带通滤波器及使用其的无线通信设备的制作方法

文档序号:6874064阅读:136来源:国知局
专利名称:带通滤波器及使用其的无线通信设备的制作方法
技术领域
本发明涉及适用于无线通信领域的UWB(Ultra Wide Band)的、具有宽频带的通过特性及陡峭的衰减特性的带通滤波器(Band Pass Filter)、及使用该带通滤波器的无线通信设备。
UWB,被期望作为外设存储装置、打印机、扫描仪等PC外围设备的数据传送介质,或作为数字电视机、投影仪、数码相机、数码摄像机等数据通信介质来利用。
背景技术
近几年,作为新的通信方法,UWB正被关注。该UWB与作为数据通信方法的一种而被利用的无线局域网(以下称为W-LAN)在通信距离与数据传输速度方面不同。
在作为W-LAN的标准之一的IEEE802.11.b中,通信距离为30~100m、发送功率为500mW、通信速度约为11Mbps。另一方面,在UWB中,频带为3.1~4.9GHz时,通信距离短到10m,但发送功率为100mW,是低耗电,通信速度在通信距离10m前后为100Mbps,在通信距离为2m以下为480Mbps,与W-LAN相比可以进行高速的数据通信。
这样,作为UWB的特征之一,是通过利用宽频带,从而实现高的传送速率。该带宽率(带宽/中心频率)为40%以上,根据情况可以为110%以上。
另外,作为UWB的其他特征是,UWB的平均发送功率密度被规定为小于-41.25dBm/MHz的低的值。在此,-41.25dBm/MHz在距波源m的距离内相当于产生电场强度54dBμV=500μV/m的放射功率。
若举出室外环境下的频谱屏蔽(spectre mask)的一例,则从3.16GHz到4.75GHz,将无线设备的带通作为基准(0dB),规定为在3.1GHz小于-20dB,在1.61GHz小于-30dB。另外,在实际的使用条件下,需要防止与W-LAN(IEEE802.11.a/b/g)之间的干扰,在2.48GHz、5.15GHz分别要求衰减特性。
如上所述可知在UWB的无线通信设备中,插入到收发信号的通过路径的带通滤波器,要求为宽频带(带宽率为40%以上)、低损耗且高衰减。
以往,在窄频带中,作为低损耗且高衰减的带通滤波器,采用以可以获得高Q值的水晶或压电陶瓷为基础材料的SAW滤波器或BAW滤波器。这些的带宽率在中心频率2GHz时为3~4%以下,若通带为0.06~0.08GHz,则与UWB的频带宽相比窄2个数量级。这些材料中的频带宽由水晶或压电基板的机电耦合系数来决定,扩大该频带宽,以做成宽频带的带通滤波器从材料的观点来看是困难的。
因此,一般在2~5GHz的频带中,作为得到具有陡峭衰减特性的带通滤波器的方法,公知采用组合了多个Q值优越的电介质谐振器的电介质滤波器。但是,在电介质滤波器中,在中心频率3.98GHz、通带1.6GHz、W-LAN的2.48GHz及5.15GHz的条件下具有小于-30dB的衰减特性的情况下,尺寸约为10×3×1.5mm,从而存在非常大的问题。这样,在电介质滤波器中,无法兼顾宽带化与小型化。

发明内容
本发明的目的在于,提供一种在UWB中具有宽的通带,可以以窄的频率宽得到陡峭的衰减特性的小型带通滤波器及使用该带通滤波器的无线通信设备。
本发明的带通滤波器,其具备形成于电介质层的多个谐振器,其中,将通带的大致中心频率的传输波长设为λ,所述多个谐振器由各个信号传输方向的长度基本为λ/4的导体图案构成,所述多个谐振器的一端作为接地端而分别接地,在所述电介质层上,所述接地端配置于同一侧,且按顺序并设,位于头一个位置的所述谐振器的非接地端与输入端子电极耦合,位于最后一个位置的所述谐振器的非接地端与输出端子电极耦合,位于中间位置的谐振器的相邻谐振器间电磁耦合,所述位于头一个位置的谐振器的非接地端与所述位于中间位置的谐振器的非接地端分别经由电容器耦合,所述位于最后一个位置的谐振器的非接地端与所述位于中间位置的谐振器的非接地端分别经由电容器耦合。
该构成的带通滤波器在位于中间位置的谐振器之间可以实现电磁耦合。由于该耦合,通过适当选择每个谐振器的耦合量,从而带通滤波器的宽带成为可能。另外,通过准备多个谐振器,从而可以使衰减特性陡峭。
此外,在所述位于头一个位置的所述谐振器的非接地端与输入端子电极的耦合、及位于最后一个位置的所述谐振器的非接地端与输出端子电极的耦合中,可以采用电容器或电感。此时,通过将元件的常数设定为规定值,从而在输入部及输出部中在信号的输入输出之际可以得到强的耦合,因此可以减少带通滤波器的通过损耗。
构成所述谐振器的导体图案的形状基本为矩形(长方形)。
所述谐振器例如可以由带状线路、微波传输带线路或共面线路构成。
另外,希望将所述位于中间位置的任一个或全部谐振器的非接地端经由电容器(例如图2所示的C7~C10)接地。
由此,由于将该谐振器的长度设为小于1/4波长,故可以缩小带通滤波器的长度方向尺寸,可以更高密度地安装带通滤波器。
一般,一端接地的谐振器的能量分布,相对于线路的长度方向,在非接地端电场能量最高,随着向接地的另一端前进,电场能量变弱。另一方面,磁场能量在接地的一端最高,随着向非接地端前进磁场能量变弱。电场能量定义为CV2/2(C为静电电容,V为电压),磁场能量为LI2/2(L为电感,I为电流)。为了缩短谐振器长度,只要致力在谐振器以外得到相同量的能量即可。因此,可以列举增大非接地端的电容或增大接地端的电感。即使在本发明的带通滤波器中,通过设置谐振器的非接地端的电容,从而也可以缩短谐振器长度。因此,使带通滤波器的小型化成为可能。
此外,若将本发明的带通滤波器形成在层叠了多个电介质层的电介质多层基板上,则通过利用介电常数高的电介质,从而可以实现带通滤波器的小型化、低高度化。
再有,所述谐振器若采用由形成于电介质层的接地电极在上下夹持的结构,则从该接地电极对所述多个谐振器的接地端可以容易地获取接地。再者,通过在上下夹持的接地电极,也可以得到电磁屏蔽(shield)效果。
希望所述上下接地电极的间隔为1.0mm以下。由此,可以削薄电介质多层基板的厚度。
所述多个谐振器的个数例如可以设为6。
一般,由于谐振器中存在损耗,故若增加谐振器的个数,则通带内的损耗增大。例如,在将3.16GHz~4.75GHz设为通带的利用切比雪夫函数的带通滤波器的情况下,波动0.2dB、谐振器Q=180时,在5级的谐振器构成中,损耗为-1.0dB左右,但衰减为-18dB,是不足的。在7级的谐振器构成中,衰减为-32dB左右,损耗大到-1.9dB。在理论上可以确认在6级的谐振器构成的带通滤波器中,损耗为-1.6dB、衰减为-25dB,得到两方面都满足的结果。
因此,利用6级谐振器,通过第一谐振器与第二谐振器之间的强的电容耦合(也称电耦合)及弱电感耦合(也称磁耦合)而构成的并列谐振现象、和第六谐振器与第五谐振器之间的强电容耦合及弱电感耦合的并列谐振现象,可以在通带的低频侧形成陡峭的衰减极。
另外,通过设置在第一谐振器与第二谐振器之间的电容器(第一电容器)、第二谐振器、及第二谐振器与第三谐振器之间的电感耦合,在通带的高频侧可以实现陡峭的衰减特性,另外通过设置在第一谐振器与第三谐振器之间的电容器(第二电容器)、第三谐振器及第三谐振器与第四谐振器之间的电感耦合,可以在通带的高频侧实现陡峭的另一衰减特性。
而且,利用了本发明的6级谐振器的带通滤波器的结构,由于可以以第三谐振器与第四谐振器为中心而成为对称系统,故与利用5个谐振器的带通滤波器或利用7个谐振器的带通滤波器相比,也存在易于将电路落入图案的优点。
进而,优选第一谐振器~第六谐振器的全部谐振器的非接地端、和与该接地端连接的电容器之间的距离从层叠方向看大致相等。
根据该结构,从第一谐振器到第六谐振器为止共计6个的谐振器的长度包含将第一电容器~第四电容器分别连接到第一谐振器~第六谐振器的导体线路的长度且大致相等,不改变第一谐振器~第六谐振器的谐振频率,即可进行图案化。因此,可以将通过使第二谐振器到第五谐振器为止的相邻谐振器间电感耦合而产生的通带集中在3.16GHz到4.75GHz。另外,通过所述第二谐振器~所述第五谐振器及所述第一电容器~所述第四电容器的组合、与输入电极端子及输出电极端子之间形成的电容器,可以使高频侧的衰减极集中在5.3GHz附近。而且,在低频侧,由于可以在2.3GHz附近形成衰减极,故可以高性能地实现UWB中要求的通过特性及衰减特性。通过该作用,可以减轻2.48GHz的W-LAN及5.15GHz的W-LAN的干涉所导致的通信品质的劣化。
在此,本发明的带通滤波器优选所述第一谐振器及所述第六谐振器的接地端配置在,比这些并设的所述第二谐振器~所述第五谐振器中的接地端的位置还向非接地端侧偏离规定距离的位置上,并且与所述第一谐振器的非接地端邻近的部位向所述第二谐振器弯曲,且与所述第六谐振器的非接地端邻近的部位向所述第五谐振器弯曲。
根据该构成,可以使第一谐振器~第六谐振器的全部谐振器的非接地端、和与该非接地端连接的电容器(第一电容器~第四电容器)的距离最短,可以使频带的频率调整及衰减极的频率调整变得容易。而且,由于第一谐振器与第二谐振器之间的电感耦合、第五谐振器与第六谐振器间的电感耦合弱,故不改变第一谐振器与第六谐振器的长度,即使向非接地端侧偏移接地端,在带通滤波器的特性上也没有大的影响。
另外,本发明的带通滤波器优选与所述第二谐振器的非接地端邻近的部位向所述第一谐振器弯曲,且与所述第五谐振器的非接地端邻近的部位向所述第六谐振器弯曲。进而,优选与所述第三谐振器的非接地端邻近的部位向所述第一谐振器弯曲,且与所述第四谐振器的非接地端邻近的部位向所述第六谐振器弯曲。
由此,可以任意地调整各电容器(第一电容器~第四电容器)的配置,带通滤波器的特性控制变得容易。另外,可以在第一谐振器与第二谐振器之间形成第一电容器,在第一谐振器与第三谐振器之间形成第二电容器,在第四谐振器与第六谐振器之间形成第三电容器,在第五谐振器与第六谐振器之间形成第四电容器,可以实现带通滤波器的小型化。
再有,在本发明的带通滤波器中,优选所述电容器由设置为在不同的电介质层上对向的导体图案而在层叠方向上形成电容,在与所述第一谐振器的非接地端连接的导体图案和与所述第二谐振器的非接地端连接的导体图案之间形成第一电容器,在与所述第一谐振器的非接地端连接的导体图案和与所述第三谐振器的非接地端连接的导体图案之间形成第二电容器,在与所述第六谐振器的非接地端连接的导体图案和与所述第四谐振器的非接地端连接的导体图案之间形成第三电容器,在与所述第六谐振器的非接地端连接的导体图案和与所述第五谐振器的非接地端连接的导体图案之间形成第四电容器。
通过在与构成第一谐振器~第六谐振器的层不同的层上形成第一电容器~第四电容器,从而可以抑制电容器与谐振器之间的电感耦合的产生,可以得到良好的特性。另外,由于通过使通孔导体介于其中,从而可在多个层中构成第一电容器~第四电容器,故可以形成任意的静电电容,带通滤波器的通带控制极衰减极的控制变得容易。
特别是,在本发明的带通滤波器中,优选在与所述第一谐振器的非接地端连接的导体图案上下配置与所述第二谐振器的非接地端连接的导体图案,以形成所述第一电容器,并且在与所述第一谐振器的非接地端连接的导体图案上下配置与所述第三谐振器的非接地端连接的导体图案,以形成所述第二电容器;在与所述第六谐振器的非接地端连接的导体图案上下配置与所述第四谐振器的非接地端连接的导体图案,以形成所述第三电容器,在与所述第六谐振器的非接地端连接的导体图案上下配置与所述第五谐振器的非接地端连接的导体图案,以形成所述第四电容器。
由此,可以增强第二谐振器到第五谐振器的耦合,宽带的实现变得容易。
进而,本发明的带通滤波器优选设置上侧接地电极及下侧接地电极,以从层叠方向上下夹持所述第一谐振器~所述第六谐振器及所述第一电容器~所述第四电容器。
通过用接地电极在上下夹持,从而可以防止与来自外部的噪声的电感耦合,进而可以实现带通滤波器不会成为对外部的干涉源的、具有强结构的带通滤波器。
进而,本发明的带通滤波器优选通过使所述输入端子电极与所述输出端子电极经由电容器连接而进行电容耦合。通过使输入端子电极与输出端子电极通过电容器进行电容耦合,从而在通过该电容器的信号、与通过从输入电容到第一谐振器~第六谐振器、第一电容器~第四电容器及输入输出电容器构成的电路的信号的相位相差180度的频率中,各自的信号互相抵消,形成衰减极。通过该作用,可以使低频侧的衰减极向频带侧移动,使高频侧的衰减极的一部分向频带侧移动,可以得到更陡峭的衰减特性。
具体是,优选所述电容器通过设置为在不同的电介质层上对向的导体图案而在层叠方向上形成电容,在和设有与所述输入端子电极连接的导体图案的层、及设有与所述输出端子电极连接的导体图案的层不同的层上,设置独立的导体图案。
这样,通过使独立的导体图案和与输入端子电极连接的导体图案及与输出端子电极连接的导体图案对向,实现在各自之间产生的电容的串联连接,从而由于可以用单一的图案制作独立的导体图案,故可以做成简易且抗层叠偏离的结构的带通滤波器。
进而,本发明是一种具备所述带通滤波器的无线通信设备。据此,可以实现提高接收灵敏度、宽带通信、低耗电且防止与无线LAN等其他无线通信设备的相互干涉。
本发明的上述或其他优点、特征及效果,根据参照附图而在下面陈述的实施方式的说明会更加明白。


图1是表示本发明实施方式涉及的带通滤波器的等效电路的图;图2是表示本发明其他实施方式涉及的带通滤波器的等效电路的图;图3是从层叠方向观察图2所示的带通滤波器的透视图,其中重叠图示了在由多层电介质层构成的层叠体的不同层上形成的导体图案;图4A~图4H是在电介质层的各层将图3所示的带通滤波器展开并从上面观察的状态的说明图,表示从表层到第8层;图5A~图5E是在电介质层的各层将图3所示的带通滤波器展开并从上面观察的状态的说明图,表示从第9层到第12层以及背面;图6是表示本发明其他实施方式涉及的带通滤波器的等效电路的图;图7是从层叠方向观察图6所示的带通滤波器的透视图,其中重叠图示了在由多层电介质层构成的层叠体的不同层上形成的导体图案;图8A~图8E是在电介质层的各层将图7所示的带通滤波器展开并从上面观察的状态的说明图,表示从第9层到第12层以及背面;图9是表示装载了本发明的带通滤波器的无线通信设备的构成例的框图;图10是表示图2所示的带通滤波器的实施例的通过特性与反射特性的图;图11是表示图6所示的带通滤波器的实施例的通过特性与反射特性的图;图12是表示带通滤波器的电介质厚度与通带内的损耗的最大值的关系的图;图13是表示构成带通滤波器的电极的高频导电率(换算为Q)与通带内的损耗的关系的图;图14是表示测定了谐振器的间隔与耦合系数之间关系的样本的等效电路的图;图15是表示测定了谐振器的间隔与耦合系数之间关系的结果的图;图16是表示模拟了谐振器的电容与耦合系数之间关系的样本的等效电路的图;图17是表示模拟了谐振器的电容与耦合系数之间关系的结果的图;图18是一端接地的谐振器的谐振频率附近的等效电路图;图19是表示一端接地的谐振器的谐振频率附近的电抗的图。
具体实施例方式
以下参照附图对本发明的实施方式进行说明。
图1是表示本发明的一实施方式涉及的带通滤波器的电路构成的图。
带通滤波器具备在上下层叠的6个谐振器1~6(分别为第一谐振器、第二谐振器、谐振器3、第四谐振器、第五谐振器、第六谐振器)。这些谐振器1~6为矩形导体板状,由带状线路、微波传输带(micro strip)线路或共面(coplanar)线路构成。
谐振器1与谐振器2的非接地端之间经由电容器C1(相当于第一电容器)连接,谐振器1与谐振器3的非接地端之间经由电容器C2(相当于第二电容器)连接,谐振器6与谐振器4的非接地端之间经由电容器C3(相当于第三电容器)连接,谐振器6与谐振器5的非接地端之间经由电容器C4(相当于第四电容器)连接。
若将通带的大致中心频率的电介质层内部的传输波长设为λ,则基本上,上述6个谐振器1~6的长度全部被设为λ/4。
6个谐振器中的至少4个谐振器2~5在同一电介质面上并列地配置。
但是,也可以不是同一电介质面,而是从层叠方向看重叠地配置。
通过该配置,4个谐振器2~5互相电磁耦合,尤其是电感耦合增强(图1中以M示出)。
位于上述6个各谐振器1~6的一方侧(图1的下侧)的端部全部接地(称为接地端)。
谐振器1、6的非接地端分别经由输入输出电容器C5、C6而与输入电极IN、输出电极OUT电容耦合。将这些电容耦合的部分称为“输入部”、“输出部”。
构成输入部、输出部的输入输出电容器C5、C6可以是集中常数电路,也可以是分布常数线路。
根据这种结构,谐振器2~5的电感耦合M增强,耦合系数升高,可以实现通带的宽带化。
另外,通过使4个谐振器2~5对向而进行排列,从而也可以实现带通滤波器的小型化。
希望上述输入输出电容器C5、C6的静电电容为0.5pF以上~不足1.5pF。
在现有的带通滤波器中,由于通带比较狭窄,故希望表示电路的陡峭性的电路Q、Qe为高的值。因此,在由电容来进行输入输出负载与滤波电路的耦合的情况下,由于Qe是电容的倒数的函数,故成为0.1pF以下的小电容。
另一方面,在本发明的带通滤波器中,由于需要1.5GHz左右或其以上的带宽,故希望Qe小。因此,作为上述电容,需要0.5pF以上的大电容。
另外,在使上述电容的电容过大的情况下,频带变宽,但失去了衰减的陡峭度。由于UWB中采用的带通滤波器在0.4GHz~0.6GHz的窄频带中要求陡峭的衰减特性,故即使上述电容器的电容过大,从衰减特性的观点来看也是不合适的。因此,希望小于1.5pF。
上述电介质的介电常数优选在UWB的3.1GHz~10.6GHz,设定为10以下。一般谐振频率附近的谐振器,如图18所示,可以用等效电感Lp与等效电容器Cp的并联电路而等效地表现。此时的谐振器的Q与频率ω和等效电容器Cp的静电电容成比例。在利用介电常数高的电介质的情况下,等效电容器Cp变大,谐振器的Q升高。谐振器的Q高意味着谐振器的通带变窄,从而采用了Q高的谐振器的带通滤波器的通带变窄。若在图19中图示该事实,则可知在谐振频率恒定的情况下,Cp变得越小通带越宽。因此,希望介电常数在10以下。
图2是示出的结构是在图1的构成的基础上,分别经由电容器C1~C4,使各谐振器2~5的非接地端与输入电极IN、输出电极OUT电容耦合,并且经由电容器C7~C10将谐振器2~5的非接地端接地。
即,谐振器2的非接地端经由电容器C7接地,谐振器3的非接地端经由电容器C8接地,谐振器4的非接地端经由电容器C9接地,谐振器5的非接地端经由电容器C10接地。
而且,电容器C7~C10可以是集中常数,也可以是分布常数。
将该构成与图1相比,谐振器2~5的非接地端经由电容器C7~C10接地。由此,谐振器2~5的有效长度的一部分由电容器C7~C10置换,可以使该谐振器2~5的长度小于1/4波长。
因此,在该带通滤波器中,可以缩短谐振器2~5的长度,在实现小型化方面更为有利。
图3是表示图2的带通滤波器的结构例的图。该图是从层叠方向观察多个电介质层的透视图,重叠图示了在不同电介质层上形成的导体图案。
另外,图4A~图4H及图5A~图5E是在电介质层的每一层展开图3所示的带通滤波器的说明图,图4A~图4H表示从表层到第8层,图5A~图5E表示从第9层到第12层以及背面。
该带通滤波器由以下结构构成,例如在层叠了介电常数5.0~60左右、厚度0.03~0.1mm的多层电介质层17的层叠体中,包含贯通各电介质层的通孔导体或形成于各电介质层17之上的导体图案。
在本例中,如图4A~图4H及图5A~图5E所示,为12层的电介质层。
在层叠体的表面(表层的电介质层)上,设置输入端子电极13及输出端子电极15,并且设置作为上侧接地电极的接地图案14(图4A)。另一方面,在层叠体的背面设有作为下侧接地电极的接地图案16(图5E)。
而且,由一端作为接地端分别接地,且若将通带的大致中心频率的电介质层内部的传输波长设为λ、则信号传输方向的长度基本上为λ/4长度的导体图案构成的6个谐振器(谐振器1、谐振器2、谐振器3、谐振器4、谐振器5、谐振器6),形成于层叠体内部的同一电介质层上(第7层的电介质层上)(图4G)。
这6个谐振器从层叠方向看各自的接地端配置在同一方向上,从谐振器1到谐振器6按顺序并设。即,按照谐振器1、谐振器2、谐振器3、谐振器4、谐振器5、谐振器6的顺序设置。
而且,信号传输方向的长度为“基本λ/4”,这意味着通过使非接地端的接地面相对的电容变化,包含比λ/4还短的情况。
谐振器1的一端(接地端)经由通孔导体28而与在层叠体表面上形成的接地图案14及在层叠体背面上形成的接地图案16连接。另外,谐振器1的非接地端经由输入电容器C5而与输入端子电极13连接。
具体是,谐振器1的非接地端经由导体线路26而与形成于第7层电介质层上的导体图案11连接,进而该第7层电介质层上的导体图案11经由通孔导体而与第9层电介质层上的导体图案11连接。
另一方面,输入端子电极13经由通孔导体而与第6层、第8层和第10层的电介质层上的导体图案11连接。由于形成于各层上的导体图案11从层叠方向看重合,故作为在层叠方向形成电容的输入电容器C5起作用。
谐振器6的一端(接地端)经由通孔导体30而与形成于层叠体表面上的接地图案14及形成于层叠体背面上的接地图案16连接。
另外,谐振器6的非接地端经由输出电容器C6而与输出端子电极15连接。具体是,谐振器6的非接地端经由导体线路27而与形成于第7层上的导体图案12连接,进而该第7层电介质层上的导体图案12经由通孔导体而与第9层电介质层上的导体图案12连接。
此外,输出端子电极15经由通孔导体而与第6层、第8层及第10层的电介质层上的导体图案12连接。由于形成于各层上的导体图案12从层叠方向看重合,故作为在层叠方向形成电容的输出电容器C6起作用。
在输入电容器C5及输出电容器C6的形成中,可以采用在层叠方向形成电容的各种结构,但优选为如本实施方式那样将与输入端子电极13及输出端子电极15连接的导体图案配置在最上下面,来形成电容的结构。而且,不限于电容器,也可以经由电感来连接。
谐振器2~5的一端(接地端)相互连接,并经由通孔导体29而与形成于层叠体背面的接地图案连接。
另外,谐振器2~5之间的间隔被配置成,相邻的谐振器间被电感耦合来作为主要耦合的间隔,与此相对谐振器1与谐振器2之间以及谐振器5与谐振器6之间的间隔为比从谐振器2到谐振器5为止的相邻谐振器间的间隔宽的间隔,这些之间的耦合成为弱的电感耦合。
而且,谐振器1及谐振器2的非接地端之间通过经由电容器C1而连接,从而被电容耦合。
具体是,谐振器1的非接地端通过通孔导体而与第5层及第3层的电介质层上的导体线路18连接,进而该导体线路18与构成电容器C1的导体图案7连接。
另一方面,谐振器2的非接地端通过通孔导体而与第2层、第4层及第6层的电介质层上的导体线路19连接,进而该导体线路19与构成电容器C1的导体图案7连接。
这样,电容器C1优选通过设置为在不同的电介质层上对向的导体图案而在层叠方向上形成有电容,在本例中成为如下的结构在与谐振器1的非接地端连接的第3层电介质层上的导体图案7上下,配置与谐振器2的非接地端连接的第2层及第4层电介质层上的导体图案7,并且在与谐振器1的非接地端连接的第5层电介质层上的导体图案7上下,配置与谐振器2的非接地端连接的第4层及第6层电介质层上的导体图案7。
同样,谐振器1及谐振器3的非接地端之间通过经由电容器C2而连接,从而被电容耦合。
具体是,谐振器1的非接地端通过通孔导体而与第9层及第11层的电介质层上的导体线路20连接,进而该导体线路20与构成电容器C2的导体图案8连接。
另一方面,谐振器3的非接地端通过通孔导体而与第8层、第10层及第12层的电介质层上的导体线路21连接,进而该导体线路21与构成电容器C2的导体图案8连接。
这样,电容器C2优选通过设置为在不同的电介质层上对向的导体图案而在层叠方向上形成有电容,在本例中成为如下的结构在与谐振器1的非接地端连接的第9层电介质层上的导体图案8上下,配置与谐振器3的非接地端连接的第8层及第10层电介质层上的导体图案8,并且在与谐振器1的非接地端连接的第11层电介质层上的导体图案8上下,配置与谐振器3的非接地端连接的第10层及第12层电介质层上的导体图案8。
谐振器6及谐振器4的非接地端之间通过经由电容器C3而连接,从而被电容耦合。
具体是,谐振器6的非接地端通过通孔导体而与第9层及第11层的电介质层上的导体线路22连接,进而该导体线路22与构成电容器C3的导体图案9连接。
另一方面,谐振器4的非接地端通过通孔导体而与第8层、第10层及第12层的电介质层上的导体线路23连接,进而该导体线路23与构成电容器C3的导体图案9连接。
这样,电容器C3优选通过设置为在不同的电介质层上对向的导体图案而在层叠方向上形成有电容,在本例中成为的结构在与谐振器6的非接地端连接的第9层电介质层上的导体图案9上下,配置与谐振器4的非接地端连接的第8层及第10层电介质层上的导体图案9,并且在与谐振器6的非接地端连接的第11层电介质层上的导体图案9上下,配置与谐振器4的非接地端连接的第10层及第12层电介质层上的导体图案9。
谐振器6及谐振器5的非接地端之间通过经由电容器C4而连接,从而被电容耦合。
具体是,谐振器6的非接地端通过通孔导体而与第5层及第3层的电介质层上的导体线路24连接,进而该导体线路24与构成电容器C4的导体图案10连接。
另一方面,谐振器5的非接地端通过通孔导体而与第2层、第4层及第6层的电介质层上的导体线路25连接,进而该导体线路25与构成电容器C4的导体图案10连接。
这样,电容器C4优选通过设置为在不同的电介质层上对向的导体图案而在层叠方向上形成有电容,在本例中成为如下的结构在与谐振器6的非接地端连接的第3层电介质层上的导体图案10上下,配置与谐振器5的非接地端连接的第2层及第4层电介质层上的导体图案10,并且在与谐振器6的非接地端连接的第5层电介质层上的导体图案10上下,配置与谐振器5的非接地端连接的第4层及第6层电介质层上的导体图案10。
这样,电容器C1~C4成为如下的结构,即用与谐振器2~5的非接地端连接的3幅导体图案从上下夹持与谐振器1或谐振器6的非接地端连接的2幅导体图案,即成为将与谐振器2~5的非接地端连接的导体图案配置在最上面最下面,从层叠方向看重合的结构,由此在这些导体图案之间可以形成更多的电容,并且可以得到以接地图案14及接地图案16的关系来形成谐振器2~5的电容器的效果。而且,对于该层叠数没有特别限定,可以适当设定。
而且,谐振器2~5的接地端配置为相对于长度方向而成为大致相同的列上(垂直于长轴的线上),谐振器1及谐振器6的接地端配置于比这些并设的谐振器2~5的接地端的位置还向非接地端偏移规定距离的位置上。
另外,谐振器1中的与非接地端邻近的部位向谐振器2弯曲,且谐振器6中的与非接地端邻近的部分向谐振器5弯曲。
进而,在本实施方式中,谐振器2中的与非接地端邻近的部位向谐振器1弯曲,且谐振器5中的与非接地端邻近的部位向谐振器6弯曲,谐振器3中的与非接地端邻近的部位向谐振器1弯曲,谐振器4中的与非接地端邻近的部位向谐振器6弯曲。
通过采用这种结构,从而从层叠方向看谐振器1~谐振器6的全部谐振器的非接地端、和与该非接地端连接的电容器的距离变得大致相等。即,导体线路18、导体线路19、导体线路20、导体线路21、导体线路22、导体线路23、导体线路24、导体线路25的长度大致相等。
在此,因为这些距离从层叠方向看大致相等,故包含将电容器C1~C4分别从谐振器1向谐振器6连接的导体线路的长度并大致相等,具有无需改变谐振器1~谐振器6的谐振频率,即可图案化的效果。
而且,所谓非接地端是指从成为谐振器的非接地侧的前端到200μm接地侧为止的图案区域。另外,所谓长度大致相等是指各导体线路的长度的最大长度与最小长度之差在100μm以下。
并且,若全部导体线路的长度大致相等,则谐振器2~5不弯曲也可以,但通过使其这样弯曲,从而可以任意调整每个电容器C1~C4的配置,带通滤波器的特性控制变得容易。
此外,可以在谐振器1与谐振器2之间形成电容器C1,在谐振器1与谐振器3之间形成电容器C2,在谐振器4与谐振器6之间形成电容器C3,在谐振器5与谐振器6之间形成电容器C4,可以实现带通滤波器的小型化。
还有,在本实施方式中,谐振器1~谐振器6及电容器C1~C4形成于被夹持在作为上侧接地电极的接地图案14与作为下侧接地电极的接地图案16之间的区域中。
这样,通过在上下用接地电极夹持,从而可以防止与来自外部的噪声的电感耦合,进而具有带通滤波器不会成为对外部的干涉源这样的效果。
再有,本实施方式的电容器C1~C4,通过以使与谐振器2~5的非接地端连接的一侧的导体图案对向于接地图案14及接地图案16的方式来形成,可以兼用为接地之间的并联电容器的电极,从而实现导体图案的简化。
根据这种结构,可以增强谐振器2到谐振器5的耦合,宽带的实现变得容易。以下陈述其理由。
带通滤波器的通带由谐振器间的耦合系数的大小来决定。根据利用了切比雪夫函数(Chebyshev function)的理论计算,在制作通带3.1~4.9GHz的带通滤波器的情况下,耦合系数需要为0.4。耦合系数可以根据配置在相同层中的谐振器之间的间隔来控制,通过缩窄该间隔,从而可以提高耦合系数。
在图14中表示等效电路。在介电常数9.4、厚度0.9mm的陶瓷基板中,在相同的层制作两个宽度0.1mm、长度3.2mm的λ/4带状传输线谐振器31、32,对使谐振器之间的间隔d在0.075mm~0.125mm的范围变化时的耦合系数变化进行测定。而且,两个带状传输线谐振器相对于输入输出电极可以微弱地电感耦合。
其结果是,如图15所示,可知在谐振器间的间隔为0.075mm时,耦合系数最多仅能够得到0.04左右。为了增强耦合,提出将谐振器之间的间隔d设为小于0.075mm,但在缩窄谐振器之间的间隔d时,从制造方面看,有对间隔的精度的要求变得严格的问题。
另一方面,作为增强耦合的其他方法,提出相对于谐振器的非接地端的接地面增大电容。若增大电容,则通过使谐振器单体的电场成分经由电容器而集中到接地面,从而基于谐振器之间的磁场的耦合增强,耦合系数增加。
利用Ansoft公司的电磁场模拟器HFSS,通过固有值分析来模拟配置在同层中的λ/4带状传输线谐振器的、改变了接地所对应的电容器时的耦合系数变化。在图16中示出等效电路。
在谐振器3与谐振器4的非接地端上分别连接电容器C13与电容器C14。作为模拟的条件,将介电常数9.4、厚度0.9mm、谐振器宽度0.1mm、谐振器长度3.2mm的谐振器之间的间隔设为0.1mm。在此,电容器C13、C14通过用电极面积、和电极面与GND面的距离而求出的平行平板的电容计算式算出。
如图17所示,其结果是,通过增加电容器C13、C14,从而可以提高耦合系数,可知以0.2pF左右的电容器可以得到耦合系数0.4。
在本发明中,如图2所示,将电容器C7~C10连接到谐振器2~5,但通过采用上述结构,从而在构成电容器C1的导体图案与接地之间形成谐振器2的电容器C7,在构成电容器C2的导体图案与接地之间形成谐振器3的电容器C8,在构成电容器C3的导体图案与接地之间形成谐振器4的电容器C9,在构成电容器C4的导体图案与接地之间形成谐振器5的电容器C10。
因此,未必需要将电容器C7~C10作为芯片零件特意地追加,由此滤波器的制作变得容易。
进而,通过采取该结构,从而可以防止与谐振器1连接的电容器C1及电容器C2、与谐振器6连接的电容器C3及电容器C4,分别和其他电极图案电感耦合。
接着,图6所示的等效电路是在图2的构成的基础上,通过使输入端子IN与输出端子OUT经由输入输出电容器C11连接,从而进行电容耦合。该电路经由输入输出电容器C11连接图2所示的等效电路的输入端子IN与输出端子OUT之间。
作为该图6的结构所具有的功能,通过从输入电容器C5到谐振器1~谐振器6、级间电容器C1~级间电容器C4及输出电容器C6为止形成的电路的信号、和通过输入输出电容器C11的信号之间的相位相差180度的频率中,各信号相互抵消,可以形成衰减极。
可以使通过谐振器1及谐振器2的电感耦合M与电容器C1的并联谐振现象而产生的低频侧的衰减极,在通带附近动作,使通过电容器C1与谐振器2及谐振器3的电感耦合M和谐振器2的谐振现象、电容器C2与谐振器3及谐振器4的电感耦合M和谐振器3的谐振现象而形成的高频侧的衰减极,在通带附近动作。因此,可以得到更陡峭的衰减特性。
该输入输出电容器C11通过设置为在不同电介质层上对向的导体图案而在层叠方向上形成电容。具体是,通过在设有与输入端子电极连接的导体图案的层、及设有与输出端子电极连接的导体图案的层不同的层中设置独立的导体图案,从而使独立的导体图案与和输入端子电极连接的导体图案及与输出端子电极连接的导体图案对向,实现产生于各自之间的电容的串联连接。
作为该结构的一例,如图7所示。图7是从层叠方向观察的透视图,图示了重叠形成于由多个电介质层构成的层叠体的不同层上的导体图案。
另外,图8A~图8E是在电介质层的每一层中展开图7所示的带通滤波器的说明图,示出第9层到第12层及背面。而且,由于图7所示的带通滤波器的第1层到第8层与图4A~图4H所示的相同,故省略说明。
如图8A~图8E所示,在第11层配置导体图案99,以便与第10层的导体图案11及第10层的导体图案12电容耦合。而且,上述独立的导体图案是指如该导体图案99那样不与其他导体图案电连接。
第10层的导体图案11经由通孔导体而与输入端子电极13连接,第10层的导体图案12经由通孔导体而与输出端子电极15连接,因此相当于通过第11层的导体图案99,用电容器来耦合输入端子电极13与输出端子电极15之间。此时的静电电容变为导体图案11与导体图案99形成的电容、和导体图案12与导体图案99形成的电容的串联连接。
接着,说明图1~图8中所述的带通滤波器的制造方法。
带通滤波器为在层叠了多个电介质层的电介质多层基板的各电介质层上形成有上述谐振器的结构。
电介质多层基板是同一尺寸形状的多个电介质层层叠而构成,在各电介质层上形成有由规定导体图案构成的导体层。
各电介质层,例如电介质层由低温烧结用的陶瓷(LTCCLowTemperature Co-fired Ceramics)形成,形成于各电介质层的导体层由铜或银等低电阻导体形成。
这种多层基板通过公知的多层陶瓷技术形成,例如在陶瓷生片的表面上涂敷导体膏,形成了分别构成各谐振器、各电容器的导体图案之后进行层叠,在所需要的压力与温度之下进行热压接、烧结而形成。
另外,在各电介质层上,遍及多层适当地形成连接上下导体层所需的通孔导体。
此外,本发明的无线通信设备例如由按顺序连接用于处理基带信号的基带IC、处理高频信号的RFIC、转换平衡信号与不平衡信号的平衡—不平衡转换器(balun)、上述带通滤波器、切换收发的高频开关、以及天线而成的结构构成,通过带通滤波器而使UWB的频带内的收发信号通过,使频带外的信号陡峭地衰减。
作为该无线通信设备,可以列举移动电话、或对应于无线通信的外设存储装置、打印机、扫描仪等PC外围设备、数字电视机、投影仪、数码相机、数码摄像机等。
接着,在图9中示出装载了以上所说明的带通滤波器的无线通信设备的构成例。
根据图9,无线通信设备由用于处理基带信号的基带IC45、处理高频信号的RFIC44、切换收发的高频开关41、转换平衡信号与不平衡信号的平衡-不平衡转换器43、带通滤波器42及天线构成。
上述RFIC44进行由基带IC45取得的发送信号的频率转换、高频放大,并且进行接收信号的低噪声放大。上述高频开关41是时间性地切换发送与接收的路径的开关。
带通滤波器42是使UWB的收发信号的频带通过,而使频带外的信号陡峭地衰减的本发明的带通滤波器。根据该带通滤波器42的功能,不但可以使收发信号不衰减,还可以防止与其他系统的相互干涉。
(实施例)利用Agilent Technologies公司制的矢量网络分析机(vector networkanalyzer)8719ES来测定图4A~图4H及图5A~图5E所示的由布线图案形成的带通滤波器的通过特性S21及反射特性S11。
此时,作为介电常数利用9.0的陶瓷,电介质层的1层厚度为75μm,采用12层结构。此时电介质的尺寸为4.5×3.2mm。在图10中示出该通过特性S21及反射特性S11的曲线。
另外,以同样的条件,对如图8A~图8E所示追加导体图案99、并经由输入输出电容器C11连接输入端子电极与输出端子电极的结构的带通滤波器的通过特性S21及反射特性S11进行测定。在图11中示出该结果。
根据图10所示的结果,在从3.16GHz(用ml表示)到4.75GHz(用m2表示)的约1.5GHz的频带内的通过损耗小于1.5dB。另外,适用W-LAN的IEEE802.11b/g的2.48GHz(用m3表示)中的衰减可得到30dB以上。另一方面,以适用W-LAN的IEEE802.11a存在的5.15GHz,可得到约32dB的衰减特性。
此外,根据图11所示的结果,在从3.16GHz(用ml表示)到4.75GHz(用m2表示)的通过损耗小于1.5dB,在2.48GHz(用m3表示)处的衰减可得到30dB以上,与图10所示的结果相同。进而,5.15~5.35GHz的衰减量为30dB以上,与图10的例子相比可以改善8dB以上。
接着,利用Agilent Technologies公司的电路模拟器ADS,在介电常数9.4的陶瓷基板的条件下,模拟图4A~图4H及图5A~图5E所示的由布线图案形成的带通滤波器。
图12是表示电介质的厚度与通带内的插入损耗的最大值之间关系的曲线。
根据图12,在介电常数9.4、电介质厚度为0.9mm的电介质中,通带内的损耗为1.44dB。另外,在电介质厚度0.86mm时插入损耗为1.5dB以上。换算为电介质厚度0.9mm的情况下,在介电常数为9.83时,插入损耗为1.5dB。因此,可知希望用于本发明的带通滤波器的电介质的介电常数在10以下。
另一方面,在将电介质厚度设为1.0mm的情况下,根据图12,通带内的损耗为1.27dB,通过特性良好。这与电介质厚度0.9mm时将介电常数降低到8.46的情况相同。若增厚电介质厚度,则滤波器的通带的损耗变小。但是,近年来考虑到向移动电话中安装,故希望零件的高度在1.0mm以下。由此,电介质厚度比1.0mm大是不优选的。
如上所述,本发明的带通滤波器希望上下接地面的间隔为1.0mm以下。
为了所述的验证,使用Q=163的谐振器。
图13是表示本发明的带通滤波器的插入损耗与分布常数线路的Q之间关系的图。可知通过提高分布常数线路的Q值,从而减小带通滤波器的损耗。分布常数线路的Q值通过提高线路的高频下的电导率而得到提高。
在电路模拟器的ADS上构成本发明的带通滤波器来调查通过特性时,在输入电容器C5与输出电容器C6的电容为0.8pF的情况下,在从频率3.16GHz到4.75GHz中最大损耗为-1.32dB,与此相对在将输入电容器C5与输出电容器C6的电容设为0.4pF时,通带内存在波动(ripple)频带变窄,最大损耗为1.68dB。另一方面,在将输入电容器C5及输出电容器C6的电容设为1.5pF时,失去衰减的陡峭性,小于3.1GHz的衰减量变高,伴随该现象,3.16GHz的通过特性向1.66dB恶化。
如上所述,另外,本发明的带通滤波器希望上述输入电容器C5及上述输出电容器C6的静电电容在0.5pF以上、小于1.5pF。
而且,在此作为通带,以作为UWB的一种方式的MB-OFDM方式为例进行了列举,但即使在作为其他方式的DS-CDMA方式的低频侧的通带即3.1GHz到4.9GHz中也可以同样地进行讨论。通过对本发明的带通滤波器的从谐振器1到谐振器6的长度、宽度、间隔、电容器C1~C4的电容进行调制,从而即使在DS-CDMA方式的UWB中也可以使用。
权利要求
1.一种带通滤波器,其具备形成于电介质层的多个谐振器,将通带的大致中心频率的传输波长设为λ,所述多个谐振器由各个信号传输方向的长度基本为λ/4的导体图案构成,所述多个谐振器的一端作为接地端而分别接地,在所述电介质层上,所述接地端配置于同一侧,且按顺序并设,位于头一个位置的所述谐振器的非接地端与输入端子电极耦合,位于最后一个位置的所述谐振器的非接地端与输出端子电极耦合,位于中间位置的谐振器的相邻谐振器间电磁耦合,所述位于头一个位置的谐振器的非接地端与所述位于中间位置的谐振器的非接地端分别经由电容器耦合,所述位于最后一个位置的谐振器的非接地端与所述位于中间位置的谐振器的非接地端分别经由电容器耦合。
2.根据权利要求1所述的带通滤波器,其中,构成所述谐振器的导体图案的形状为矩形。
3.根据权利要求1所述的带通滤波器,其中,所述位于中间位置的谐振器的非接地端经由电容器而接地。
4.根据权利要求3所述的带通滤波器,其中,该谐振器的长度小于1/4波长。
5.根据权利要求1所述的带通滤波器,其中,所述多个谐振器形成在层叠了电介质层的电介质多层基板上。
6.根据权利要求5所述的带通滤波器,其中,设置上侧接地电极及下侧接地电极,以从层叠方向上下夹持所述多个谐振器。
7.根据权利要求5所述的带通滤波器,其中,所述输入端子电极及输出端子电极形成在由多个电介质层构成的层叠体的表面及背面,所述多个谐振器形成于所述层叠体的内部,所述多个谐振器从第一谐振器到第六谐振器有6个,所述第一谐振器的非接地端经由电容器或电感而与所述输入端子电极连接,所述第六谐振器的非接地端经由电容器或电感而与所述输出端子电极连接,从所述第二谐振器到所述第五谐振器为止的相邻谐振器间电磁耦合,所述第一谐振器及所述第二谐振器的非接地端之间、所述第一谐振器及所述第三谐振器的非接地端之间、所述第六谐振器及所述第四谐振器的非接地端之间、所述第六谐振器及所述第五谐振器的非接地端之间分别经由电容器连接,而进行耦合。
8.根据权利要求7所述的带通滤波器,其中,所述第一谐振器~所述第六谐振器的全部谐振器的非接地端、和与该非接地端连接的电容器的距离大致相等。
9.根据权利要求7所述的带通滤波器,其中,所述第一谐振器及所述第六谐振器的接地端配置在,比这些并设的所述第二谐振器~所述第五谐振器中的接地端的位置还向非接地端侧偏离规定距离的位置上,并且与所述第一谐振器的非接地端邻近的部位向所述第二谐振器弯曲,且与所述第六谐振器的非接地端邻近的部位向所述第五谐振器弯曲。
10.根据权利要求7所述的带通滤波器,其中,与所述第二谐振器的非接地端邻近的部位向所述第一谐振器弯曲,且与所述第五谐振器的非接地端邻近的部位向所述第六谐振器弯曲。
11.根据权利要求7所述的带通滤波器,其中,与所述第三谐振器的非接地端邻近的部位向所述第一谐振器弯曲,且与所述第四谐振器的非接地端邻近的部位向所述第六谐振器弯曲。
12.根据权利要求7所述的带通滤波器,其中,所述电容器由设置为在不同的电介质层上对向的导体图案而在层叠方向上形成电容,在与所述第一谐振器的非接地端连接的导体图案和与所述第二谐振器的非接地端连接的导体图案之间形成第一电容器,在与所述第一谐振器的非接地端连接的导体图案和与所述第三谐振器的非接地端连接的导体图案之间形成第二电容器,在与所述第六谐振器的非接地端连接的导体图案和与所述第四谐振器的非接地端连接的导体图案之间形成第三电容器,在与所述第六谐振器的非接地端连接的导体图案和与所述第五谐振器的非接地端连接的导体图案之间形成第四电容器。
13.根据权利要求12所述的带通滤波器,其中,在与所述第一谐振器的非接地端连接的导体图案上下配置与所述第二谐振器的非接地端连接的导体图案,以形成所述第一电容器,并且在与所述第一谐振器的非接地端连接的导体图案上下配置与所述第三谐振器的非接地端连接的导体图案,以形成所述第二电容器;在与所述第六谐振器的非接地端连接的导体图案上下配置与所述第四谐振器的非接地端连接的导体图案,以形成所述第三电容器,在与所述第六谐振器的非接地端连接的导体图案上下配置与所述第五谐振器的非接地端连接的导体图案,以形成所述第四电容器。
14.根据权利要求12所述的带通滤波器,其中,设置上侧接地电极及下侧接地电极,以从层叠方向上下夹持所述多个谐振器,所述第一电容器~所述第四电容器形成在由所述上侧接地电极及所述下侧接地电极所夹持的区域。
15.根据权利要求1所述的带通滤波器,其中,通过使所述输入端子电极与所述输出端子电极经由电容器连接而进行耦合。
16.根据权利要求15所述的带通滤波器,其中,所述电容器通过设置为在不同的电介质层上对向的导体图案而在层叠方向上形成电容,在和设有与所述输入端子电极连接的导体图案的层、及设有与所述输出端子电极连接的导体图案的层不同的层上,设置独立的导体图案。
17.一种无线通信设备,其具备天线、使由该天线收发的收发信号通过的权利要求1所述的带通滤波器、处理所述收发信号的RFIC、和处理基带信号的基带IC。
全文摘要
一种带通滤波器,其具备一端接地、长度基本为1/4波长的第一谐振器~第六谐振器(1~6);与所述第一谐振器的非接地端耦合的输入部(IN);和与所述第六谐振器的非接地端耦合的输出部(OUT),所述第二谐振器~第五谐振器(2~5)互相电磁耦合,所述第二谐振器、第三谐振器通过第一电容器(C1)、第二电容器(C2)分别与第一谐振器电容耦合,所述第三谐振器、第四谐振器通过第三电容器(C3)、第四电容器(C4)分别与第六谐振器电容耦合,所述输入部及输出部分别经由输入输出电容器(C5、C6)而与所述第一谐振器、第六谐振器耦合。从而可以应用于超宽带UWB中,可以实现小型且低损耗的带通滤波器。
文档编号H01P7/00GK1855613SQ200610077769
公开日2006年11月1日 申请日期2006年4月25日 优先权日2005年4月28日
发明者二宫弘, 中俣克朗 申请人:京瓷株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1