用于修补平板显示器中的制造缺陷的设备和方法

文档序号:7212488阅读:230来源:国知局
专利名称:用于修补平板显示器中的制造缺陷的设备和方法
技术领域
本发明涉及用于修补平板显示装置(比如液晶显示(LCD)装置)中的制造缺陷的设备和方法。
背景技术
典型的LCD包括分别具有像素电极和公共电极的两个显示板,以及具有介于显示板之间的具有介电各向异性的液晶层。像素电极布置成矩阵形状,并分别连接到相应的开关元件,比如薄膜晶体管(TFT),以使得数据电压逐行地按序施加到像素电极上。公共电极形成在一个显示板的整个表面上,且公共电压施加到公共电极上。像素电极、公共电极和介于两者之间的液晶层构成了液晶电容器,且该液晶电容器和连接到其上的开关元件一起形成了像素的基本单元。
在LCD中,电压施加在两个电极之间,以便在液晶层中形成电场,且电场的强度受到控制、以便调整光透过液晶层的透射率,从而产生理想的光图像。此外,三原色,例如红、绿和蓝色的滤色器设置在公共电极区域以对应于像素电极,从而实现彩色显示。
LCD在它们的制造过程中经受许多测试,并且在测试过程中发现的任何缺陷都必须被修补或者面板必须报废,导致了昂贵的浪费。
例如,当显示信号线断开或者短路时,或者当存在有缺陷的像素时,这些必须通过特定的测试程序检测出来。这些测试包括阵列测试、虚拟检验(VI)测试、“总”测试、模块测试,等等。
阵列测试在“母”玻璃面板被划分成单独的单元之间执行并通过将选定的电压施加到线路上以及检测是否产生了相应的输出电压来确定显示信号线的断开。VI测试在母玻璃被划分成单独的单元之后执行,并通过将选定的电压施加到线路上、然后观察显示板来确定显示信号线的断开。总测试在上下显示板相结合并且驱动电路已经安装好以后执行,通过将与实际驱动电压完全相同的选定电压施加到线路上、然后观察屏幕的显示状态来确定图像质量和显示信号线的断开。模块测试在驱动电路安装好且偏振器已经附加在两个显示板的外侧上之后执行,并确定驱动电路的最优操作。
预期用来模拟实际的驱动情形的总测试在整个屏幕变黑的同时来确定有缺陷的像素。在这种条件下,液晶层中的外来物质或配线的短路会引发非常明亮或“高像素”现象,即,有缺陷的像素的“闪耀”。亮或高像素会出现在大部分类型的平板显示装置以及上述LCD中。
为了修补有缺陷的像素,比如上述高像素,可利用例如化学气相沉积方法等在显示板上形成覆盖对应于高像素位置的面板外侧区域的光屏蔽膜。不过,在从有缺陷的像素发出的光不从显示装置的前面而从它的旁边泄漏出来的情况下,这种修补方法是有问题的,这就使得不可能有效地完成修补。那么所需要的就是在显示装置的制造过程中能够完全、有效地修补显示装置中有缺陷的像素的设备和方法。

发明内容
根据这里所述的实施例,本发明提供用于在制造过程中修补显示装置,例如LCD装置的方法和设备。
在一个实施例中,提供一种用于修补显示装置的设备,其中所述显示装置包括其上形成有多条信号线的第一衬底,所述设备包括射出激光的激光器,所述激光具有选定的波长和从飞秒(10-15秒)至皮秒(10-12秒)的脉冲宽度范围,以使激光能够聚焦在面板的每一条信号线上。优选地,激光的被选定波长在从大约750到850nm的范围内,或者可选地,在从大约1000到大约1100nm的范围内。
被修补的显示装置还包括面向第一衬底的第二衬底,在所述第二衬底上形成有滤色器。每一个滤色器可包括面向第二衬底的第一侧面和面向远离第二衬底一方且面向第一衬底的第二侧面。激光优选地聚焦并射到滤色器的第一侧面上以起到修补的作用。
在一个可能的实施例中,激光可辐射透过第二衬底。在该实施例中,激光可辐射透过具有透射区和光屏蔽区的狭缝掩膜。
被修补的显示装置还可包括提供光线给滤色器的光源单元。当激光射到选定的滤色器上时可改变所选定的一个滤色器的透射率。特别地,在由激光器发光后,激光所辐射到的滤色器起到吸收来自光源单元的光的作用。
显示装置还可包括由有机材料制成的围绕滤色器的光屏蔽构件。在该实施例中,激光器的激光光源优选地是钛蓝宝石(TiSapphire)或者YDFL(即,掺镱光纤激光器)光源。
显示装置还可包括附加在第二衬底外部的偏振器,且激光可辐射透过偏振器。在该实施例中,激光优选地辐射透过具有透射区和光屏蔽区的狭缝掩膜。
一种用于修补显示装置的方法的示例性实施例,其中所述显示装置包括其上形成有多条信号线的第一衬底,所述方法包括测试显示装置的缺陷,使激光器定位在显示装置上方,使从激光器射出的激光聚焦到选定的信号线上,并使激光射到衬底上的选定信号线上。优选地,激光波长的范围在大约750至大约850nm或者可选地在大约1000至大约1100nm之间,脉冲宽度在飞秒至皮秒的范围内。
通过考虑以下一些实施例的详细说明,尤其是如果连同附图一起考虑的话,将更好地理解显示装置的修补设备和方法的以上及其他特征与优点,其中相同的附图标记在一个或多个附图中表示相同的部件。


图1是一种液晶显示器(LCD)实施例的原理框图,本发明的修补设备和方法有利地适用于这种液晶显示器;图2是图1所示示例性LCD的像素的部分示意性透视图;图3是LCD的薄膜晶体管(TFT)面板的部分俯视图;图4是LCD的公共电极面板的部分俯视图;图5是图4所示的重叠在图3所示的TFT面板之上的公共电极面板的部分俯视图;图6是沿图5中的剖开线VI-VI看到的LCD横截面图;
图7是示意性地描述用于根据本发明修补LCD的方法的实施例的部分横截面图;图8是表示用于选择对于根据本发明修补LCD有用的激光器的示例性实施例的参数的曲线图;图9是表示示例性LCD的滤色器的透射特性的曲线图;图10是对于在根据本发明确定激光波长和脉冲宽度的实验中有用的滤色器测试样品的一些示例性实施例的示意性俯视图;图11是描述对于选择用来根据本发明修补LCD的激光器的示例性实施例有用的理想激光特性的曲线图;图12是在根据本发明用于LCD的修补设备中有用的狭缝掩膜的实施例的俯视图;图13是描述利用本发明的示例性修补设备使激光辐射到LCD的滤色器上的方法的示例性实施例的视图。
具体实施例方式
图1是一种液晶显示器(LCD)实施例的原理框图,本发明的修补设备和方法有利地适用于这种液晶显示器,而图2是图1所示示例性LCD的像素的部分示意性透视图。如图1所示,LCD包括LCD面板组件300,连接到LCD面板组件300的栅极驱动器400和数据驱动器500,连接到数据驱动器500的灰度电压发生器800,发射光至面板组件300上的背光装置900,以及控制以上所有的信号控制器600。
LCD面板组件300包括多个信号线G1至Gn和D1至Dm,以及分别对应地连接到信号线并考虑到等效电路而布置成矩阵形式的多个像素。显示信号线G1至Gn和D1至Dm包括传输栅极信号(也称为“扫描信号”)的多条栅极线G1至Gn,和传输数据信号的多条数据线D1至Dm。栅极线G1至Gn在行方向上延伸并基本上相互平行地排列,而数据线D1至Dm在列方向上延伸并基本上相互平行地排列。
每一个像素包括连接到对应的一条显示信号线G1至Gn或D1至Dm的开关元件Q,以及连接到开关元件Q上的液晶电容器C1c和存储电容器Cst。在一些情况下,存储电容器Cst可以被省略。开关元件Q,诸如薄膜晶体管等,设置在下显示板100上。开关元件Q是三端子元件,即控制端子、输入端子以及输出端子,其中控制端子和输入端子分别连接至栅极线G1至Gn中的对应条和数据线D1至Dm中的对应一条,而输出端子连接至液晶电容器C1c和存储电容器Cst。
液晶电容器C1c具有两个端子,下显示板100上的像素电极191和上显示板200上的公共电极270,以及液晶层3,所述液晶层3介于两个电极191和270之间以用作介电材料。像素电极191连接到开关元件Q,公共电极270形成在上显示板200的整个表面上,公共电压Vcom施加到公共电极270上。与图2所示的情形不同,公共电极270可设置在下显示板100上。在该实施例中,两个电极191和270中的至少一个可以是线形或条形。
设置在下显示板100上的分离信号线(未示出)和像素电极191相互重叠,其间插有绝缘体以形成存储电容器Cst其辅助液晶电容器C1c。预定电压,比如公共电压Vcom,施加到分离信号线上。不过,像素电极191与设置在像素电极191正上方的相邻栅极线可通过绝缘体相互重叠,以形成存储电容器Cst。
为了实现彩色显示,对每一个像素而言必须唯一地显示三原色中的一种(空间划分),或可选地,随时间流逝而显示三原色(时间划分)。然后,三原色可在空间上或时间上综合起来,从而获得理想的彩色显示。图2表示空间划分的例子。具体地,图2表示每一个像素在对应于像素电极191的区域上具有红、绿和蓝滤色器230中的一个。与图2不同,每一个滤色器230可以形成在下显示板100上的像素电极191的上方或下方。
显示装置的背光装置900包括转换器(未示出)和光源单元910。光源单元910设置在液晶面板组件300的下方并包括至少一个灯。冷阴极荧光灯(CCFL)或外电极荧光灯(EEFL)可用作灯。此外,也可以用发光二极管(LED)。
偏振器(未示出)附加在液晶面板组件300的两个显示板100和200的外侧,并起到使从光源单元910发出的光产生偏振的作用。
灰度电压发生器800产生有关像素透射率的两组灰度电压。一组电压具有关于公共电压Vcom的正值,而另一组具有关于公共电压Vcom的负值。
栅极驱动器400连接到液晶面板组件300的栅极线G1至Gn,以便将由栅极导通电压Von和栅极断开电压Voff组合而成的栅极信号施加到栅极线G1至Gn。栅极驱动器400通常包括多个集成电路。
数据驱动器500连接到液晶面板组件300的数据线D1至Dm,以便从灰度电压发生器800选择灰度电压,然后将选定的灰度电压作为数据信号施加到像素上。数据驱动器500通常包括多个集成电路。
多个栅极驱动集成电路或数据驱动集成电路可以用COG(玻璃上的芯片,Chip On Glass)方法设置在液晶面板组件300中。可选地,集成电路可以安装在带状载体包装(Tape Carrier Package,TCP)上,而TCP可连接到液晶面板组件300上。此外,执行与这些集成电路芯片相同的功能的电路可以直接形成在液晶面板组件300上。
信号控制器600控制栅极驱动器400、数据驱动器500等的操作。
现在详细说明LCD的操作。
信号控制器600从外部图像控制器(未示出)接收输入图像信号R,G和B以及输入控制信号,例如用于控制输入图像信号的显示的垂直同步信号Vsync、水平同步信号Hsync、主时钟信号MCLK、和数据使能信号DE。信号控制器600基于输入图像信号R,G和B以及输入控制信号、并根据液晶面板组件300的操作条件正确地处理输入图像R,G和B,并产生栅极控制信号CONT1和数据控制信号CONT2。然后,信号控制器600将栅极控制信号CONT1传输到栅极驱动器400,并将数据控制信号CONT2和经过处理的图像数据DAT传输到数据驱动器500。
栅极控制信号CONT1包括用于指示栅极导通电压的输出开始的垂直同步起始信号STV,用于控制栅极导通电压Von的输出时间的栅极时钟信号CPV,以及用于控制栅极导通电压Von的持续时间的输出使能信号OE。
数据控制信号CONT2包括用于指示图像数据DAT的输入开始的水平同步起始信号STH,用于命令施加相应的数据电压到数据线D1至Dm的加载信号LOAD,用于反转数据电压相对于公共电压Vcom的极性(以下,“数据电压相对于公共电压的极性”简称为“数据电压的极性”)的反转信号RVS,数据时钟信号HCLK,等等。
数据驱动器500相继根据来自信号控制器600的数据控制信号CONT2接收针对一行像素的图像数据DAT,转换数据,并在来自灰度电压发生器800的灰度电压中选择对应于图像数据DAT的灰度电压。然后,图像数据DAT被转换成相应的数据电压,并被施加到相应的一条数据线D1至Dm中。
栅极驱动器400根据来自信号控制器600的栅极控制信号CONT1施加栅极导通电压Von至栅极线G1至Gn,以便开启连接到栅极线G1至Gn的开关元件Q。然后,施加到数据线D1至Dm的数据电压通过开启的开关元件Q施加到相应的像素上。
施加到像素的数据电压与公共电压Vcom之间的差对应于液晶电容器C1c的充电电压,即,像素电压。液晶分子的排列根据像素电压的大小而改变,且从光源单元910发出的光的偏振态根据光通过液晶层3时液晶分子的排列调准而改变。由于偏振器的作用偏振态的改变引起了光透射率的改变。
随着一个水平周期(也称为“1H”,即,由水平同步信号Hsync、数据能使信号DE和栅极时钟信号CPV组成的一个周期)流逝,数据驱动器500和栅极驱动器400针对下一行像素重复相同的操作。通过这种方式,对应一帧,栅极导通电压Von相继施加到所有的栅极线G1至Gn上,以便数据电压施加到所有像素上。一帧结束以后,下一帧开始。然后,这样施加到数据驱动器500的反转信号RVS的状态受控,以使得施加到每一个像素的数据电压的极性与前一帧中的数据电压的极性相反(“帧反转”)。在这种情况下,即使是在一帧中,根据反转信号RVS的特性,每一条数据线上的数据电压的极性可以被反转(例如,行反转或点反转)或者施加到一个像素行上的数据电压的极性可以改变(例如,列反转或点反转)。
现在参考图3至6详细说明示例性LCD的结构。
图3是LCD的薄膜晶体管(TFT)面板的部分俯视图,图4是LCD的公共电极面板的部分俯视图,而图5是图4所示的重叠在图3所示的TFT面板之上的公共电极面板的部分俯视图。图6是沿着图5中的剖开线VI-VI看到的LCD横截面图。
参考这些附图可以看到,LCD包括TFT显示板100,公共电极显示板200,和插在两个显示板100与200之间的液晶层3。
TFT显示板100包括形成在绝缘衬底110上的多条栅极线121,多条存储电极线131a和131b,以及多个辅助电容电极136。栅极线121在基本水平的方向上延伸,彼此分离并传输栅极信号。每一条栅极线121包括向上突出的多个栅电极124和具有宽的区域并布置成连接到其他层或外部装置的端部129。
每一条存储电极线131a和131b在基本水平的方向上延伸,且一对存储电极线131a和131b设置在相邻的栅极线121之间。每一条存储电极线131a和131b设在相邻的栅极线121的周边,并且包括分别向上和向下突出的存储电极137a和137b。两条存储电极线131a和131b关于设置在相邻栅极线121的中央处的水平线对称。预定电压,比如施加到LCD的公共电极显示板200上的公共电极270上的公共电压,被施加到存储电极线131a和131b上。
每一个辅助电容电极136设置在两条相邻的栅极线121的中央处,并具有在水平方向上延伸的矩形形状。其一个端部具有关于栅极线121成大约45°角倾斜的倾斜侧面,以形成漏斗形状。
栅极线121、存储电极线131a和131b以及辅助电容电极136优选地由铝基金属、银基金属、铜基金属、钼基金属、铬、钛或钽制成。此外,这些结构可具有单层结构或多层结构。多层结构可包括例如具有不同物理性质的两层,即下层和上层。导电层可由具有低电阻的金属,例如铝基金属(比如铝(Al)或铝合金),银基金属(比如银(Ag)或银合金),或者铜基金属(比如铜(Cu)或铜合金)制成,从而减少信号延迟或压降。可选地,导电层可由另一种金属制成,特别是对铟锡氧化物(ITO)和铟锌氧化物(IZO)具有极佳的接触特性的金属,例如,铬、钼(Mo)、钼合金、钽(Ta)或钛(Ti)。导电层的例子包括铬/铝-钕(Nd)合金、钼或钼合金/铝合金。
此外,栅极线121、存储电极线131a和131b以及辅助电容电极136的壁关于衬底110的表面倾斜。优选地,倾角在30至80°的范围内。
由氮化硅(SiNx)形成的栅绝缘层140形成在栅极线121、存储电极线131a和131b以及辅助电容电极136上。
由氢化无定形硅(无定形硅或a-Si)形成的多个岛形半导体层154形成在栅绝缘层140上。每一个岛形半导体层154位于栅电极124的上部上,并延伸到栅极线121的上部,在该部分上将要设置数据线171。缓冲层可附加地设置在存储电极线131的其上将要设置数据线171的上部上,与岛形半导体层154在同一层。
由比如高浓度地掺杂有n型杂质(比如硅化物或磷)的n+氢化无定形硅形成的多个岛形欧姆触点163和165,形成在半导体层154上。两个岛形欧姆触点163和165成对地设置在半导体层154上并相对于栅电极124互相面对。
岛形半导体层154和欧姆触点163、165的壁关于衬底110的表面倾斜。优选地,倾角在30至80°的范围内。
多条数据线171、与数据线171分离的多个漏电极175和连接到漏电极175的电容耦合电极176形成在欧姆触点163和165以及栅绝缘层140上。
数据线171在基本垂直的方向上延伸,以便与栅极线121和存储电极线131a和131b相交,且通过数据线171施加数据电压。每一条数据线171具有将要连接到其他层或外部装置的宽的端部179。
每一个漏电极175包括与存储电极137a和137b重叠的矩形延伸部分177a和177b。漏电极175的延伸部分177a和177b的侧边基本上平行于存储电极137a和137b的侧边设置,并关于相邻栅极线121的中心线对称。每一条数据线171包括多个突起,每一个突起形成了部分地包围形成在半导体层154上的一个漏电极175的一个端部的源电极173。一个栅电极124,一个源电极173和一个漏电极175连同半导体层154形成一个薄膜晶体管(TFT),且薄膜晶体管的沟道形成在源电极173与漏电极175之间的半导体层154中。
电容耦合电极176与辅助电容电极136重叠,并且其侧边平行于辅助电容电极136的侧边设置。电容耦合电极176的左边部分具有漏斗形状。电容耦合电极176具有在边界线内设置于辅助电容电极136上方的开口76。
漏电极175的两个延伸部分177a和177b通过漏电极175连接到电容耦合电极176,并且漏电极175具有靠近和平行于数据线171设置且关于相邻栅极线121的中心线对称地延伸的连接部分178a和178b。因此,漏电极175、电容耦合电极176和辅助电容电极136在形状上关于相邻栅极线121的中心线对称。在这种情况下,连接部分178a和178b设置在被栅极线121和数据线171围绕的区域的最外侧的边缘,以防止透射区减少,其中在该透射区显示图像并防止在透射区边缘产生纹理。
在该实施例中,数据线171和电容耦合电极176包括由不同材料形成的上层171r和176r,中间层171q和176q以及下层171p和176p。上层171r和176r由具有极佳物理、化学和对于铟锌氧化物(IZO)或铟锡氧化物(ITO)的电接触特性的材料制成,比如钼(Mo)、钼合金(例如,钼-钕(MoAl2)合金)、或铬(Cr)。中间层171q和176q由具有低电阻的金属形成,以减少数据信号的延迟或压降,比如铝基金属(如铝(Al)或铝合金)。下层171p和176p由能够防止铝基金属扩散入半导体层151或欧姆接触构件161和165的金属形成,比如钼(Mo)、钼合金(例如,钼-钨(MoW)合金),或铬(Cr)。在图6中,源电极173、漏电极175和端部179的下层、中间层和上层分别由附图标记173p,173q,173r,175p,175q,175r,179p,179q和179r表示。
类似于栅极线121和存储电极线131a和131b,数据线171、电容耦合电极176和漏电极175的壁以从大约30至80°的角度倾斜。
欧姆触点163和165仅插在底部(underlying)半导体层154和上覆(overlying)数据线171及漏电极175之间,从而减少了接触电阻。岛形半导体层154具有设置在源电极173与漏电极175之间的暴露部分并且不被数据线171和漏电极175覆盖。
钝化层180形成在数据线171、漏电极175、电容耦合电极176以及半导体层154的没有被数据线171、漏电极175以及电容耦合电极176覆盖的暴露部分上。钝化层180具有极佳的平坦特性,并优选地由具有感光性的有机材料,利用等离子体增强化学气相沉积(PECVD)制成的具有4.0或以下的低介电常数的绝缘材料(比如a-Si:C:O或a-Si:O:F),或者无机材料(比如氮化硅或氧化硅)形成。
多个接触孔182,185a和185b形成在钝化层180中,以便露出漏电极175的延伸部分177a和177b以及数据线171的端部179。此外,多个接触孔181和186也形成在钝化层180中,以露出栅绝缘层140、辅助电容电极136以及栅极线121的端部129。接触孔181,182,185a,185b和186可具有不同的形状比如多边形或圆形。优选地,接触孔181和182的面积为0.5mm×15μm至2mm×60μm。接触孔181,182,185a,185b和186的壁以30至85°的角度倾斜或具有阶梯形状。
在这种情况下,接触孔186位于电容耦合电极176的开口76以内,辅助电容电极136通过该接触孔暴露出来。因此,即使由于接触孔186的壁上的阶梯导致液晶分子的排列出现扭曲、从而引起光泄漏,光也会被电容耦合电极176阻挡。因此,能够确保每一个像素的孔径比率以及防止出现旋转位移。
由ITO或IZO形成的多个第一至第三像素电极191a,191b和191c,屏蔽电极88以及多个触点辅助构件81和82形成在钝化层180上。可选地,第一至第三像素电极191a,191b和191c可由透明导电聚合物形成。在反射式LCD中,第一至第三像素电极191a,191b和191c可由不透明的反射金属形成。在这种情况下,触点辅助构件81和82可由不同于第一至第三像素电极191a,191b和191c的材料,比如ITO或IZO形成。
第一至第三像素电极191a,191b和191c通过接触孔185a,185b和186物理和电学地连接到漏电极175。然后,数据电压从漏电极175施加到第一至第三像素电极191a,191b和191c。
像素电极191和公共电极270构成了电容器(这里称作“液晶电容器”),以使得在薄膜晶体管关断以后能够保持所施加的电压。另一电容器平行地连接到液晶电容器,以便增强电压保持能力,被称为存储电容器。像素电极191和存储电极线131a和131b彼此重叠以形成存储电容器。为了增大电容,即存储电容器的存储能力,存储电极137a和137b分别设置在存储电极线131a和131b上,且连接到像素电极191的漏电极175延伸并与存储电极137a和137b重叠,以便减小端子之间的距离以及增大重叠面积。
第一至第三像素电极191a,191b和191c基本上形成在由数据线171和栅极线121围绕的区域以内,并具有基本平行于栅极线121和数据线171设置的边界,以便形成矩形形状。第一至第三像素电极191a,191b和191c彼此分离。第一和第二像素电极191a和191b由分别形成在第三像素电极191c上方和下方的两部分形成。即,第三像素电极191c插在第一像素电极191a和第二像素电极191b之间。第一和第二像素电极191a和191b面向第三像素电极191c,并且具有关于栅极线121成±45°角倾斜的侧边。因此,第一和第二像素电极191a和191b在形状上关于相邻栅极线121之间的中心线对称。
第一和第二像素电极191a和191b分别通过接触孔185a和185b物理地连接到漏电极175的一对矩形延伸部分177a和177b,从而数据电压直接从漏电极175的矩形延伸部分177a和177b施加到第一和第二像素电极191a和191b。第三像素电极191c通过接触孔186连接到辅助电容电极136,且辅助电容电极136与连接到漏电极175的电容耦合电极176重叠。因此,第三像素电极191c电磁耦合(即,电容耦合)至第一和第二像素电极191a和191b。
每一个像素电极191具有倒角,并且倒角斜边关于栅极线121成大约45°角。像素电极191具有中央切口91和92,下切口93a,94a和95a以及上切口93b,94b和95b。像素电极191被切口91至95b分成多个区域。切口91至95b在形状上关于电容耦合电极176的水平中心线或相邻栅极线121之间的中心线基本上对称。第一和第二像素电极191a和191b分别通过两个切口93a和93b与第三像素电极191c分离。
下和上切口93a至95a和93b至95b从像素电极191的左侧倾斜地延伸到其右侧。此外,下切口和上切口93a至95a和93b至95b设置在被在水平方向上二等分像素电极191的中心线划分的下和上半部分。下和上切口93a至95a和93b至95b关于栅极线121成大约45°角倾斜并相互垂直地分别延伸。中央切口91和92由一对基本平行于下切口93a至95a和上切口93b至95b设置的分支构成。中央切口91和92具有沿水平方向在其中心处延伸的水平部分。
因此,像素电极191的上、下半部分中的每一个都被切口91,92,93a,93b,94a,94b,95a和95b划分成六个区域。这些区域在形状上关于水平地等分像素电极191的线并关于相邻栅极线121之间的中心线对称。此外,不由薄膜形成的区域,比如漏电极175、存储电极线131a和131b、电容耦合电极176以及辅助电容电极136,在形状上关于水平地等分像素电极191的线并关于相邻栅极线之间的中心线对称。在这种情况下,区域数量或切口数量根据设计条件,比如像素大小、像素电极的孔径比率以及液晶层3的类型或特性而改变。
像素电极191与邻近的栅极线121或邻近的数据线171重叠以便增大孔径比率。
触点辅助构件81和82通过接触孔181和182连接到栅极线121的端部129和数据线171的端部179。触点辅助构件81和82起到提高栅极线121的暴露端部129与数据线171的暴露端部179附着到外部装置的附着性以及保护端部的作用。触点辅助构件81和82通过各向异性导电层(未示出)连接到外部装置。
当栅极驱动电路与薄膜晶体管显示板100集成在一起时,触点辅助构件81可起到使栅极驱动电路的金属层连接到栅极线121的作用。类似地,当数据驱动电路与薄膜晶体管显示板100集成在一起时,触点辅助构件82可起到使数据驱动电路的金属层连接到数据线171的作用。
屏蔽电极88沿着数据线171和栅极线121延伸。屏蔽电极88的位于数据线171上的部分完全覆盖数据线171,且屏蔽电极88的设置在栅极线121上的部分具有比栅极线121窄的宽度并位于栅极线121的边界以内。不过,该宽度可以控制为小于数据线171的宽度,且屏蔽电极88可具有栅极线121的边界以外的边界。公共电压被施加到屏蔽电极88上。为此,屏蔽电极88可通过钝化层180和栅绝缘层140的接触孔(未示出)连接到存储电极线131,或连接到短路点(未示出),在该点处公共电压从薄膜晶体管显示板100上转移到公共电极显示板200。在后面这种情况下,屏蔽电极88与像素电极191之间的距离优选地最小,以便使孔径比率的减少最小。
如果施加了公共电压的屏蔽电极88位于数据线171上,那么屏蔽电极88阻碍了数据线171与像素电极191之间以及数据线171与公共电极270之间产生的电场。因此,减少了像素电极191的电压畸变和将要通过数据电压171传输的数据电压的信号延迟。
此外,由于像素电极191和屏蔽电极88必须彼此隔离以防止像素电极191和屏蔽电极88短路,因此像素电极191远离数据线171,从而减少了像素电极191与数据线171之间的寄生电容。此外,由于液晶层3的介电常数高于钝化层180的介电常数,因此数据线171与屏蔽电极88之间的寄生电容小于不设置屏蔽电极88时数据线171与公共电极270之间的寄生电容。另外,由于像素电极191和屏蔽电极88形成在相同的层中,因此像素电极191与屏蔽电极88之间的距离恒定。因此,像素电极191与屏蔽电极88之间的寄生电容是恒值。
现在参考图4至6说明公共电极显示板200。光屏蔽构件220形成在由透明玻璃等制成的绝缘衬底210上。光屏蔽构件220面向像素电极191,并具有形状与像素电极191基本相同的多个开口。可选地,光屏蔽构件220可具有分别对应于数据线171和薄膜晶体管的部分。
多个滤色器230也形成在衬底210上。每一个滤色器230基本上位于被光屏蔽构件220围绕的区域以内。每一个滤色器230可沿像素电极191在垂直方向上延伸。每一个滤色器230可显示三原色,比如红色、绿色和蓝色中的一种。
外涂层250形成在滤色器230上。由透明导电体(比如ITO或IZO)形成的公共电极270形成在外涂层250上。公共电极270具有多组切口71至76b。一组切口71至76b面向一个像素电极191,并包括中央切口71,72和73,下切口74a,75a和76a,以及上切口74b,75b和76b。切口71至76b设置在面向像素191的切口91至95b之间和边缘切口95a和95b与像素电极191的侧边之间。此外,每一个切口71至76b包括平行于像素电极191的切口91至95b延伸的至少一个倾斜部分。
每一个下和上切口74a至76a以及74b至76b包括从像素电极191的右侧向下或向上延伸的倾斜部分,以及以钝角与倾斜部分相遇的水平和/或垂直部分,所述水平和/或垂直部分从倾斜部分的端部沿像素电极191的侧边延伸,以便与像素电极191的侧边重合。
每一个中央切口71,72和73包括基本上从像素电极191的左侧延伸到水平部分的中央水平部分,从像素电极191的左侧延伸到中央水平部分、以便成斜角地与中央水平部分相遇的一对倾斜部分,以及沿着像素电极191的左侧从倾斜部分的端部延伸、以便与像素电极191的左侧重合并成钝角地与倾斜部分相遇的垂直部分。
切口71至76b的数量取决于设计条件。光屏蔽构件220可覆盖切口71至76b,以防止切口71至76b的周边发生光泄漏。
垂直排列层11和21分别涂敷在显示板100和200的内侧。此外,偏振器12和22分别设置在显示板100和200的外侧。两个偏振器12和22的透射轴线设置成彼此垂直,并且其中一个透射轴线平行于栅极线121。在反射式LCD中,可省略两个偏振器12和22中的一个。
液晶层3具有负的介电各向异性,且液晶层3的液晶分子310这样排列,使得不施加电场时它们的主轴垂直于两个显示板的表面。因此,入射光被阻挡而不会通过交叉偏振器12和22。
相位延迟膜可插在显示板100和200与偏振器12和22之间,以便补偿液晶层3的延迟值。相位延迟膜具有双折射特性并用来反向地补偿液晶层3的双折射。单轴或双轴光学薄膜可用作延迟膜,且特别地,可使用负单轴光学薄膜。由于相同的公共电压施加到公共电极270和屏蔽电极88上,因此不会在两个电极之间形成电场。从而,置于公共电极270与屏蔽电极88之间的液晶分子310保持在初始的垂直排列状态。因此,入射到该部分上的光被阻挡,以致不能通过该部分。
如果液晶分子310关于偏振器12和22的透射轴线成45°角倾斜,那么有可能获得最大的亮度。在所述的特定实施例中,液晶分子310在所有域内关于栅极线121成45°角倾斜。此外,栅极线121垂直或平行于显示板100和200的边缘设置。因此,在该实施例中,如果偏振器12和22连接至显示板110和200、从而使其透射轴线垂直或平行于显示板100和200的边缘,那么有可能既获得最大亮度、又能以低成本地制造出偏振器12和22。
当公共电压施加到公共电极270且数据电压施加到像素电极191时,形成基本上垂直于显示板表面的初始电场。液晶分子310的排列根据电场而改变,以使其主轴垂直于电场方向。其间,公共电极270和像素电极191的切口71至76b和91至95b以及像素电极191的侧边使初始电场扭曲,并形成用于确定液晶分子的倾斜方向的水平分量。初始电场的水平分量垂直于切口71至76b和91至95b的侧边以及像素电极191的侧边。此外,在切口71至76b和91至95b的两个相对侧边处的初始电场的水平分量彼此相对。
切口71至76b和91至95b通过电场控制液晶层3的液晶分子310的倾斜方向。存在于由相邻切口71至76b和91至95b确定以及由切口76a和76b与像素电极191的侧边确定的域中的液晶分子310在垂直于切口71至76b和91至95b的纵向的方向上倾斜。每一个域的最长侧边基本上相互平行地设置,并且关于栅极线121成大约±45°角。大部分液晶分子310在四个方向上倾斜。
优选地,每一个切口71至76b和91至95b的宽度在大约9至大约12μm的范围内。切口71至76b和91至95b中的至少一个可由突起(未示出)或凹陷(未示出)代替。突起可由有机或无机材料制成,并置于电场发生电极191和270的上方或下方。优选地,突起的宽度可以在大约5至大约10μm的范围内。
以下参考图7至13详细说明用于修补具有上述结构的LCD中的缺陷的设备和方法。
图7是示意性地描述用于根据本发明修补LCD的方法的实施例的示意性视图。图7描绘了图6所示的示例性LCD的下衬底110、上衬底210和有缺陷的像素的滤色器230。在图7所示的实施例中,从设置在上衬底上方的激光装置700射出的激光750聚焦在有缺陷的像素的滤色器230与上衬底210之间。作为该辐射的结果,滤色器230的透射率发生改变、以阻挡从显示器的光源单元910发出的光透过有缺陷的像素,从而起到修补的作用。
如图7所示,激光装置700必须设置在LCD的外侧,以使激光750以理想的方式辐射到滤色器230上。即,必须使用这样的激光装置700其能够射出透过偏振器22和上衬底210且能改变滤色器230的透射率而不会损害显示器的其他部分(包括滤色器230与上衬底210的界面211)的激光750。现在参考图8至11给出该操作的详细说明。
图8是表示相关参数的曲线图,其中所述相关参数用于选择对于根据本发明修补LCD有用的激光装置700的激光750,而图9是表示滤色器230的透射特性的曲线图,图10是用于评估激光所需的属性的一些滤色器试样的示意性平面图,而图11是描述对于选择用来根据本发明修补LCD的激光器类型有用的所需激光的强度特性示图。
图8是表示由玻璃制成并透过不同波长(即颜色)的光的三个测试样品的各自透射率的测量结果的曲线图。该图的水平轴线表示光的波长,以微米(μm)为单位。该图的垂直轴线代表样品的各自透光率,以入射到它们上面的光的百分比来表示。
一定程度地模拟玻璃上衬底210和滤色器230的测试样品用来确定用于起到修补作用的激光器和激光的类型,优选地由玻璃制成,比如Borofloat,且各自厚度为2mm,6mm和15mm。从图8中可看出,如果激光波长为大约300nm或以上,即,0.3μm或以上,更特别地,250nm或以上,则基本上所有的激光都会透过测试样品而与它们的厚度无关。
图9是表示滤色器230的光谱特性的曲线图。这里,水平轴线代表激光的波长,以纳米(nm)为单位。该图的垂直轴线代表它们各自的透光率,表示为入射光的百分比。
在该修补方法的实施例中,优选的是,滤色器230吸收所有的入射激光的能量,以便使滤色器230发生转变。因此,与图8所示的曲线图不同,优选的是,使用不会透过滤色器而是完全被它吸收的激光波长。通过这种安排,有可能防止损害下底部配线(underlying wire),包括设置在TFT显示板100上的数据线171,而当激光完全透过滤色器230时有可能出现这种损害。
在该修补方法的实施例中,滤色器230的“转变”是指,滤色器230由于受到激光的辐射而引起的性质改变,使得来自光源单元910的光不能透过滤色器,从而被基本上吸收掉。在转变以前,有可能会发生滤色器的某种分解,从而来自光源单元910的光不会被滤色器充分阻挡,即,“高像素”型缺陷。
本领域技术人员将会了解,滤色器230的光的吸收和透射根据滤色器的颜色,例如红、绿和蓝色而在不同的波长出现,从而,可根据所涉及的特定滤色器来使用具有不同波长的激光。此外,可以选择具有这样波长的激光,即在该波长处的吸收无关于所涉及的颜色。具有这种波长的激光更容易使用且花费更少的时间进行修补。如参考图9可见,具有0百分比透射率的激光的波长,即,在该波长处几乎所有的光能量都被吸收,不受到所涉及的滤色器颜色的限制,优选地所述波长为大约380nm或以下,或可选地,大约740nm或以上。
下面说明基于理想波长的激光修补设备的选择。图10表示单独制造的滤色器测试样品。在测试样品中,仅滤色器230形成在其上。即,测试样品省略了显示器的偏振器22、外涂层250、公共电极270以及调准层21。
该实施例的激光修补装置700具有两种工作模式。一种是连续波(CW)模式,另一种是脉冲波(PW)模式。图11左边的曲线图描绘了连续波模式的强度特性,而右边的曲线图描绘了脉冲波模式的强度特性。在连续波模式中,激光装置连续发射具有几个mW至几个kW的恒定能量的激光。在脉冲波模式中,激光装置以规则的时间间隔发射出几个mW或以上的脉冲。
激光装置可以根据发射激光的激光源,即激光器的光源的类型来分类。例如,氦镉(He-Cd)激光装置发射具有543nm波长的激光并具有连续波模式;钕钇铝石榴石(Nd:YAG)激光装置发射具有355nm波长的激光并具有脉冲波模式;氩(Ar)激光装置发射具有488nm波长的激光并具有连续波模式;而Nd:YAG激光装置发射具有1064nm波长的激光并具有连续波模式。
对于各种目前可得的激光装置的测试条件列在下面的表1中。
表1

激光利用每一个上述激光装置辐射到图10所示的滤色器测试样品上。结果,在两种激光装置的情况下,即,He-Cd和Ar,即使是在辐射持续5分钟或以上,测试样品中也没有出现滤色器的转变。在另两种激光装置的情况下,即Nd:YAG和CW,根据光强在滤色器230中出现了孔或转变。不过,在后两种激光装置的情况下,已证实滤色器230发生转变且转变的程度可以根据脉冲的强度或数量,即脉冲频率而改变。
作为前述内容的结果,可以看到,优选的是使用脉冲波模式而不是连续波模式来进行修补。此外,优选的是,激光的波长在250nm至大约380nm之间,如上所述。当然,即使是激光器以连续波模式工作,如果适当地更改波长或光强,还是有可能使用激光来修补显示缺陷的。因此,应当理解的是,上述测试样品仅仅是在假定特定的显示器类型和结构的情况下、用于选择最优修补设备和方法的方法示例。即,以连续波或脉冲波模式工作以及发射其他波长的光的激光器都可用在本发明的方法中,只要它们实现了像素的理想转变且不会导致显示器的间接损害。
现在详细说明使用具有355nm波长并以脉冲波模式工作的Nd:YAG激光装置使滤色器230发生转变的各种方法。图12表示用在根据本发明用于修补LCD的设备的实施例中的狭缝掩膜760,而图13表示根据本发明使用该设备来选择性地使激光辐射到滤色器230上的方法的实施例。
在图12和13所示的实施例中,狭缝掩膜760起到使激光聚焦在所要修补的像素上的作用,并且在激光750的焦点大于像素本身时使用。狭缝掩膜760包括透射区761,例如狭缝开口,以及围绕透射区761的光屏蔽区域,类似于用来制造LCD的狭缝掩膜。透射区761的大小可以根据像素的大小来控制。此外,透射区761可包括另外的不透明衬底的透明部分或实际上切入这种衬底的窗口。
如图13所示,为了实现有缺陷的像素的修补,激光从像素的滤色器230上方在箭头所示的方向上向下辐射通过狭缝掩膜760的透射区761。结果,激光射到其上且大小对应于掩膜760的狭缝761的滤色器部分765发生转变,且作为该转变的结果,滤色器230的透射特性由此发生改变。因此,来自显示器的光源单元910的光950被滤色器的转变部分完全吸收。
以下参考图6,7和9说明根据本发明的用于修补LCD的设备的另一实施例。与上述实施例不同,所述修补设备包括激光装置700,所述激光装置700使用脉冲宽度范围在飞秒(10-15秒)至皮秒(10-12秒)且波长为大约380nm或更大、更特别地波长为大约750nm至约850nm或可选地从大约1000nm至大约1100nm的激光源。
在该波长范围内,修补设备的激光750可辐射到衬底上,其中上衬底210包括偏振器22。即,偏振器22吸收具有大约355nm波长的激光,且该波长基本上不同于红色、绿色和蓝色滤色器1,2和3的吸收波长和透射波长,如图9的曲线图所示。因此,在例如绿色滤色器2的情况下,有可能获得完全的滤色器转变而不会影响到偏振器22。因此,可以不仅在没有偏振器22时、也可以在附加有偏振器22时实施修补,因为对于实施转变所必需的光的波长基本上不同于偏振器22的吸收波长。即,由于有可能无关于是否附加有偏振器22而执行修补,因此在两个显示板100和200组合起来以后、偏振器12和22附加以前执行的“总”测试程序过程中,或者可选地,在偏振器12和22附加到衬底上以后执行的“模块”测试程序过程中都可以实施修补。
此外,由于脉冲宽度范围在飞秒至皮秒的激光750引起多光子吸收,因此设备还能够用来修补衬底配线中的缺陷,包括设置在其上的数据线171和栅极线121。因此,有可能在两个显示板100和200组合之前执行的“阵列”测试和“VI”测试中使用该设备来修补配线的断路或短路。此外,由于具有前述脉冲宽度的激光750在较短的时间周期内转移较大量的能量,因此该设备仅冲击衬底的预定部分,从而它在周边部分上的影响备降至最低。因此,在有机层用作显示器的配线或滤色器230的实施例中特别有利。
因此,例如,在使用脉冲宽度范围从飞秒至皮秒且波长从大约750nm至850nm、或可选地从大约1000nm至大约1100nm的激光实施修补的情况下,有可能在显示器的所有测试工序过程中仅利用单个修补设备来实施修补,即,在任何测试中不需要以不同的设备来代替该设备。
在另一可能的实施例中,结合了能够产生皮秒至飞秒的脉冲宽度的TiSapphire或YDFL(掺镱光纤激光器)光源的激光器可用作实施修补的激光器光源。在上述实施例中,狭缝掩膜760也可用来实施修补。即,在修补选定的一些信号线,比如数据线D1至Dm和栅极线G1至Gn的情况下,或者在修补选定的一些滤色器230的情况下,狭缝掩膜760可用来聚焦在被选定要被修补的目标上。
本领域技术人员可以明白,在这里所示和所述的本发明实施例中,LCD装置作为了被修补的显示装置。不过,应该理解的是,本发明有利地适用于包括滤色器的任何类型的显示器,而不仅仅是LCD。即,有可能以上述激光辐射任何类型的显示器的滤色器,并从而以理想的方式控制透过滤色器的光强。因此,本发明可实施到其中颜色或各种灰度代表可以被观看者辨别的所有类型的显示器上。
如上所述,当选择具有适当脉冲宽度和波长的激光器时,尤其是使用脉冲宽度范围在飞秒(10-15秒)至皮秒(10-12秒)且波长为大约750nm至约850nm、或可选地从大约1000nm至大约1100nm的激光时,有可能在所有的显示器测试程序中仅使用单个激光装置实施显示器修补,而不需要在任何测试过程中使用不同的修补设备进行修补。
至此,本领域技术人员会了解,可以对本发明的显示器修补设备和方法进行许多修改、代替或变更,而不会脱离其主旨和范围。据此,本发明的范围不应限定为这里所示和所述的特定实施例的范围,因为它们实质上仅仅是示例性的,相反,应该与下面所附的权利要求及其功能等效方案的范围充分相称。
权利要求
1.一种用于修补显示装置的设备,其中所述显示装置包括其上设置有多条信号线的第一衬底,所述设备包括激光器,所述激光器能够使具有选定波长且脉冲宽度为从飞秒(10-15秒)至皮秒(10-12秒)的激光聚焦在选定的信号线上。
2.根据权利要求1所述的设备,其中,所述选定的波长在大约750至大约850nm的范围内,或者在大约1000至大约1100nm的范围内。
3.根据权利要求2所述的设备,其中,所述显示装置还包括面向第一衬底的第二衬底,在所述第二衬底上形成有滤色器。
4.根据权利要求3所述的设备,其中,每一个滤色器包括面向第二衬底的第一侧面和面向远离第二衬底一方的第二侧面,其中,激光聚焦和辐射到选定的滤色器的第一侧面上。
5.根据权利要求4所述的设备,其中,激光辐射透过第二衬底。
6.根据权利要求5所述的设备,其中,还包括具有透射区和光屏蔽区的狭缝掩膜,且其中激光辐射透过掩膜的透射区。
7.根据权利要求6所述的设备,其中,所述显示装置还包括提供光给滤色器的光源单元,且当激光辐射到选定的滤色器上时,所选定的滤色器的透射率发生改变。
8.根据权利要求7所述的设备,其中,被激光辐射到的滤色器发生改变而吸收来自光源单元的光。
9.根据权利要求8所述的设备,其中,所述显示装置还包括围绕滤色器的光屏蔽构件。
10.根据权利要求9所述的设备,其中,所述光屏蔽构件由有机材料形成。
11.根据权利要求10所述的设备,其中,所述激光器包括钛蓝宝石激光源。
12.根据权利要求10所述的设备,其中,激光器包括掺镱光纤激光器光源。
13.根据权利要求4所述的设备,其中,所述显示装置还包括附加在第二衬底外侧上的偏振器,其中激光辐射透过偏振器。
14.根据权利要求13所述的设备,其中,激光辐射透过具有透射区和光屏蔽区的狭缝掩膜。
15.根据权利要求14所述的设备,其中,所述显示装置还包括向滤色器提供光的光源单元,且当激光辐射到选定滤色器上时,所选定的滤色器的透射率发生改变。
16.根据权利要求15所述的设备,其中,被激光辐射到的滤色器发生改变而吸收来自光源单元的光。
17.根据权利要求16所述的设备,其中,所述显示装置还包括围绕滤色器的光屏蔽构件。
18.根据权利要求17所述的设备,其中,所述光屏蔽构件由有机材料形成。
19.根据权利要求18所述的设备,其中,所述激光器包括钛蓝宝石光源。
20.根据权利要求18所述的设备,其中,所述激光器包括掺镱光纤激光器光源。
21.一种用于修补显示装置的方法,其中所述显示装置包括其上形成有多条信号线的第一衬底,所述方法包括步骤测试显示装置的缺陷;使激光器定位在显示装置上方;使从激光装置射出的激光聚焦到选定的信号线上;以及使激光射到选定的信号线上。其中,激光具有选定的波长和从飞秒至皮秒的脉冲宽度。
22.根据权利要求21所述的方法,其中,所述选定的波长在大约750至大约850nm的范围内,或者在大约1000至大约1100nm的范围内。
23.根据权利要求22所述的方法,其中,所述显示装置还包括面向第一衬底的第二衬底,在所述第二衬底上形成有滤色器。
24.根据权利要求23所述的方法,其中,每一个滤色器包括面向第二衬底的第一侧面和与第二衬底相对的第二侧面,且激光辐射到选定的滤色器的第一侧面上。
25.根据权利要求24所述的方法,其中,激光辐射透过第二衬底。
26.根据权利要求25所述的方法,其中,激光辐射透过具有透射区和光屏蔽区的狭缝掩膜。
27.根据权利要求26所述的方法,其中,所述显示装置还包括提供光给滤色器的光源单元,且当激光辐射到选定的滤色器上时,所选定的滤色器的透射率发生改变。
28.根据权利要求27所述的方法,其中,被激光辐射到的滤色器发生改变而吸收来自光源单元的光。
29.根据权利要求28所述的方法,其中,所述显示装置还包括围绕滤色器的光屏蔽构件。
30.根据权利要求29所述的方法,其中,所述光屏蔽构件由有机材料形成。
31.根据权利要求30所述的方法,其中,所述激光器包括钛:蓝宝石光源。
32.根据权利要求30所述的方法,其中,所述激光器包括掺镱光纤激光器光源。
33.根据权利要求24所述的方法,其中,所述显示装置还包括附加在第二衬底外侧上的偏振器,其中激光辐射透过偏振器。
34.根据权利要求33所述的方法,其中,激光辐射透过具有透射区和光屏蔽区的狭缝掩膜。
35.根据权利要求34所述的方法,其中,所述显示装置还包括提供光给滤色器的光源单元,且当激光辐射到选定的滤色器上时,所选定的滤色器的透射率发生改变。
36.根据权利要求35所述的方法,其中,被激光辐射到的滤色器吸收来自光源单元的光。
37.根据权利要求36所述的方法,其中,所述显示装置还包括围绕滤色器的光屏蔽构件。
38.根据权利要求37所述的方法,其中,所述光屏蔽构件由有机材料形成。
39.根据权利要求38所述的方法,其中,所述激光器包括钛:蓝宝石光源。
40.根据权利要求38所述的方法,其中,所述激光器包括掺镱光纤激光器光源。
41.根据权利要求21所述的方法,其中,所述显示装置包括LCD。
全文摘要
用于修补显示装置的设备和方法,该显示装置包括其上形成有多条信号线的第一衬底和/或其上形成有多个滤色器的第二衬底,该设备包括辐射出激光的激光器,所述激光具有在大约750至大约850nm或者在大约1000至大约1100nm的范围内的波长且从飞秒(10
文档编号H01S3/00GK1945384SQ20061013994
公开日2007年4月11日 申请日期2006年9月27日 优先权日2005年10月6日
发明者朴明一, 李永范, 金京燮, 李庸懿 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1