带有光传输部件的装置的制作方法

文档序号:6815637阅读:84来源:国知局
专利名称:带有光传输部件的装置的制作方法
技术领域
本发明涉及带有光传输部件的装置。
背景技术
在现有的半导体器件(例如,具有TFT器件的液晶显示器件)等装置中,用电气布线来连接预定的元件和预定的元件,仅用电气信号来传输信息并驱动电路。
但是,在上述现有的装置中,存在由于电气布线(布线)所附带的电容和布线电阻而导致信号延迟的缺陷。随着半导体器件的高密度化的推进,该信号的延迟变大,这成为半导体器件的高速化的较大的障碍。而且,还存在因布线电阻而发热的缺陷。
虽然由光纤所进行的光的信息的传输装置是公知的,但其用途仅限于比较大型的装置。
发明概述本发明的课题是提供一种备有与电气信号所进行的信息的传输方式不同方式的光传输部件,特别是能够提高集成度和高速性的光传输部件的装置。
为了解决这样的课题,在本发明中提供了下述(1)~(21)的装置(1)一种带有光传输部件的装置,其特征在于所说的光传输部件是集成着由薄膜所构成的至少具有一个发光器件的发光部、由薄膜所构成的至少具有一个感光器件的感光部和把来自上述发光部的光向上述感光部进行传导的传导光路的光传输部件。
(2)根据上述(1)所述的带有光传输部件的装置,上述发光部、上述感光部和上述传导光路至少被设置在一维方向上。
(3)根据上述(1)或(2)所述的带有光传输部件的装置,上述发光部、上述感光部和上述传导光路被设置在同一基板上。
(4)根据上述(1)所述的带有光传输部件的装置,上述发光部、上述感光部和上述传导光路被设置在二维方向上。
(5)根据上述(1)所述的带有光传输部件的装置,上述发光部、上述感光部和上述传导光路被设置在三维方向上。
(6)根据上述(5)所述的带有光传输部件的装置,至少具有上述发光部、上述感光部和上述传导光路之一的层是层叠的构造。
(7)根据上述(1)至(6)任一项所述的带有光传输部件的装置,上述发光部具有发光特性不同的多个发光器件。
(8)根据上述(1)至(6)任一项所述的带有光传输部件的装置,上述发光部具有发出的光的峰值波长不同的多个发光器件。
(9)根据上述(7)或(8)所述的带有光传输部件的装置,上述感光部具有对来自对应的上述发光器件的光进行感光的多个感光器件。
(10)根据上述(1)至(9)任一项所述的带有光传输部件的装置,构成上述发光器件的至少一个薄膜通过墨水喷射方式来形成图形。
(11)根据上述(1)至(10)任一项所述的带有光传输部件的装置,上述发光器件由有机EL器件构成。
(12)根据上述(1)至(10)任一项所述的带有光传输部件的装置,上述发光器件由有机EL器件和光学滤波器构成。
(13)根据上述(12)所述的带有光传输部件的装置,上述光学滤波器是层叠了折射率不同的多层薄膜而形成的分布反射型多层膜反射镜。
(14)根据上述(1)至(13)任一项所述的带有光传输部件的装置,构成上述发光器件的至少一个薄膜通过墨水喷射方式来形成图形。
(15)根据上述(1)至(14)任一项所述的带有光传输部件的装置,上述感光器件由有机器件所构成。
(16)根据上述(1)至(14)任一项所述的带有光传输部件的装置,上述感光器件由有机器件和光学滤波器所构成。
(17)根据上述(1)至(16)任一项所述的带有光传输部件的装置,上述传导光路由薄膜构成。
(18)根据上述(1)至(17)任一项所述的带有光传输部件的装置,构成上述发光器件的至少一个薄膜通过墨水喷射方式来形成图形。
(19)根据上述(1)至(18)任一项所述的带有光传输部件的装置,具有薄膜晶体管。
(20)根据上述(1)至(18)任一项所述的带有光传输部件的装置,在同一基板上具有多个电路块,该多个电路块分别包括上述发光部和上述感光部。
(21)根据上述(20)所述的带有光传输部件的装置,上述多个电路块中预定的电路块之间由上述传导光路进行耦合,在该电路块之间构成为通过该传导光路用光来发送·接收信号。
附图的简要说明

图1是模式地表示本发明的一个实施例的带有光传输部件的装置的主要部分的图;图2是表示在本发明中使用有机EL器件作为发光器件时的构成例和传导光路的构成例的截面图;图3是用于说明由喷墨打印所进行的有机EL器件的制造方法的图;图4是表示在本发明中使用PIN光电二极管作为感光器件时的构成例和传导光路的构成例的截面图;图5是表示本发明中的放大电路的构成例的电路图;图6是表示本发明中的放大电路的另一个构成例的电路图;图7是表示本发明中的放大电路的另一个构成例的方框图;图8是表示本发明中的电流放大器的构成例的电路图;图9是模式地表示本发明的另一个实施例的带有光传输部件的装置的主要部分的图;图10是表示本发明中的发光器件的构成例和传导光路的构成例的截面图;图11是表示本发明中的感光器件的构成例和传导光路的构成例的截面图;图12是图11中的沿A-A线的截面图;图13是模式地表示本发明的又一个实施例的带有光传输部件的装置的主要部分的图;图14是模式地表示本发明的又一个实施例的带有光传输部件的装置的主要部分的图。
用于实施发明的最佳形态下面根据在附图中所示的最佳实施例来详细说明本发明的带有光传输部件的装置。
图1是模式地表示本发明的一个实施例的带有光传输部件的装置的主要部分的图。
该图所示的装置(半导体器件)1具有基板2。在该基板2上分别设置发光器件3、驱动该发光器件3的驱动电路所设置的向发光器件3发送信号的未图示的电路(发送侧的电路)、感光器件(光检测器件)5、把来自上述发光器件3的光向上述感光器件5进行传导的传导光路(导波路)4、放大电路6、布线(电气布线)7和电路8。
即,在基板2上集成着发光器件3、包括上述驱动电路的构成发送信号的电路的各个器件及其布线、传导光路4、感光器件5、构成放大电路6的各个器件及其布线、布线7、构成电路8的各个器件及其布线。
作为基板2的构成材料,可以例举出各种玻璃、Si单晶、陶瓷、石英等。
发光器件3、传导光路4和感光器件5的部分或者全部分别由薄膜所构成。
由上述发光器件3构成发光部,由上述感光器件5构成感光部,并且,由上述发光器件3、传导光路4和感光器件5构成光传输部件。
作为该装置1中的发光器件3,例如可以使用有机EL器件;作为感光器件5,例如可以使用光电二极管。
图2是表示使用有机EL器件作为图1所示结构的发光器件3时的构成例和传导光路4的构成例的截面图。
如该图所示的那样,有机EL器件3a由透明电极31、发光层(有机EL层)32、金属电极33、兼用作遮光部和防止墨水扩散的壁的间壁(bank)34所构成。该有机EL器件3a设置在后述的传导光路4上。下面具体地说明有机EL器件3a的结构。
间壁34形成在后述的传导光路4的Si02层43上。而且,透明电极31和发光层32分别形成在间壁34的内侧。在此情况下,在SiO2层43上形成透明电极31,在该透明电极31上形成发光层32。接着,在上述间壁34和发光层32上形成金属电极33。
透明电极31例如由ITO等构成。而且,透明电极31的厚度最好为50~500nm程度。
在发光层32中使用有机发光材料作为发光物质,但在此情况下,发光波长的选择的自由度较大,事实上,通过选择特定的材料或者把材料进行复合,就能实现某个长度的波长的选择。
作为有机发光材料,选择发光物质中的激发子的能量相当于与有机物质的禁带宽度相对应的HOMO(最高被占能级)-LUMO(最低空能级)间的能量差的材料。例如,选择低分子、高分子、特别是主链中共轭发达的共轭高分子、导电性高分子和色素分子。
作为有机发光材料,在使用低分子有机材料时,例如,为了发出蓝光,而使用蒽、PPCP、Zn(OxZ)2、双丁基苯(DSB)、其衍生物(PESB)等。并且,例如,为了发出绿光,而使用Alq3、六苯并苯等。而且,例如,为了发出红光,而使用BPPC、二萘嵌苯、DCM等。
作为有机发光材料,在使用高分子有机材料时,例如,为了发出红光,使用PAT等,为了发出橙色光,而使用MEH-PPV等,为了发出蓝光,使用PDAF、FP-PPP、RO-PPP、PPP等,为了发出紫光,使用PMPS等。
除此之外,作为有机发光材料,可以使用PPV、RO-PPV、CN-PPV、PdPhQx、PQx、PVK(聚(N-乙烯基咔唑))、PPS、PNPS、PBPS等。
特别是,PVK能够通过控制Eu络合体等载体输送能力差的色素分子等掺杂剂墨水的混合浓度和排出次数来改变发光波长(发光色)。例如,当在由PVK组成的有机发光材料中掺入荧光色素时,能够调节发光色。在PVK中掺入1,1,4,4-四苯基-1,3,-丁二烯(TPB)、香豆素6、DCM1的色素时,分别能够使发光色成为蓝色、绿色、橙色。而且,当在PVK中同时掺入三种色素时,可以得到宽度宽的频谱。而且,在能够在PPV中掺入若丹明B、DCM时,能够把发光色任意地从绿色变为红色。
最好,对主要形成发光层32的共轭系高分子有机化合物的前体,或者该前体和用于使发光层32的发光特性变化的荧光色素等被溶解或者分散到预定溶剂中的有机EL器件用组合物(发光层32用的组合物)进行加热处理,用高分子化的薄膜(固体薄膜)形成该有机EL器件用组合物中的上述前体。或者,作为另一个例子,上述发光层32由对把可溶的共轭系高分子本身溶解在有机溶剂中或者把该共轭系高分子和用于使发光层32的发光特性变化的荧光色素等溶解在有机溶剂中的组合物(发光层32用的组合物)进行干燥或者加热处理而得到的高分子薄膜来形成。相应的发光层32的厚度最好为50~500nm程度。
金属电极33例如使用A1-Li等。并且,金属电极33的厚度最好为10~500nm程度。
间壁34例如使用聚酰亚胺、SiO2等。并且,间壁34的厚度最好大于透明电极31和发光层32的合计厚度。
如上述那样,在图1所示的基板2上设置具有驱动有机EL器件3a的未图示的驱动电路的发送侧的电路。而且,在该有机EL器件3a中,当从上述驱动电路向透明电极31和金属电极33之间施加预定的电压时,在发光层32中注入电子和空穴,它们通过因所施加的电压而产生的电场在发光层32中移动并再结合。在该再结合中,生成激发子,在该激发子返回到基底状态的过程中,释放能量(荧光·磷光)。即,发光。把这样的现象称为EL发光。
下面对有机EL器件3a的制造方法进行说明。在本例中,通过喷墨打印来制造图2所示构造的有机EL器件3a。
所谓由该喷墨打印所进行的制造方法是指这样的方法通过喷墨方式,即从喷头喷出预定的组合物(喷出液),而使预定的薄膜(层)材料形成图形,把其进行固化,而成为薄膜。以下参照图3来具体地说明由喷墨打印所进行的有机EL器件3a的制造方法。
如该图所示的那样,首先,例如通过光刻法形成间壁34。接着,通过喷墨方式在传导光路4上使预先准备的透明电极31用的组合物形成图形。即,从喷墨用的喷墨头的喷嘴90喷出透明电极31用的组合物,并形成预定图形。接着,对该形成了图形的透明电极31用的组合物进行加热处理,并固化而形成透明电极31。
接着,通过喷墨方式使预先准备的发光层32用的组合物形成图形。即,从喷墨用的喷墨头的喷嘴100喷出发光层32用的组合物,并形成预定图形。接着,对该形成了图形的发光层32用的组合物的层320进行加热处理,使该层320中的共轭系高分子有机化合物的前体高分子化。即,使层320固化而形成发光层32。
最后,例如通过溅射或者蒸镀法来形成金属电极33,而得到图2所示构造的有机EL器件3a。
根据相应的喷墨打印即喷墨方式,能够在短时间内容易并且正确地进行细微的刻图。并且,能够通过组合物的喷出量的增减而容易并且正确地进行膜厚的调整,由此能够容易并且自由地控制膜的性状和显色平衡、亮度等的显色能力。
这样,能够容易地在基板2上特别是在集成着TFT(薄膜晶体管)电路或者一般的单晶硅基的IC等这样的细微元件的基板2上形成具有所希望的特性、尺寸、图形的有机EL器件3a。
图2所示构造的传导光路4由SiO2层41、SiO2层43、设在该SiO2层41与SiO2层43之间的ITO层42所构成。在此情况下,在基板2上形成SiO2层41。SiO2层41的厚度最好为50nm~10μm程度。ITO层42的厚度最好为30nm~10μm程度。SiO2层43的厚度最好为50nm~10μm程度。
如图1所示的那样,该传导光路4至少从有机EL器件3a(发光器件3)延伸到下述的PIN光电二极管5a(感光器件5),把来自有机EL器件3a的光传导到PIN光电二极管5a。
该传导光路4可以使用现有的薄膜形成法(CVD、PVD等)和光刻法来制造。
而且,传导光路4,象上述有机EL器件3a那样,能够通过喷墨打印来制造。即,构成传导光路4的至少一个薄膜(层),象上述有机EL器件3a那样,能够通过喷墨方式使预定的组合物形成图形并把其固化来制造。在此情况下,能够得到上述喷墨打印所得到的效果。
另一方面,例如可以使用PIN光电二极管作为图1所示构造中的感光器件5。
图4是表示使用PIN光电二极管作为感光器件5时的构成例和传导光路4的构成例的截面图。
如该图所示的那样,PIN光电二极管5a由感光部窗口电极51、p型a-SiC层(p型半导体层)52、i型a-Si层(半导体层)53、n型a-SiC层(n型半导体层)54、兼用作感光部上部电极和布线(电气布线)的Al-Si-Cu层55所构成。
这些感光部窗口电极51、p型a-SiC层52、i型a-Si层53、n型a-SiC层54和Al-Si-Cu层55从图4的下侧依次层叠。
该PIN光电二极管5a设置在该传导光路4上,以便于其该感光部窗口电极51与上述传导光路4的ITO层42相对。在与传导光路4的上述感光部窗口电极51相对应的部分上不形成SiO2层43。
例如用ITO等构成感光部窗口电极51。该感光部窗口电极51的厚度最好为50mm-1μm程度。
而且,作为一个例子,p型a-SiC层52、i型a-Si层53、n型a-SiC层54和Al-Si-Cu层55的厚度分别可以为50mm、800nm、50nm和1μm。
但是,上述各层的厚度并不仅限于上述值。即,与各层的厚度相关,存在相当大的变化,各层的厚度分别具有相当的自由度。
该PIN光电二极管5a,象上述有机EL器件3a那样,可以通过喷墨打印来制造。即,构成PIN光电二极管5a的至少一个薄膜(层),象上述有机EL器件3a一样,通过喷墨方式使预定组合物形成图形并将其固化来制造。在此情况下,能够得到由上述喷墨打印所产生的效果。
而且,在本发明中,作为感光器件5,除了上述PIN光电二极管5a之外,也可以使用有机系的光检测材料(有机器件)。作为该机系的光检测材料,可以使用例如与上述有机EL器件3a相同的材料。例如,使用PPV和氰基PPV的混合物等。
如图1所示,在上述PIN光电二极管5a上连接放大电路6的输入侧。
作为放大电路6,可以列举出图5所示的具有P沟道和N沟道的MOS-FET(场效应晶体管)的CMOS型的数字放大电路61、图6所示的具有双极晶体管和MOS-FET的Bi-CMOS型的数字放大电路62、图7和图8所示的由电流放大器(模拟放大电路)631和A/D变换器632所构成的放大电路63等。
在放大电路63的情况下,电气信号(模拟信号)被输入到电流放大器631,对其电流值(信号电平)进行放大,并输入到A/D变换器632。接着,该放大后的信号由A/D变换器632从模拟信号变换为数字信号,并输出。
另一方面,如图1所示,在上述放大电路6的输出侧通过布线7连接预定的电路8。作为电路8,可以例举出具有在Si单晶上形成的FET(场效应晶体管)的电路和具有TFT(薄膜晶体管)的电路等。
下面说明装置1的作用。
如上述那样,在图1中未表示的发送侧的电路中,所发送(生成)的电气信号被输入到驱动电路,该驱动电路根据该电气信号来驱动有机EL器件3a(发光器件3)使其发光。由此,生成光信号(光)。即,有机EL器件3a被驱动电路进行驱动,把上述电气信号变换为光信号(光),并送出(发送)该光信号。
在此情况下,如图2所示的那样,来自有机EL器件3a的发光层32的光象用图2中的箭头所示的那样穿过透明电极31和SiO2层43,入射到ITO层42。接着,该光在SiO2层41与ITO层42的界面和SiO2层43与ITO层42的界面上一边重复反射一边在ITO层42内向着PIN光电二极管5a(感光器件5)前进。
如图4所示,来自有机EL器件3a的光象用图4中的箭头所示的那样从感光部窗口电极51入射。即,由PIN光电二极管5a感光。
接着,从PIN光电二极管5a输出与感光光量相对应的大小的电流即电气信号(信号)(光信号变换为电气信号并输出)。来自PIN光电二极管5a的信号由放大电路6进行放大,通过布线7输入到电路8中。电路8根据该信号而动作。
如上述那样,根据该装置1,在集成了细微的器件的装置1内,主要通过光通信来传输信息(信号),因此,在有机EL器件3a和PIN光电二极管5a之间没有由电气布线的电阻所产生的发热,由此,能够降低来自装置1的发热。
由于在有机EL器件3a和PIN光电二极管5a之间没有信号的延迟,则能够实现响应性良好的装置(电路)。
在有机EL器件3a、传导光路4、PIN光电二极管5a等通过喷墨打印而形成在基板2上的情况下,提高了装置1的生产性,有利于大量生产。
下面说明本发明的带有光传输部件的装置的另一个实施例。
图9是模式地表示本发明的另一个实施例的带有光传输部件的装置的主要部分的图。图9是平面图(各部件的平面的配置)。
在图9所示的装置(半导体器件)10中,发光部由发光特性(在本实施例中,是发光的光的峰值波长)不同的多个(在本实施例中是3个)发光器件30所构成,感光部由对应的对来自上述发光器件30的光进行感光的多个(在本实施例中是3个)感光器件50所构成。通过这样的构成,可以使用同一传导光路4而同时通信多个((在本实施例中是3种)信息(信号)。下面具体地说明该装置10。
如图9所示,装置10具有基板2。在该基板2上分别设置多个(在本实施例中是3个)发光器件30、驱动各个发光器件30的未图示的驱动电路、多个(在本实施例中是3个)感光器件(光检测器件)50、把来自上述发光器件30的光向上述感光器件50进行传导的传导光路(导波路)4、多个(在本实施例中是3个)放大电路60、多个(在本实施例中是3个)布线(电气布线)70和电路8。
即,在基板2上集成着3个发光器件30、构成上述驱动电路的各个器件及其布线、传导光路4、3个感光器件50、构成3个放大电路60的各个器件及其布线、3个布线70、构成电路8的各个器件及其布线。
作为基板2的构成材料,可以例举出各种玻璃、Si单晶、陶瓷、石英等。
发光器件30、传导光路4和感光器件50的部分或者全部分别由薄膜构成。
如上述那样,该装置10中的各个发光器件30所发光的峰值波长是不同的。其中,上述3个发光器件30所发光的峰值波长分别为λ1、λ2和λ3。这些λ1、λ2和λ3最好分开一定程度以使能够在感光器件50侧有选择地感光。
该装置10中的各个发光器件30可以通过分别改变有机EL层(发光层32)的材料和组成或者分别改变滤波特性来构成。
图10是表示发光器件30时的构成例和传导光路4的构成例的截面图。如该图所示,各个发光器件30由有机EL器件3a和光学滤波器35构成,该有机EL器件3a由透明电极31、发光层(有机EL层)32、金属电极33、兼用作遮光部和防止墨水扩散的壁的间壁(bank)34构成。各个发光器件30设置在后述的传导光路4上。
下面具体地说明发光器件30的部分的构造。间壁34形成在后述的传导光路4的SiO2层43上。
透明电极31、发光层32和光学滤波器35分别形成在间壁34的内侧。在此情况下,在SiO2层43上形成光学滤波器35,在该光学滤波器35上形成透明电极31,在该透明电极31上形成发光层32。
接着,在上述间壁34和发光层32上形成金属电极33。该金属电极为各个有机EL器件3a的共同电极。
下面对发光层32进行说明。通过使用有机发光材料作为发光物质,发光波长的选择的自由度较大,事实上,通过选择特定的材料或者把材料进行复合,就能实现某个长度的波长的选择。作为有机发光材料,选择发光物质中的激发子的能量相当于与有机物质的禁带宽度相对应的HOMO(最高被占能级)-LUMO(最低空能级)间的能量差的材料。例如,选择低分子、高分子、特别是主链中共轭发达的共轭高分子、导电性高分子和色素分子。具体地说,可以根据所希望的波长而适当使用在上述图2所示构造的有机EL器件3a中的发光层32中所使用的材料。
从发光层所得到的光的波长(峰值波长和波长频带等)可以通过光学滤波器35进行一定程度的调节。
在白色光这样的波长频带(带宽)较宽的光被发光并调节其波长时,可以使用通常的吸收型光学彩色滤波器(色滤波器)作为光学滤波器35,由此,能够仅使所希望的色(波长)通过而成为光信号。
作为光学滤波器35,可以使用例如分布反射型多层膜反射镜(DBR反射镜)。例如,从有机EL器件3a发出的光通常具有100nm以上的波长频带(波长的带宽),但当使用DBR反射镜作为光学滤波器35时,能够使该波长成为窄带宽(使波长的带宽变窄)。而且,当使用多个DBR反射镜时,能够从具有100nm以上的波长频带的光得到具有不同峰值波长的并具有陡峭的峰值的多个光。
这样,通过改变有机EL器件3a的发光层32的材料,能够把各个发光器件30的峰值波长分别设定为λ1、λ2和λ3,并且,可以通过改变光学滤波器35而把各个发光器件30的峰值波长分别设定为λ1、λ2和λ3。
但是,最好通过改变有机EL器件3a的发光层32的材料并且改变光学滤波器35,可以把各个发光器件30的峰值波长分别设定为λ1、λ2和λ3。
上述DBR反射镜是层叠了折射率不同的多个薄膜的反射镜,特别是,是具有由折射率不同的2种薄膜所构成的多对薄膜的反射镜(周期性层叠的)。
作为构成上述DBR反射镜中的薄膜的构成成分,例如,可以列举出半导体材料和介电体材料等,其中,最好是介电体材料。可以使用通常的真空成膜法来形成它们。而且,介电体材料可以使用可溶于有机溶剂中的有机化合物作为引发原料,而容易地用于用上述喷墨方式所进行的图形形成。
各个发光器件30的有机EL器件3a可以象上述装置1的有机EL器件3a那样通过喷墨打印来制造。即,构成发光器件30的有机EL器件3a的至少一个薄膜(层)可以象上述装置1的有机EL器件3a那样,使预定的组合物通过喷墨方式形成图形,把其固化来制造。在此情况下,可以得到由上述喷墨打印所得到的效果。
构成各个发光器件30的DBR反射镜(光学滤波器35)的薄膜可以通过液相成膜法而形成。
上述液相成膜法是指把构成上述薄膜的组成成分溶解或者分散到溶剂中的组合物(液体)作为薄膜材料(涂敷液),不使该薄膜材料汽化来形成薄膜。
最好,各个DBR反射镜象上述装置1的有机EL器件3a那样通过喷墨打印来制造。即,构成DBR反射镜的各个薄膜象上述装置1的有机EL器件3a那样通过喷墨方式使上述组合物形成图形,把其固化来制造。在此情况下,可以得到由上述喷墨打印所得到的效果。
如图10所示的那样,传导光路4由SiO2层41、SiO2层43、设在该SiO2层41与SiO2层43之间的ITO层42所构成。在此情况下,在基板2上形成SiO2层41。 SiO2层41、ITO层42和SiO2层43的厚度分别与上述装置1中的相同。
如图9所示的那样,该传导光路4至少从各个发光器件30延伸到各个感光器件50,把来自各个发光器件30的光传导到各个对应的感光器件50。
该传导光路4,象上述有机EL器件3a一样,能够通过喷墨打印来制造。即,至少构成传导光路4的一个薄膜(层),象上述有机EL器件3a一样,能够通过喷墨方式使预定的组合物形成图形,把其固化来制造。在此情况下,能够得到上述喷墨打印所得到的效果。
例如可以使用PIN光电二极管和预定的光学滤波器来作为感光器件50,并且,可以用与上述装置1相同的有机器件和预定的光学滤波器来构成。
图11是表示感光器件50的构成例子和传导光路4的构成例的截面图,图12是图11中A-A线的截面图。
如这些图所示的那样,各个感光器件50由PIN光电二极管5a和光学滤波器56所构成,该PIN光电二极管5a由感光部窗口电极51、p型a-SiC层(p型半导体层)52、i型a-Si层(半导体层)53、n型a-SiC层(n型半导体层)54、兼用作感光部上部电极和布线(电气布线)的Al-Si-Cu层55所构成。
这些光学滤波器56、感光部窗口电极51、p型a-SiC层52、i型a-Si层53、n型a-SiC层54和Al-Si-Cu层55从图11的下侧依次层叠。在此情况下,光学滤波器56形成为覆盖感光部窗口电极51。
各个感光器件50设置在该传导光路4上,以便于使其感光部窗口电极51与上述传导光路4的ITO层42相对。在与传导光路4的上述感光部窗口电极51相对的部分上不形成SiO2层43。
感光部窗口电极51的构成材料及其厚度分别与上述装置1的相同。
并且,p型a-SiC层52、i型a-Si层53、n型a-SiC层54和Al-Si-Cu层55的厚度分别与上述装置1的相同。
各个感光器件50的光学滤波器56分别设定光学特性,以使当来自对应的发光器件30的光的峰值波长分别为λ1、λ2和λ3时,有选择地仅使上述来自对应的发光器件30的光(把λ1、λ2和λ3中的预定一个波长作为峰值波长的光)最大限度地通过。
作为这些光学滤波器56,例如,可以使用上述分布反射型多层膜反射镜(DBR反射镜)。当使用DBR反射镜作为光学滤波器56时,可以选择比使用光学彩色滤波器时更窄的波长频带的光,而提高波长的长度方向的分辨率。
各个感光器件50的PIN光电二极管5a可以象上述有机EL器件3a那样通过喷墨打印来制造。即,构成PIN光电二极管5a的至少一个薄膜(层)可以象上述有机EL器件3a那样,使预定的组合物通过喷墨方式形成图形,把其固化来制造。在此情况下,可以得到由上述喷墨打印所得到的效果。
构成各个感光器件50的DBR反射镜(光学滤波器56)的薄膜可以通过上述液相成膜法而形成。
最好,各个DBR反射镜象上述有机EL器件3a那样通过喷墨打印来制造。即,构成DBR反射镜的各个薄膜象上述有机EL器件3a那样通过喷墨方式使上述组合物形成图形,把其固化来制造。在此情况下,可以得到由上述喷墨打印所得到的效果。
如图9所示的那样,在上述各个感光器件50的PIN光电二极管5a上分别连接对应的放大电路60的输λ侧。
在各个放大电路60的输出侧分别通过对应的布线70连接预定的电路8。
对于放大电路60和电路8,分别与上述装置1的相同,因此,省略其说明。
这样的装置10和上述装置1,例如,可以适合于从使用最前端的0.18μm尺度的LSI晶体管到TFT这样的2~3μm尺度的晶体管电路的广泛的范围的集成度。
下面对装置10的作用进行说明。
各个发光器件30的有机EL器件3a,分别如上述那样,由未图示的驱动电路进行驱动而发光。即,各个有机EL器件3a分别发送光信号(光)。以下,代表地说明与峰值波长为λ1相关的信号传输的情况。
如图10所示的那样,从有机EL器件3a的各个发光层32根据各个发光层32的材料和构造而发出不同波长的光,如图10中的箭头所示的那样,分别透过透明电极31,由光学滤波器35使其带宽进一步变窄,成为峰值波长为λ1、λ2和λ3的光,从光学滤波器35射出。
从上述预定的光学滤波器35所射出的峰值波长为λ1的光(以下称为「特定波长的光」)即透过光学滤波器35的特定波长的光,透过SiO2层43而射入ITO层42。接着,该光在SiO2层41与ITO层42的界面和SiO2层43与ITO层42的界面上一边重复反射一边在ITO层42内向着PIN光电二极管5a前进。
如图11和图12所示的那样,来自有机EL器件3a的特定波长的光,象用图11和图12中的箭头所示的那样,仅透过对应的感光器件50的光学滤波器56,而从对应的感光器件50的PIN光电二极管5a的感光部窗口电极51入射。即,仅由对应的PIN光电二极管5a所感光。
从其他两种发光器件30分别发出峰值波长为λ2和λ3的光,通过传导光路4而传导到该感光器件50上,但上述两光分别被该感光器件50的光学滤波器56所去掉,而不会被感光。
从上述PIN光电二极管5a输出与感光光量相对应的大小的电流即电气信号(信号)(光信号变换为电气信号而输出)。
来自PIN光电二极管5a的信号由放大电路60进行放大,通过布线70输入到电路8中。电路8根据该信号而动作。
在与峰值波长为λ2和λ3相关的信号传输的情况,也分别与上述情况相同。
根据该装置10,与上述装置1相同,能够降低来自装置10的发热,并且能够大幅度改善信号的传输延迟,而实现响应性良好的装置(电路),并且,提高了装置10的生产性,有利于大量生产。
而且,在该装置10中,由于具有发出的光的峰值波长不同的多个发光器件30和对来自对应的上述发光器件30的光(特定波长的光)进行感光的多个感光器件50,则能够使用同一传导光路4来同时传输多个信息(能够实现由使用同一传导光路4的多信道的光通信所进行的信息传输)。因此,与仅有电气布线的装置相比,能够谋求布线的简化。而且,与仅有电气布线的装置相比,能够减少布线占据的区域,由此,能够更小地形成具有同一功能的装置。即,提高集成度。
上述装置10中的各个发光器件30和各个感光器件50沿着图9中的横向排列,但在本发明中,它们也可以分别沿着图9中的纵向排列。
上述装置10中的光学滤波器35和光学滤波器56,在本发明中,并不仅限于DBR反射镜,也可以使用其他的例如光学彩色滤波器等来构成。
在上述装置10中,可以省略光学滤波器35,通过改变有机EL器件3a的发光层32的发光特性(特别是,发出的光的峰值波长),来改变发光器件30的发光特性(特别是,发出的光的峰值波长)。
在本发明中,在上述装置10中,可以不省略光学滤波器35,并改变有机EL器件3a的发光层32的发光特性(特别是,发出的光的峰值波长)。
图13是表示把上述装置1或10实际用于装入LSI电路和TFT电路这样的半导体电路中时的本发明的带有光传输部件的装置100的实施例的图(表示部件的平面配置的图)。
如该图所示的那样,在同一基板2上,设置(形成)两个电路块81(A)和82(B)。
电路块81分别具有发光器件301、驱动该发光器件301的驱动电路11、感光器件502、放大器件602。
并且,电路块82分别具有发光器件302、驱动该发光器件302的驱动电路121、感光器件501、放大器件601。
上述发光器件301通过在基板2上设置的传导光路401而同上述感光器件501相结合,以使光能够传递到该感光器件501上。与此相同,上述发光器件302通过在基板2上设置的传导光路402而同上述感光器件502相结合,以使光能够传递到该感光器件602上。
该装置100可以在设置在内部的电路块81和电路块82之间相互地把电气信号变换为光信号来发送·接收该信号。即,可以用电路块82来接收从电路块81所发送的光信号,反之,也可以用电路块81来接收从电路块82所发送的光信号。
可以使用与上述装置1相同的构成材料来作为装置100的基板2的构成材料。
对于装置100的发光器件301、302、感光器件501、502、传导光路401、402,可以分别是与上述装置1相同的材料、构造,并且,可以使用与上述装置1相同的制造方法。
装置100的驱动电路11和12一般分别由使用双极晶体管和MOS-FET等的电子电路来构成。
而且,作为装置100的放大电路601和602,可以与上述装置1相同,分别使用图5、图6、图7和图8所示的电子电路。
该装置100的作用与上述装置1大致相同,但在电路块81和82能够分别进行发送和接收(特别是平行地进行)这点上,即,进行从电路块81向82的发送和从电路块82向81的发送(特别是平行地进行)这点上,与装置1不同。
在该装置100中,与上述装置1一样,仅使用一种光来作为形成光信号的光,但并不仅限于此,也可以象上述装置10那样,具有使用峰值波长不同的多个光的发送接收功能。在此情况下,能够通过适当地组合上述装置100和上述装置10来实现。
在一般的实现半导体集成电路的半导体芯片中,本发明的带有光传输部件的装置能适用于一个半导体芯片内的电路块之间(预定的电路块与其他的电路块之间)的信号传输装置、预定的半导体芯片与其他的半导体芯片之间的信号传输装置、安装半导体芯片的电路端口与被安装芯片之间的信号传输装置、预定的上述电路端口与其他的电路端口之间的信号传输装置等。
而且,本发明的带有光传输部件的装置可以用于TFT电路间(预定的TFT电路与其他的TFT电路之间)的信号传输装置和TFT电路与一般的半导体电路之间的信号传输装置。
本发明的带有光传输部件的装置,特别是,作为上述实施例,可以用于例如向液晶显示器、等离子显示器、有机EL显示器等平板显示器传输信号的装置。
以上根据附图的各个实施例来说明了本发明的带有光传输部件的装置,但本发明并不仅限于此,各部分的构成可以置换为具有相同功能的任意构成。
例如,在上述各个实施例中,发光器件、传导光路和感光器件设置在一维方向上,但在本发明中,发光器件、传导光路和感光器件设置在二维方向上(在基板上沿二维方向设置)。
而且,在本发明中,光传输部件可以具有多组发光部、感光部和传导光路。
而且,在本发明中,发光器件、传导光路和感光器件沿三维方向设置。以下,根据图14对该实施例简单地进行说明。
如图14所示的那样,该装置(半导体器件)20是在基板2上依次层叠着第一层20a、第二层20b、第三层20c、第四层20d和第五层20e的多层装置。
在此情况下,第五层20e中的发光部213与感光部227的关系与上述装置1和装置10的发光部与感光部的关系相同。
不同层间的(相对于基板2的垂直方向上的)发光部与通过未图示的传导光路同该发光部相连接的感光部的关系,即,发光部211与感光部223的关系、发光部212与感光部221的关系、发光部213与感光部224的关系、发光部214与感光部222、225和2264的关系分别与上述装置1和装置10的发光部与感光部的关系相同。
该装置20可以按下述这样制造。
首先,分别在未图示的预定基板上形成第一层20a、第二层20b、第三层20c、第四层20d和第五层20e。
接着,用预定的方法从上述基板上剥离第一层20a,转印到基板2上。以下,与此相同,从上述基板上剥离第二层20b、第三层20c、第四层20d和第五层20e,一边用预定的方法进行位置对准,一边依次进行重合(转印)。该方法的细节可以采用本申请人所提出的日本专利公开公报特开平10-125930号所记载的方法。
根据该装置20,能够得到与上述装置1和装置10相同的效果,同时,能够容易地谋求高集成化。
在本发明中,构成装置的层数并不仅限于5层,也可以为例如2~5层或者6层以上。
在上述这样的各个实施例中,发光器件由有机EL器件构成,但在本发明中,发光器件并不仅限于此,也可以由例如无机EL器件、发光二极管(LED)、半导体激光器(激光二极管)等所构成。
在上述各个实施例中,感光器件由PIN光电二极管所构成,但在本发明中,感光器件并不仅限于此,也可以由例如PN光电二极管、雪崩光电二极管等各种光电二极管、光电晶体管、光致发光(有机光致发光)等所构成。
而且,在本发明中,可以适当地组合上述各个实施例的预定构成部件。
如上述那样,根据本发明的带有光传输部件的装置,在集成了细微的器件的装置内,主要通过光通信来传输信息(信号),因此,能够降低来自装置的发热,并且,大幅度降低信号的延迟,而能够实现响应性良好的装置(电路)。
在通过喷墨方式使构成器件的薄膜形成图形时,能够在短时间内容易并且正确地进行细微的刻图。而且,能够通过组合物的排出量的增减来容易并且正确地进行膜厚的调整,因此,由此能够容易并且自由地控制膜的性状。
如上述那样,能够通过喷墨方式来容易地实现发光及感光器件和半导体器件的混合波导联结。
这样,能够在基板(例如Si单晶基板和集成着TFT电路等这样的细微器件的基板)上容易地形成具有所希望的特性、尺寸、图形的器件,由此,提高了装置的生产性,有利于大量生产。
在发光部具有发光特性不同的多个发光器件的情况下,特别是,在发光部具有发出的光的峰值波长不同的多个发光器件的情况下,能够使用同一传导光路来同时传输多个信息。由此,与仅有电气布线的装置相比,能够谋求布线的简化。而且,与仅有电气布线的装置相比,能够减少布线占据的区域,并且能够抑制热的发生,由此,能够谋求高集成化。
权利要求
1.一种传输光的装置,包括发光部;接收发自上述发光部的光的感光部;和使光向上述感光部进行传导的传导光路,所述感光部包括透明的第三电极;第四电极;和夹在第三和第四电极之间的半导体器件,其中,第三电极接收来自上述传导光路的光。
2.一种传输光的装置,包括发光部;感光部,包括多个感光器件,用于接收发自上述发光部的光,要接收的光的峰值在每一感光器件中是不同的;其中光向上述感光部进行传导的传导光路,所述感光部的每一感光器件包括透明的第三电极;第四电极;和夹在第三和第四电极之间的半导体器件,其中,第三电极接收来自上述传导光路的光。
全文摘要
带有光传输部件的装置(1)在基板(2)上分别设置发光器件(3)、驱动该发光器件(3)的驱动电路、感光器件(光检测器件)(5)、把来自上述发光器件(3)的光传导到上述感光器件(5)中的传导光路(导波路)4、放大电路(6)、布线(电气布线)(7)、电路(8)。来自发光器件(3)的光(光信号)经过传导光路(4)由感光器件(5)感光,进行光电变换。来自感光器件(5)的电气信号由放大电路(6)进行放大,通过布线(7)输入电路(8)。电路(8)根据该电气信号而动作。
文档编号H01L31/12GK1519595SQ20041000406
公开日2004年8月11日 申请日期1999年8月27日 优先权日1998年9月4日
发明者下田达也 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1