果分子重量和结晶度比较高,则复合物层(2)难以模压成形。压电陶瓷粉末的数量越多,则压电特性越强,但是复合物层(2)就越难模压成形。针对这些因素,从经验中发现,a-CPE和c-CPE的最佳混合是分子重量为60000~150000个单位的a-CPE占总重量的75%,分子重量为200000~400000个单位的c-CPE占总重量的25%;结晶度为15~25%;在这种混合物中可以附加体积占70%的压电陶瓷粉末。
在将压电陶瓷粉末附加在a-CPE和c-CPE混合物之前,最好先将粉末置于钛联接剂溶液中浸泡一段时间,然后晾干,这样做是为了使粉末外表面附一层溶液中所含有的吸水性和忌水性组合团。吸水性组合团可以防止陶瓷粉末凝聚,而忌水性组合团可以增大陶瓷粉末相对CPE的湿润度。此举的结果是可以使占体积70%的陶瓷粉末均匀加入a-CPE和c-CPE混合物中。如果不采用这种方法,而在滚轧混合物和陶瓷粉末时加入钛联接剂也可以达到同样效果。后一种方法更好些,因为粉末无需在溶液中浸泡。
用聚合物薄膜(32)和附在其上的金属薄膜(31)组成的组合薄膜(3)作为外导电体是最理想的,因为这种组合薄膜使用简单的设备便可以缠绕起来,比使用真空沉淀和涂层设备要简单得多。不仅如此,这种组合薄膜(3)不仅具有金属薄膜(31)的强导电性,又具有聚合物薄膜(32)的足够大的物理强度,使它可以牢牢缠绕在压电复合物层(2)上。用聚对酞酸乙二酯(PET)薄膜(32)和附在其上的铝薄膜(31)组成的薄膜(3)作为组合薄膜是最理想的,因为这种薄膜(3)不仅在120℃时的耐热稳定性强,而且是市场上可以买到的。市场上可以买到的典型组合薄膜(3)由10~20微米厚的PET薄膜(32)及附在其上的6~10微米厚的铝层(31)组成,宽度为3~10毫米。当将这种组合薄膜(3)缠绕在压电复合物层(2)上时,组合薄膜(3)的宽度最好窄一些,因为电缆在指定压力下容易产生应力变形。
如果压电电缆将在电噪声条件下使用,那么组合薄膜(3)最好以部分(长度L)重叠的方式缠绕在压电复合物层(2)上(见图1)。当因物体撞击而产生的压力作用于电缆上时,此压力将使压电复合物层(2)产生应力,从而在内导电体(2)和外导电体(3)之间产生一个电位差。如果将外导电体保持在地电位,就会出现这种电位差,因为内导电体(1)的屏蔽可以防止环境噪声的影响。组合薄膜(3)的重叠部分长(L)(见图1)是越短越好,因为这种重叠部分会抵消应力。另一方面,如果压电电缆将在电噪声较小的环境中使用,如在屏蔽盒内使用时,则组合薄膜(3)最好以间隔一定距离(L′)的方式缠绕在压电复合物层(2)上(见图2),因为这样做使电缆更利用产生用压力所导致的应力。间隔距离(L′)是越短越好,因为在极化过程中,直流电场要均匀地作用于内、外导电体(1,3)之间。
至于防护套(4),通常使用的是绝缘的弹性聚合材料,诸如聚氨酯、聚乙烯、聚氯乙烯(PVC)等。
如图3所示,在实际应用中,分别与内、外导电体(1,3)相连接的外部导线(51,52)都连接到一个探测器(6)上,这种与外部导线(51、52)相连接的探测器(6),可以测出因作用于电缆上的压力而导致产生的内、外导电体(1、3)之间的电位差。为了便于外部导线的连接,外导电体(3)最好是由两层金属膜(31a和31a′)中间夹一层聚合物薄膜(32a)组成的另一个组合薄膜(3a),这种组合薄膜(3a)最好以部分重叠的方式缠绕在压电复合物层(2)上,从而使与压电复合物层(2)相触接的金属薄膜(31a)在重叠部分与金属薄膜(31a′)相触接。由于金属薄膜(31a′)位于外侧,所以外部导线(51)易于连接到金属薄膜(31a′)上。
如上所述,铝和聚对钛酸乙二酯(PET)分别是金属薄膜(31a和31a′)和聚合物薄膜的理想制作材料。考虑到外部导线(51)不能用一般的低温或高温焊接方法与铝薄膜(31a′)连接在一起,建议最好采取以下连接方法。首先,外部导线(51)可使用导电粘合剂(7)来连接(见图3),这种方法的优点是结构简单,缺点是粘合强度不足。为了使外部导线(51)和铝薄膜(31a′)连接牢靠,最好是将单股金属线圈(8)或金属线网(编织)(9)缠绕在铝薄膜(31a′)之外层(见图4、5),再将外部导线(51)用低温焊接方法连接到金属线圈(8)或金属线网(9)上就容易多了。另一方面,金属线圈(8)或金属线网(9)与铝薄膜(31a′)的连接在防护套(4)的作用下可以保持相当牢靠,因此,外部导线(51)便可以牢牢连接在铝薄膜(31a′)上。由于金属线圈(8)或金属线网(9)直接触接铝薄膜(31a′),所以相互可以通电。虽然相互间也存在连接阻抗,但这种小于100kΩ的连接阻抗不会影响测定电位差,因为压电复合物层(2)是绝缘体。
如上所述,压电复合物层(2)可以在120℃条件下工作1000小时,但是,如果工作温度高于120℃,则工作时间就会缩短。这种情况提醒我们在工作期间最好能测出工作温度。图6所示为本发明所述压电电缆的另一种最佳结构,其中,使用了一种不同于普通内导电体(1)的新型内导电体(1a)。这种新型内导电体(1a)包括缠绕在内导电体(1aa)外围的金属螺旋丝和在金属螺旋丝(1aa)内充填的微细聚合物纤维(1ab)。用含有5%重量的银的铜合金和聚酯纤维分别制作金属旋螺丝(1aa)和微细聚合物纤维(1ab)是理想的,因为这种专用的内导电体(1a)已经应用于市场上流通的电热毯之中。
由于这种新型内导电体(1a)外围环包着压电复合物层(2),所以金属螺旋丝(1aa)与压电复合物层(2)的温度是几乎完全相同的。由于电缆的金属螺旋丝(1aa)两端(10a,10b)之间的长度比图1~5所示普通金属内导电体要长得多,所以金属螺旋丝(1aa)两端(10a、10b)之间的电阻较大,易于测定,不仅如此,金属螺旋丝(1aa)的电阻温度系数较大。这些特点说明,这种螺旋丝(1aa)适于用作温度传感器。例如,上述的这种专用内导电体(1a)的典型金属螺旋丝(1aa)的宽度为0.3毫米,厚度为0.05毫米。在室温条件下,这种金属螺旋丝(1aa)的单位长度的电阻为2.7Ω左右,比普通内导电体(1)的不足0.1Ω的电阻高一个量级。图7显示了约6.5米长的这种金属螺旋丝的电阻与温度的关系。图中,标记(x)指示的是实测值,而实线则显示的是利用线性近似方程而求得的直线,T和R则分别表示温度和电阻。由于这种金属螺旋丝(1aa)在120℃温度条件下的电阻高达25.5口左右,而且电阻的温度系数(TCR)也高达3800ppm/℃左右,所以便于在电缆工作期间测出温度。
上述实例中,金属螺旋丝是以含有5%重量的银的铜合金材料制作的,如果需要更大的电阻温度系数,则也可以用纯铜或纯镍金属材料来制作金属螺旋丝。
如果需要同时测出压力和温度,则探测装置最好包括压电电缆、连接在内、外导电体(1a,3a)之间的压力探测器(11)和连接在电缆两端(10a,10b)之间的温度探测器(12)(见图8)。由于这两种探测器(11、12)可以相互独立工作,所以可以同时测出压力和温度。当温度上升超过电缆的正常温度范围时,可采取报警和停止工作等保护性措施。当然,如果不需要探测温度,则金属螺旋丝(1aa)只用作测压的内导电体(1)。
当在呈一定曲率的平面上使用压力传感器时,图9所示的平面式柔性压力传感器就明显优于上述压电电缆。譬如,在马达的作用下汽车车窗自动关闭时,如果出现将人的手或手指紧紧夹在车窗与窗框之间的险情,这时,最好是在发现手触及窗框瞬间停止车窗的关闭动作。由于根据本发明制作的平面式柔性压力传感器便于置放在呈弧形的窗框上,所以它能用来探测手指触及窗框的情况。
图9是根据本发明制作的平面式柔性压力传感器的最佳结构,它由一块平面式压电复合物层(13)和将其夹在中间两层组合薄膜(14,15)组成,组合薄膜(14、15)分别由附加在聚合物薄膜(142、152)上的金属薄膜(141、151)组成,金属薄膜(141、151)与平面式压电复合物层(13)相触接。
用组合薄膜(14、15)作为平面式压力传感器的电极是理想的,因为它们比由以玻璃或热凝性树脂作粘合剂的焙制金属薄膜等制成的坚硬导电体具有更好的柔韧性。
如果这种平面式压力传感器将在电噪声条件下使用,那么,最好是使用图10所示的另一种组合薄膜(14a,15a)。组合薄膜(14a)由两层金属薄膜(141a,141a′)中间夹一层聚合物薄膜(142a)组成,而组合薄膜(15a)也由两层金属薄膜(151a,151a′)中间夹一层聚合物薄膜(152a)组成,内层金属薄膜(141a,151a)分别与平面式复合物层(13)相触接,而外层金属薄膜(16、17)则分别与内层金属薄膜(141a,151a)相触接。当对这种平面式压力传感器施以一定压力时,在两个金属薄膜(141a和151a)之间将产生电位差,为测出此电位差,外部导线(16,17)应与探测器(18)相连接。当测出电噪声条件下的电位差,最好将外金属薄膜(141a′,151a′)保持在地电位,因为电位差受到屏蔽的保护而不受环境噪声的影响。例如,将与金属薄膜(141a′,151a′)相连接的外部导线(19,20)分别缩短,便可轻而易举地将这两个薄膜(141a′,151a′)保持在地电位。
本发明所述的这种平面式柔性压力传感器可用下述程序制作。由于采用滚轧方法难以得到均匀且很薄的压电复合物层(13),所以,对滚轧成形的复合材料板施以120~180℃温度和50~150公斤/cm2压力的加压处理,才能形成厚度0.1~1毫米的均匀压电复合物层(13)。为了使金属薄膜(141,151)与压电复合物层(13)牢固触接,对置于导电体(14、15)之间并与金属薄膜(141,151)分别触接的压电复合物层(13)的组合体也要施以加压处理。最后,还要对压电复合物层(13)通以直流高电压以使它产生极化。
用以丙烯酸类树脂或聚酯类树脂作为粘合剂的热塑性树脂制作焙制金属薄膜也是合适的。这种焙制金属薄膜的优点是易于形成多种形状,然而,它的缺点是必须经过特殊处理才能形成屏蔽导电体。这种薄膜的制作方法是在100~150℃的温度下烧制含有金属颗粒和热塑塑料的胶状物印刷薄膜,使用银金属颗粒是最理想的,因为含有银和丙烯酸树脂或聚酯树脂的胶状物从市场上就可以买到。
毫无疑问,上述电缆和平面式压力传感器的基本结构都是由两层导电体夹一层压电复合物层组成的,而且两层导电体相互分离。
虽然已对本发明作了如上说明,但只要在本发明的范围之内,允许对本发明作出多种变更和改进。因此,现通过以下权利要求对本发明的范围作出限定。
权利要求
1.一种压电式压力传感器,包括夹在两层导电体中间的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末。
2.根据权利要求1的压电式压力传感器,其中所述a-CPE分子量为60,000~150,000。
3.根据权利要求1~2中任何一个的压电式压力传感器,其中所述压电式压力传感器具有平面式形状。
4.一种压电电缆,包括内导电体,包围所述内导电体的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末,依附在聚合物薄膜上的金属薄膜所构成的外导电体,所述金属薄膜与所述压电复合物层相接触,但与所述内导电体分离,包围所述外导电体的由绝缘弹性材料制成的防护套。
5.根据权利要求4的压电电缆,其中所述a-CPE分子量为60,000~150,000。
6.根据权利要求4~5中任何一个的压电电缆,其中所述外导电体以部分重叠在所述压电复合物层上的方式缠绕。
7.根据权利要求4~5中任何一个的压电电缆,其中所述外导电体单独缠绕在所述压电复合物层上。
8.根据权利要求4~5中任何一个的压电电缆,其中所述外导电体包括夹在两层金属薄膜中间的聚合物薄膜。
9.根据权利要求7的压电电缆,其中一个外部导线用导电粘合剂固定在由所述外导电体构成的一个外层金属薄膜上。
10.根据权利要求7的压电电缆,其中一个外部导线通过焊接与一金属丝固定连接,所述金属丝缠绕在所述外导电体上。
11.根据权利要求7的压电电缆,其中一个外部导线通过焊接固定连接在一金属丝编织上,所述金属丝编织缠绕在所述外导电体上。
12.根据权利要求4~5中任何一个的压电电缆,其中所述内导电体包括金属螺旋丝和绝缘微细聚合物纤维。
13.根据权利要求4~5中任何一个的压电电缆,其中所述外导电体的金属薄膜是铝,而所述聚合物薄膜是对酞酸聚乙烯。
14.一种压力和温度探测电缆,包括内导电体,包围所述内导电体的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末;依附在聚合物薄膜上的金属薄膜所构成的外导电体,所述金属薄膜与所述压电复合物层相接触,但与所述内导电体分离,包围所述外导电体的由绝缘弹性材料制成的防护套。
15.根据权利要求14的压力和温度探测电缆,其中所述a-CPE分子量为60,000~150,000。
16.权利要求15的压电电缆,其中所述复合物层包括75wt%的a-CPE和25wt%的c-CPE。
17.根据权利要求14-16中任何一个的压力和温度探测电缆,其中所述内导电体包括金属螺旋丝和绝缘微细聚合物纤维。
18.一种压力和温度探测装置,包括内导电体;包围所述内导电体的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末;依附在聚合物薄膜上的金属薄膜所构成的外导电体,所述金属薄膜与所述压电复合物层相接触,但与所述内导电体分离;包围所述外导电体的由绝缘弹性材料制成的防护套;压力探测装置,所述压力探测装置连接在内导电体和外导电体之间;连接在电缆两端之间的温度探测装置。
19.根据权利要求18的压力和温度探测装置,其中所述a-CPE分子量为60,000~150,000。
20.根据权利要求18-19中任何一个的压力和温度探测装置,其中所述内导电体包括金属螺旋丝和绝缘微细聚合物纤维。
全文摘要
一种压电式压力传感器,包括夹在两层导电体中间的压电复合物层,所述复合物层包括非晶体氯化聚乙烯(a-CPE)和压电陶瓷粉末。本发明还提供使用此压电式压力传感器的压电电缆、压力和温度探测电缆、和压力与温度探测装置。
文档编号H01L41/087GK1495419SQ20031010107
公开日2004年5月12日 申请日期1999年8月5日 优先权日1998年8月5日
发明者伊藤雅彦, 子, 长井彪, 之, 藤井优子, 荻野弘之 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1