银包覆球及其制造方法

文档序号:7220508阅读:202来源:国知局
专利名称:银包覆球及其制造方法
技术领域
本发明涉及银包覆球,具体涉及用含有平均粒径为1nm以上50nm以下的银超微粒子的包覆层覆盖核的表面的银包覆球。
背景技术
焊料包覆球主要用于连接电气、电子设备的部件。具体而言,焊料包覆球可用于例如部件周围具有导线端子的QFP(Quard FlatpackPackage四周扁平封装)、较小型的可多引脚化的BGA(Ball Grid Array球栅阵列)以及CSP(Chip size package晶片尺寸封装)等半导体封装的输入输出端子。
图10(a)和(b)是使用焊料包覆球的BGA的立体图和截面图。如图10(a)和(b)所示,BGA是在LSI芯片的下面隔着互连基板(interposer)62与银包覆球50接合的LSI封装。银包覆球50是在互连基板62的一面排列成网格状的封装的输入输出端子。银包覆球50构成为在例如直径为0.1~1.0mm左右的金属制的微小球表面设有含铅(Pb)焊料层。
近年,为应对环境问题,含铅焊料逐渐被无铅焊料(Pb free焊料)代替。鉴于这种情况,本申请人公开了由不含铅的锡-银(Sn-Ag)系焊料层包覆表面,抑制加热熔融时产生空穴的焊料包覆球(专利文献1和专利文献2)。
另一方面,根据软钎焊温度,焊料大致分为中低温焊料(熔融温度约150℃~约250℃)和高温焊料(熔融温度约250℃~约300℃)。中低温焊料主要在将电子部件连接在印刷基板等上时使用,高温焊料主要在连接电子部件的内部配线等时使用。
上述Sn-Ag系焊料层的熔点约为216℃,具有该焊料层的焊料包覆球适用于中低温度区域的软钎焊。然而,Sn-Ag系焊料层在约250℃~约300℃的高温区域会再熔融,导致球变形等,以致不能用于高温区域的软钎焊。因此,人们热切期望可适用于高温焊料的无铅焊料包覆球。
另一方面,已知金属的纳米粒子(粒径为几nm~几百nm的超微粒子)显示出与松散(bulk)状态完全不同的物性。例如,已知银纳米粒子与松散状态的银相比,可以在低得多的温度下烧结。关于银纳米粒子,在专利文献3的实施例栏中,公开了含有平均粒径约为32nm的银纳米粒子的银胶体有机溶胶的制造方法。
专利文献1日本特开2004-114123号公报专利文献2日本特开2004-128262号公报专利文献3日本特开2003-159525号公报发明内容本发明人对将银纳米粒子用作焊料包覆球的高温焊料材料进行研究。
本发明的主要目的在于提供具有银纳米粒子包覆层的银包覆球及其制造方法。
本发明的银包覆球具有球状的核和以包围上述核的方式设置的含有银超微粒子的包覆层,上述包覆层中含有的银超微粒子的平均粒径为1nm以上50nm以下。
在优选实施方式中,上述银包覆球中含有的碳的比率为0.01质量%以上1质量%以下。
在优选实施方式中,上述包覆层的厚度为0.1μm以上50μm以下。
在优选实施方式中,上述核由铜或树脂形成。
在优选实施方式中,上述核的平均粒径为0.05mm以上1.5mm以下。
本发明的银包覆球的制造方法包括准备球状的核、含有银超微粒子和溶剂的分散液的工序;在上述核的表面形成上述分散液的膜的工序;从上述分散液的膜除去上述分散液中含有的上述溶剂,在上述核的表面形成含有上述银超微粒子的包覆层的工序,上述银超微粒子的平均粒径为1nm以上50nm以下,其中,上述溶剂含有非极性烃溶剂,上述银超微粒子与上述溶剂的质量比率为40质量%~85质量%15质量%~60质量%。
在优选实施方式中,在上述核的表面形成上述分散液的膜的工序包括将上述核浸渍在上述分散液中的工序。
在优选实施方式中,形成含有上述银超微粒子的包覆层的工序包括向斜面供给形成有上述分散液的膜的上述球的工序;和使上述球在上述斜面上滚动的工序。
在优选实施方式中,上述溶剂含有沸点约超过100℃的溶剂和沸点约为100℃以下的溶剂。
在优选实施方式中,上述非极性烃溶剂含有二甲苯。
发明效果本发明的银包覆球以覆盖球状的核的方式由含有平均粒径约为1nm以上50nm以下的银超微粒子的包覆层覆盖。该银超微粒子具有约250℃~约300℃的熔点。因此,本发明的银包覆球能够适合用作高温焊料用的无铅焊料材料。利用软钎焊而熔融的银直到银的熔点(约960℃)不会再熔融,因此,根据本发明,能够提供在高温下与银包覆球的接合强度提高的半导体封装。


图1是模式地表示本发明实施方式的银包覆球10的构成的截面图。
图2是用于由分散液膜包覆球制作银包覆球的优选装置概略示意图。
图3(a)和(b)是本发明半导体连接结构的形成方法的一例的说明图。
图4是用立体显微镜观察本发明实施例1的银包覆铜球的照片。
图5是用立体显微镜观察比较例1的银包覆铜球的照片。
图6是用立体显微镜观察铜球的照片。
图7是将实施例1的银包覆铜球在氮气气氛下、300℃下加热熔融2小时后的立体显微镜照片。
图8是实施例1的银包覆铜球的DTA曲线。
图9是分散液A的DTA曲线。
图10(a)和(b)是使用焊料包覆球的BGA的立体图和截面图。
符号说明1核;2包覆层;4A熔融状态下的焊料层;10银包覆球;12Cu层;14Ni镀层;16Au镀层;18衬垫;20基板;31斜面;32台座;50银包覆球;62互连基板具体实施方式
本发明人等为了提供由含有银超微粒子的包覆层(以下,有时称为“银包覆层”)均匀覆盖核的表面的银包覆球,着眼于银超微粒子的分散液,进行了深入研究。
通常,银超微粒子的表面活性高,在室温下易于凝聚。为此,通常,为了使预期的粒度分布的银超微粒子在分散液中不凝聚而稳定存在,根据用途等对分散液的组成进行适度调整。分散液通常含有溶解银超微粒子的溶剂和表面活性剂,根据需要,还含有还原剂、保护胶体剂等。
例如,在上述专利文献3中,公开了将银超微粒子等的]贵金属化合物与表面活性剂按照规定比率混合而得到的复合凝胶。该复合凝胶可有效用作制造含有高浓度的单分散贵金属胶体粒子的贵金属胶体有机溶胶材料的材料,例如,可适用于电子部件的导电膏、纤维等的着色颜料。此外,市售品有含有高浓度的银超微粒子并且分散稳定性、低温下的烧结性等优异的油墨、膏状物等(例如真空冶金株式会社制的微细配线用导电性油墨“纳米金属墨料(Nano Metal Ink)”,该公司制的微细配线用金属膏“纳米膏(Nano Paste)”等)。
但是,至此提案的分散液都完全没有被考虑到如本实施方式那样用于球状的表面。因此,发明人根据试验得知,即使采用现有的分散液,也不能在核的表面均匀地形成预期的银包覆层,而是会生成银超微粒子的凝聚体,或是包覆层的一部分发生剥离(参照后述实施例)。
基于上述试验结果,本发明人改变分散液的组成等,进行反复研究。结果发现,在核的表面形成含有规定比率的溶剂和银超微粒子的分散液的膜后,为了得到期望的含有银微粒子的包覆层,进行规定的除溶剂处理,此时银超微粒子未发生凝聚,溶剂均匀气化,达到了期望的目的,从而完成本发明。
本实施方式所用的分散液,由于对银超微粒子和溶剂的含有比率进行了适当控制,因此向球表面的吸附性(密合性)好。另外,由于上述分散液优选含有沸点约超过100℃的高沸点溶剂,所以气化速度慢。因此,银超微粒子就可几乎不发生凝聚地稳定分散在该分散液中。
并且,本实施方式的除溶剂处理可通过将溶剂的气化速度控制在定值的方式进行控制,因此,上述分散液不会不均匀地分布在核的周围。
因此,根据本实施方式,在核的表面能够形成厚度均匀的密合性优异的银超微粒子的包覆层。
(实施方式)图1是本发明实施方式的银包覆球10的截面图。如图1所示,本实施方式的银包覆球10具有球状的核1和以包围核1的方式设置的含有平均粒径为1nm以上50nm以下的银超微粒子的包覆层2。
本实施方式的银包覆球10,其核1的表面由具有上述平均粒径的银超微粒子包覆。该银超微粒子的熔点在约250℃~约300℃的范围内,能够在高温区域进行软钎焊。而且,因加热而熔融的银直至银的熔点(约960℃)不会再熔融,因此,能够提供即使在高温下与银包覆球的接合性也极其优异的半导体封装。
构成包覆层2的银超微粒子的平均粒径在1nm以上50nm以下的范围内。银超微粒子的平均粒径没有特别限定,只要能有效发挥银超微粒子的上述特性即可,而考虑到分散稳定性等,定于上述的范围。银超微粒子的优选平均粒径为8nm以上20nm以下。考虑到粒子的不均匀性等,银超微粒子可以包括例如8nm±2nm~20nm±2nm的范围的平均粒径。在本说明书中,平均粒径采用图像处理装置求取存在于观察视野(100nm×100nm)中的银粒子的面积圆相当直径(直径),计算其平均值而测得。
银超微粒子无需一定以粒度分布狭窄的单分散而存在。从在球的表面形成致密包覆层的观点出发,优选以例如粒度分布具有两个峰的多分散而存在。
包覆层2中含有的C(碳)的比率为0.01质量%以上1质量%以下。发明人认为,C主要来自用于制作本实施方式的银包覆球的溶剂。如后所述,出于以良好密合性使银超微粒子包覆在球表面上的目的,与通常的含有银超微粒子的分散液相比,本实施方式的溶剂含有比率的设定值更高,由于优选含有沸点约超过100℃的高沸点溶剂,因此,大量的C引入包覆层中。C的含量可以采用使用碳-硫分析装置的高频燃烧红外线吸收法测定。
包覆层2的厚度优选在0.1μm以上50μm以下的范围内。当包覆层2的厚度低于0.1μm时,不能有效发挥作为焊料层的作用。包覆层2的优选厚度为1.5μm以上。但是,当包覆层2的厚度超过50μm时,有可能发生在银包覆球与基板接合之后包覆层熔融、位置偏移等不利情况。包覆层2的厚度,采用显微镜观察在核1的表面形成包覆层2之后的球的球径(面积圆相当直径)和形成包覆层2之前的球的球径(面积圆相当直径),计算出其差值而测得。
银包覆球10的差示热曲线(DTA曲线)优选在超过约100℃约200℃以下的范围内显示出取最大值的吸热峰。如后述实施例的栏中的具体说明,本实施方式的银包覆球的DTA曲线除起因于银超微粒子的熔点的吸热峰(约240℃~约250℃)之外,还在约150℃显示出具有最大值的吸热峰(参照图8)。发明人认为,后一吸热峰大概是起因于用于调制银包覆球的沸点约超过100℃的高沸点溶剂(在后述实施例中,为沸点约140℃的二甲苯)。本发明人对由本实施方式均匀形成期望的银包覆层的具体机理尚不清楚,但认为主要原因是,通过使用上述含有高沸点溶剂的分散液,以适当的速度使溶剂气化,因此,抑制了银超微粒子向核的表面分布的不均匀化(凝聚)。
包覆层2如图1所示,具有含银超微粒子的单层结构。
或者,只要无损于上述银超微粒子的特性,包覆层2也可以具有由多层的金属层构成的多层结构。例如,包覆层2可以由含有银超微粒子的第一金属层、和以包围第一层的方式设置的第二金属层(镀层)构成。如果采用上述多层结构,银超微粒子的表面就会由第二镀层包覆,因此,在高温下加热熔融时,不会出现银超微粒子氧化、有损银超微粒子的特性的情况。第二金属层优选含有在比银超微粒子低的温度下熔融的例如Sn、In等金属。
对核1没有特别限定,只要是通常用于焊料包覆球的即可。
例如,核1优选由Cu、Al等金属形成,更优选为由Cu形成。由于Cu的熔点和热传导率高、电阻值低,因此可有效用作半导体封装的连接材料。
核1也可以由树脂形成。在核1由树脂形成的情况下,出于提高热传导性、易于形成包覆层2的目的,优选为在核1的表面形成Ni等的金属层之后,形成包覆层2。
核1的平均粒径优选在例如0.05mm以上1.5mm以下的范围内。平均粒径可以根据BGA等的引脚数酌情调整。
下面,说明本实施方式的银包覆球10的制造方法。
本实施方式的制造方法包括准备球状的核、含有银超微粒子和溶剂的分散液的工序;在上述核的表面形成上述分散液的膜的工序;和从上述分散液的膜除去上述分散液中含有的上述溶剂,在上述核的表面形成含有上述银超微粒子的包覆层的工序。
下面,详细说明各工序。
首先,准备球状的核和分散液。
分散液含有银超微粒子和溶剂。用于本实施方式的分散液如下所述,具有适于制造预期的银包覆球的组成。
分散液含有40质量%以上85质量%以下的银超微粒子和15质量%以上60质量%以下的溶剂,与迄今为止提案的分散液相比,一般溶剂的比率高。因此,不会发生银超微粒子凝聚,使厚度均匀的包覆层密合性良好地形成在球的表面。当银超微粒子和溶剂的含有比率超出上述范围时,银超微粒子在核表面的贴附性(附着性)差,产生银超微粒子剥落等情况。银超微粒子与溶剂的优选含有比率为50质量%~70质量%∶30质量%~50质量%。
对溶剂没有特别限定,只要能够溶解银超微粒子即可,非极性溶剂和极性溶剂均可。从密合性良好地在核表面形成含有银超微粒子的包覆层的观点出发,优选非极性溶剂,更优选非极性烃溶剂。
典型的非极性烃溶剂可举出烷烃或芳香族烃。作为烷烃可以举出例如己烷(沸点约69℃)、辛烷(沸点约126℃)、环己烷(沸点约81℃)、环戊烷(沸点约51℃)等。作为芳香族烃可以举出例如二甲苯(沸点约140℃)、甲苯(沸点约110℃)、苯(沸点约81℃)等,还包括氯苯等卤化芳香族烃。它们既可以单独使用,也可以两种以上并用。本实施方式所用的溶剂优选至少含有二甲苯。
在本实施方式中,溶剂优选含有沸点超过100℃的溶剂(高沸点溶剂)和沸点在100℃以下的溶剂(低沸点溶剂)。发明人认为,尤其是高沸点溶剂在形成预期的银超微粒子包覆层时具有适度的气化速度,因此效用很好。溶剂也可以仅由高沸点溶剂构成。
分散液除上述银超微粒子和溶剂之外,只要无损于本实施方式的作用,还可以含有通常能够在含银超微粒子的分散液中含有的其它添加剂(例如表面活性剂、消泡剂、防蚀剂等)。
然后,在核的表面形成分散液的膜。下面,为便于说明,将在该工序中得到的球称为“分散液膜包覆球”,与本实施方式中预期的在核的表面形成有银包覆层的“银包覆球”相区别。
分散液的膜优选使用浸渍法形成。具体而言,在例如加热到约30℃的分散液中将核浸渍规定时间。浸渍时间可根据分散液的组成等适度调整,例如,优选在3分钟以下的范围内。另外,在浸渍到分散液中之前,优选预先对核进行脱脂。这样,就能提高分散液在核表面的附着性。
在这样形成的分散液膜包覆球中,分散液在相邻的核之间架桥(bridge),使分散液不均匀分布在核周围。如果在该状态下直接使溶剂气化,就有可能使存在大量分散液的部位残留大量的银超微粒子。
因此,本实施方式中,在分散液膜包覆球中,从分散液的膜除去溶剂,在核的表面形成含有银超微粒子的包覆层。这样,就可得到预期的银包覆球。
具体而言,优选使用例如图2所示的装置制作银包覆球。该装置具备使分散液膜包覆球滚动的斜面31和支承斜面的台座32。
首先,将分散液膜包覆球供给斜面31,使核沿斜面31滚动。分散液膜包覆球沿斜面31连续滚动,就可以在核的表面形成膜厚均匀的分散液膜。其结果,在核的表面形成厚度均匀的银超微粒子的包覆层。这种除去溶剂作用,在例如使用玻璃制的斜面时可得到进一步促进。另外,能够通过改变斜面31的角度,来调整溶剂的气化速度。
在本实施方式中,为了得到厚度不均匀性更小的银包覆层,优选控制溶剂,使之均匀气化。例如,出于促进溶剂气化的目的,也可在将分散液膜包覆球供给斜面之前,由纸(kimwipe擦拭纸)、布等吸收、除去表面过量的溶剂,用吹风机等将表面风干。除此之外,也可在使分散液膜包覆球沿斜面滚动的过程中,用吹风机等将表面风干。
然后,参照图3,说明具有本实施方式的银包覆球的半导体连接结构的形成方法。在该实施方式中,在至少包括半导体芯片的元件或装置中,可使用银包覆球的连接结构总称为“半导体连接结构”。
首先,如图3(a)所示,准备银包覆球50和接合该银包覆球50的期望的基板20。基板20为例如BGA(参照图10)和CSP的封装,在基板20的主面上设置由导电材料形成的衬垫18。衬垫18由例如Cu层12、Ni镀层14、Au镀层16的叠层体构成。然后,在银包覆球50配置在衬垫18上的状态下,通过对银包覆球50进行加热,如图3(b)所示,使包覆层2熔融。在图3(b)中,以4A表示熔融状态下的焊料层。然后,将该处于熔融状态下的包覆层4A冷却固化,与衬垫18接合。根据上述所述,形成半导体连接结构。
在该半导体连接结构中,银包覆球50对基板20的接合强度高,且不易产生位置偏移等不利情况。因此,可提供可靠度高的半导体连接结构。
实施例下面,研究使用球状的铜核,随着分散液组成的变化银超微粒子的密合性如何变化。具体而言,使用直径不同的两种铜核(直径0.35mm、0.75mm)、下述组成的分散液A和B,按照以下所述的方法,制作实施例1、2的银包覆铜球,以及比较例1和2的银包覆铜球。
(分散液A)分散液A是含有约90质量%的银超微粒子(平均粒径约3nm~约15nm)和约10质量%的溶剂的分散液。分散液A不满足本实施方式所规定的银超微粒子与溶剂的含有比率。溶剂仅含有二甲苯和甲苯,二甲苯的含量比甲苯的含量高。
(分散液B)分散液B是相对于分散液A再添加二甲苯的分散液,含有约60质量%的银超微粒子(平均粒径约3nm~约15nm)和约40质量%的溶剂。分散液B满足本实施方式所规定的银超微粒子与溶剂的含有比率。
(实施例1)首先,使用中性脱脂液506(石原药品制)对直径为0.75mm的铜核进行脱脂(前处理)。具体而言,将铜核浸渍在中性脱脂液中(在35℃下约5分钟)后,在室温下,用纯水清洗约3分钟,再置于流水中清洗约1分钟。然后,在乙醇中浸渍约2分钟、干燥。
然后,将分散液B升温到约30℃,将经过如上所述前处理的铜核浸渍约2分钟。通过浸渍,得到在铜核的表面形成有分散液的膜的分散液膜包覆铜球。
浸渍后,用擦拭纸将附着在分散液膜包覆铜球的表面的多余的分散液除去。
将该铜球导入上述图2所示的装置,供给配置在装置内的壳体(Schale)上滚动,使包覆层的厚度均匀。
如上所述,制作实施例1的银包覆铜球(银超微粒子的包覆层的厚度约0.4μm)。
(实施例2)实施例2的银包覆铜球除了使用直径为0.35mm的铜球代替直径为0.75mm的铜球以外,与上述实施例1同样进行制作。实施例2的银包覆铜球中的银超微粒子的包覆层厚度为约0.7μm。
(比较例1)比较例1的银包覆铜球,除了使用分散液A代替分散液B以外,与上述实施例1同样进行制作。
(银包覆层的观察)图4和图5分别表示用立体显微镜观察实施例1和比较例1的银包覆铜球的照片。为作参考,图6表示形成银包覆层之前的铜球的显微镜观察照片。
如图4所示,可知本实施方式的使用分散液B的实施例1的银包覆铜球没有发生银超微粒子的凝聚,可在铜球的表面密合性良好地形成均匀的包覆层。
反之,本实施方式的未使用分散液B制作的比较例1的银包覆铜球如图5所示,生成银超微粒子的凝聚体,不能形成均匀的包覆层。
为作参考,实施例1的银包覆铜球在氮气氛围下、300℃加热2小时熔融时的立体显微镜照片示于图7中。如图7所示,实施例1的银包覆铜球在高温下加热熔融之后,也可以密合性良好地使银超微粒子形成于铜球的表面。因此,可知实施例1的银包覆铜球可有效用于高温焊料用的无铅焊料材料。
(C量分析)实施例1和实施例2的银包覆球中所含C(碳)的量,可通过上述高频燃烧红外线吸收法测定。测定试样的质量为约0.2g。
为了比较,使实施例1和2所用的铜球(直径0.75mm、0.35mm)中所含C的量一样,进行测定。
其结果示于表1中。在表1中,单位质量(g/kpcs)是指每1000个银包覆球的单位质量(g)。
表1

*试样编号1对应于实施例1的银包覆铜球。
**试样编号3对应于实施例2的银包覆铜球。
分别比较表1中铜球的表面形成银超微粒子包覆层前后的C量(试样编号2和试样编号1,试样编号4和试样编号3),可知,实施例1和实施例2的银包覆球均随着银包覆层的形成而C量增加。发明人认为,C量增加主要来自在银超微粒子包覆层形成中所用的溶剂。
另外,本实施方式中未使用分散液B制作的比较例1的银包覆铜球如上所述,不具备均匀的包覆层,因此不能测量C量。
(DTA曲线)图8表示实施例1的银包覆铜球的DTA曲线。具体而言,测定银包覆铜球(25mg)在大气中以5℃/分钟的升温速度加热时的DTA曲线。为作参考,图9表示分散液A中DTA曲线的结果。
如图9所示,分散液A的DTA曲线显示出起因于银超微粒子熔点(约260℃)的单一吸热峰(约240℃~约250℃),而使用分散液B制作的银包覆球的DTA曲线除上述吸热峰以外,还在约150℃处显示出具有最大值的吸热峰。发明人认为,约150℃的吸热峰主要来源于二甲苯(沸点约140℃)。
产业上的可利用性根据本发明,可提供在约250℃~约300℃的高温区域实施软钎焊的银包覆球。本发明的银包覆球可适用于例如BGA、CSP等半导体封装的输入输出端子。
(按照条约第19条的修改)1.一种银包覆球,其特征在于,具有球状的核;和以包围所述核的方式设置的含有银超微粒子的包覆层,其中,所述包覆层中含有的银超微粒子的平均粒径为1nm以上50nm以下,所述银包覆球中含有的碳的比率为0.01质量%以上1质量%以下。
2.(删除)3.如权利要求1所述的银包覆球,其特征在于所述包覆层的厚度为0.1μm以上50μm以下。
4.如权利要求1或3所述的银包覆球,其特征在于所述核由铜或树脂形成。
5.如权利要求1、3和4中任一项所述的银包覆球,其特征在于所述核的平均粒径为0.05mm以上1.5mm以下。
6.一种银包覆球的制造方法,其特征在于,包括准备球状的核、含有银超微粒子和溶剂的分散液的工序;在所述核的表面形成所述分散液的膜的工序;和从所述分散液的膜除去所述分散液中含有的所述溶剂,在所述核的表面形成含有所述银超微粒子的包覆层的工序,其中,所述银超微粒子的平均粒径为1nm以上50nm以下,所述溶剂含有非极性烃溶剂,所述银超微粒子与所述溶剂的质量比率为40质量%~85质量%15质量%~60质量%。
7.如权利要求6所述的银包覆球的制造方法,其特征在于
权利要求
1.一种银包覆球,其特征在于,具有球状的核;和以包围所述核的方式设置的含有银超微粒子的包覆层,其中,所述包覆层中含有的银超微粒子的平均粒径为1nm以上50nm以下。
2.如权利要求1所述的银包覆球,其特征在于所述银包覆球中含有的碳的比率为0.01质量%以上1质量%以下。
3.如权利要求1或2所述的银包覆球,其特征在于所述包覆层的厚度为0.1μm以上50μm以下。
4.如权利要求1~3中任一项所述的银包覆球,其特征在于所述核由铜或树脂形成。
5.如权利要求1~4中任一项所述的银包覆球,其特征在于所述核的平均粒径为0.05mm以上1.5mm以下。
6.一种银包覆球的制造方法,其特征在于,包括准备球状的核、含有银超微粒子和溶剂的分散液的工序;在所述核的表面形成所述分散液的膜的工序;和从所述分散液的膜除去所述分散液中含有的所述溶剂,在所述核的表面形成含有所述银超微粒子的包覆层的工序,其中,所述银超微粒子的平均粒径为1nm以上50nm以下,所述溶剂含有非极性烃溶剂,所述银超微粒子与所述溶剂的质量比率为40质量%~85质量%∶15质量%~60质量%。
7.如权利要求6所述的银包覆球的制造方法,其特征在于在所述核的表面形成所述分散液的膜的工序包括将所述核浸渍在所述分散液中的工序。
8.如权利要求6或7所述的银包覆球的制造方法,其特征在于形成含有所述银超微粒子的包覆层的工序包括向斜面供给形成有所述分散液膜的所述球的工序;和使所述球在所述斜面上滚动的工序。
9.如权利要求6~8中任一项所述的银包覆球的制造方法,其特征在于所述溶剂含有沸点约超过100℃的溶剂和沸点约为100℃以下的溶剂。
10.如权利要求6~9中任一项所述的银包覆球的制造方法,其特征在于所述非极性烃溶剂含有二甲苯。
全文摘要
本发明涉及一种银包覆球(10),其具有球状的核(1);和以包围核(1)的方式设置的含有银超微粒子的包覆层(2),其中,包覆层(2)中含有的银超微粒子的平均粒径为1nm以上50nm以下。
文档编号H01L23/12GK101031384SQ20068000092
公开日2007年9月5日 申请日期2006年5月23日 优先权日2005年5月27日
发明者浅田贤, 菊井文秋 申请人:株式会社新王材料
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1