钠硫电池的控制方法

文档序号:7208334阅读:268来源:国知局
专利名称:钠硫电池的控制方法
技术领域
本发明涉及一种互联系统中的钠硫电池的控制方法,所述互联系统组合了风力发 电装置等其输出变化的发电装置和具有多个钠硫电池的电力储藏补偿装置并向电力系统 供给电力。
背景技术
近年来,用风力、太阳光、地热等发电的自然能源发电装置引人注目,并被投入实 际应用。自然能源发电装置是一种不使用石油等有限资源而使用自然存在的无穷无尽的能 源、无污染的发电装置,该发电装置能抑制二氧化碳的排放,因此,从防止地球变暖的观点 出发,引入该装置的企业、自治体等正在增加。但是,由于从自然界获得的能源是时刻变化的,因此,要将自然能源发电装置普及 化,就存在无法避免输出变化的问题。因此,为消除这个问题,在采用自然能源发电装置时, 优选构筑互联(发电)系统,该系统组合了该自然能源发电装置和、以多个钠硫电池(二次 电池)为主要构成元件的电力储藏补偿装置。钠硫电池,其能量密度高、能在短时间内进行高输出且快速响应性突出,因此,通 过同时设置用于控制充电及放电的双向转换器,能具有如下优点能补偿在几百m秒一几 秒下可能发生的自然能源发电装置的输出变化。因此,可以认为,对自然能源发电装置组合 了电力储藏补偿装置的互联系统是优选的发电系统,其中,所述电力储藏补偿装置以多个 钠硫电池为构成元件。

发明内容
发明要解决的问题在以多个钠硫电池为构成元件的电力储藏补偿装置中,由于简便,因此,一直以来 对该多个钠硫电池的充放电的控制通常都是统一进行的。另外,将钠硫电池的充放电的电 流值输入顺序控制器等控制装置,并基于初期设定的剩余容量(Ah),对该电流值来进行加 减(例如充电为加法运算、放电为减法运算,或与其相反)且进行累计计算,并进行容量比 率的换算,由此管理各个钠硫电池的电池深度(放电深度、(%))。此外,如果能正确地管 理电池深度,也就能知道剩余容量,因此,在本说明书中电池深度可以替换为剩余容量。另外,对自然能源发电装置组合了以多个钠硫电池为构成元件的电力储藏补偿装 置的互联系统发挥如下功能补偿自然能源发电装置的变化,并结合人为或由计算机指定 的发电计划,实现顺畅或完全平缓的(作为互联系统的)输出,因此,互联系统的发电功率 计划值(运转计划值)接近自然能源发电装置的发电功率(输出)时,可能出现以多个钠硫 电池为构成元件的电力储藏补偿装置所补偿(吸收)的功率变得微乎其微的情况。这样, 结果是钠硫电池的放电功率(或充电功率)变得微小。钠硫电池的放电功率(或充电功率)变得微小,当然放电(或充电)的电流也变 得微小,如果基于该微小的电流(例如30A以下的电流),就有可能进入无法识别放电(或充电)的非感应带。即,即使实际上在进行放电(或充电),也会被认为没有在进行该放电 (或充电),因此不会将放电(充电)的电流值输入顺序控制器等控制装置,就不能更新所 述电池深度的累计计算。这样,实际的电池深度与控制装置管理的管理值之间就会产生误 差,如果钠硫电池的放电功率(或充电功率)微小的状态长时间持续,该误差就会被累计计 算而变大。在各个钠硫电池中,实际的电池深度与管理值之间的误差变大,就不能把握正确 的电池深度,从而出现如下问题突然达到充电末期而不能继续充电,或突然达到放电末期 而不能继续放电,致使在补偿自然能源发电装置的输出变化的过程中被停掉。本发明是鉴于这样的情况而做出的,其课题在于提供一种在互联系统中能精确管 理钠硫电池的电池深度(或剩余容量)的方法,所述互联系统为组合了其输出变化的自然 能源发电装置和以多个钠硫电池为构成元件的电力储藏补偿装置的互联系统。经过反复研 究,发现当各个钠硫电池的放电功率(或充电功率)降低一定量以上时,使按照事先确定的 优先顺序指定的钠硫电池顺次停止运转,其后再运转,由此能解决所述课题。具体地,根据 本发明能提供如下的方法。解决向题的手段S卩,根据本发明,提供一种钠硫电池的控制方法,是一种多个钠硫电池的控制方 法,所述多个钠硫电池在组合了其输出功率变化的发电装置和电力储藏补偿装置并向电力 系统供给电力的互联系统中,构成所述电力储藏补偿装置并补偿所述发电装置的输出功率 变化,包含于该多个钠硫电池的各个钠硫电池的充电功率或放电功率变为额定输出的1/ η (η为自然数)以下时,使各个钠硫电池顺次停止运转,并在各个钠硫电池的充电功率或放 电功率变为额定输出的(χ为自然数)以上时,使各个钠硫电池顺次再运转。在本发明的钠硫电池的控制方法中,优选所述1/n在1/8(12.5% )以上、 1/2(50%)以下。特别优选1/n为1/4(25%)。即,优选地,钠硫电池的充电功率或放电功 率降低至额定输出的1/4以下时,使各个钠硫电池顺次停止运转。在本发明的钠硫电池的控制方法中,优选所述χ在80以上、100以下。特别优选χ 为100。即,优选地,钠硫电池的充电功率或放电功率返回至额定输出时,使各个钠硫电池顺
次再运转。在本发明的钠硫电池的控制方法中,优选地,使各个钠硫电池停止运转时,事先确 定该停止的优选顺序,其后将先停止的钠硫电池的优选顺序降至最后位置。优选地,再运转的顺序是根据事先确定的优选顺序,先使优选顺序低的钠硫电池 再运转。即,最先停止的最后再运转(fast in last out)。其后是指,使各个钠硫电池停止运转、再运转这样一个周期结束之后。例如,如果 有No. 1 No. 4这样4个钠硫电池,事先按照No. UNo. 2,No. 3,No. 4的顺序确定优选顺序, 使No. 1最先停止运转并使其最后再运转,在其后,将No. 1的优选顺序降至最后位置,优选 顺序变为No. 2、No. 3、No. 4、No. 1的顺序。进而,使No. 2最先停止运转并使其最后再运转, 在其后,将No. 2的优选顺序降至最后位置,优选顺序变为No. 3、No. 4、No. 1、No. 2的顺序, 然后使No. 3最先停止运转并使其最后再运转,在其后,将No. 3的优选顺序降至最后位置, 优选顺序变为No. 4、No. 1、No. 2、No. 3,然后使No. 4最先停止运转并使其最后再运转,在其 后,将No. 4的优选顺序降至最后位置,优选顺序变为最初的No. UNo. 2,No. 3,No. 4,重复这个过程。本发明的钠硫电池的控制方法尤其适合用于,其输出变化的发电装置为使用了风 力、太阳光、地热中一种或两种以上的自然能源的自然能源发电装置的情况。同时停止运转的钠硫电池也可以不是一个。这种情况下,就存在多个相同优选顺 序的钠硫电池。不过,同时停止运转的钠硫电池优选为一个,优选使其一个一个地顺次停止运转。本发明的钠硫电池的控制方法是在互联系统中构成电力储藏补偿装置的多个钠 硫电池的控制方法,所述互联系统组合了其输出变化的发电装置和电力储藏补偿装置并向 电力系统供给电力。在本说明书中,构成多个钠硫电池的各个(一颗)钠硫电池是指在控 制单位上与其他电池相区别的钠硫电池,而不是由单电池数、模块电池数、输出的大小等来 决定的。具体地,当钠硫电池构成电力储藏补偿装置时,将由一个双向转换器控制下的钠硫 电池作为一个钠硫电池来使用(后述的图1中,按照No. 1-Νο. η分别画有多个钠硫电池3, (例如)称为No. 1钠硫电池3时,将No. 1中的多个钠硫电池3仅用No. 1钠硫电池3来表 示)。虽然最好钠硫电池全部为相同额定容量的钠硫电池,但不必一定相同。本发明的钠硫电池的控制方法,是在包含于多个钠硫电池的各个钠硫电池的充电 功率或放电功率变为额定输出的1/η以下时,使各个钠硫电池顺次停止运转,因此,互联系 统的发电功率(输出)与其输出变化的发电装置(自然能源发电装置)的发电功率(输 出)之间常常会产生很大的偏差。因此,停止运转的钠硫电池以外的钠硫电池的充电功率 或放电功率不会变微小。由此,不会有正在运转的钠硫电池的电流进入无法识别充电或放 电的非感应带的可能性,从而能确保充电或放电的电流值被输入顺序控制器等控制装置, 就能正确地进行电池深度的累计计算的更新。因而,实际的电池深度与控制装置管理的管 理值之间就不会产生误差。发明效果如果根据本发明的钠硫电池的控制方法,在全部的多个钠硫电池中,实际的电池 深度与管理值之间不产生误差,因此不易出现在补偿自然能源发电装置的输出变化的过程 中钠硫电池(电力储藏补偿装置)停止运转的问题。即,通过电力储藏补偿装置,就能长期 持续地补偿自然能源发电装置的输出变化,所述电力储藏补偿装置使用了以本发明的钠硫 电池的控制方法控制的钠硫电池。因此,可以显著提高互联系统长期运转的可靠性。如上所述,本发明的钠硫电池的控制方法,使各个钠硫电池停止运转后,各个钠硫 电池的充电功率或放电功率变为额定输出的以上时,使各个钠硫电池顺次再运转,因 此,即使在输出变化的发电装置(自然能源发电装置)的发电功率变化、且与互联系统的发 电功率计划值(运转计划值)的偏差变大的情况下,也不会浪费钠硫电池所具有的充电功 率及放电功率,从而抑制自然能源发电装置的变化,实现作为顺畅或平缓的互联系统的输 出ο本发明的二次电池的电力控制方法在组合了发电装置和电力储藏补偿装置并向 电力系统供给电力的互联系统中,能够作为控制构成所述电力储藏补偿装置的多个钠硫电 池的控制方法来利用,其中,所述发电装置使用风力、太阳光、地热等自然能源且其输出变 化。


图1表示具备其输出变化的发电装置和电力储藏补偿装置的互联系统的一例的 系统构成图。图2表示决定分配给互联系统中的各钠硫电池的运转基准量(控制量)的逻辑方 框图。图3为表示发电功率计划值接近风力发电功率时的钠硫电池的控制方法的逻辑 方框图的一例。附图标记说明1电力系统3钠硫电池4双向转换器5电力储藏补偿装置7风力发电装置8互联系统9变压器41,42,43,44 功率表
具体实施例方式以下,在适当参照附图的同时对本发明的实施方案进行说明,但不应解释为本发 明被这些实施方案所限定。在不超出本发明的宗旨的范围内,基于本领域技术人员的普通 技术知识,可以对其进行种种变更、修改、改良、替换。例如,虽然附图表示本发明的优选实 施方案,但是本发明并不被附图表示的方案或信息所限制。经实施和验证,本发明虽然可以 适用与本说明书中记载的所述方法相同或等同的方法,但是优选方法为以下所述的方法。首先,对互联系统进行说明。图1所示的系统构成图表示具备其输出变化的发电 装置及电力储藏补偿装置的互联系统的一例。图1所示的互联系统8具备将风力转为风 车转动而使发电机转动的风力发电装置7 (自然能源发电装置)和电力储藏补偿装置5。另 外,电力储藏补偿装置5具有作为二次电池的钠硫电池3 (也称NAS电池),其能储藏电力 并将其输入输出;具有直流/交流转换功能的双向转换器4 ;及变压器9。双向转换器4例 如可以由斩波器(chopper)和变换器(inverter)构成,或者由变换器构成。互联系统8具 备No. 1-No. m(m为大于1的整数)的m系列风力发电装置7及No. 1-N0.n(n为大于1的整 数)的η系列钠硫电池3 (电力储藏补偿装置5)。此外,如所述,将包含于1个电力储藏补偿装置5中的钠硫电池3整体作为一个钠 硫电池3来使用。另外,一般在互联系统中加有私人发电装置作为发电装置,还有作为负荷 的钠硫电池的加热器或其他辅助装置,但在互联系统8中将其省略。在本发明的钠硫电池 的控制方法中,这些辅助装置等的电力,可以视为包含于输出变化的发电装置(风力发电 装置7)所发的电力中(增加或减少的功率)。在互联系统8中,在电力储藏补偿装置5中进行钠硫电池3的放电,用功率表42 测定的功率补偿由风力发电装置7所发的功率(用功率表43测定的功率Pw)的输出变 化。具体地,通过控制钠硫电池3的放电(即功率使互联系统8整体输出的功率满足(用功率表41测定的功率PT) Pt = PW+PN =恒定(PN = Pt-Pw),从而将互联系统8整体输出 的功率Pt变成稳定而质量良好的功率,并将其供给至例如在配电变电站和电力需要者之间 的电力系统1。另外,在互联系统8中,根据由风力发电装置7所发的功率Pw的输出变化,在电 力储藏补偿装置5中进行钠硫电池3的充电。具体地,通过控制钠硫电池3的充电(即功 率-Pn),使由功率表42测定的功率变为= -Pw,从而消耗变化的功率Pw,能使互联系统 8整体输出的功率Pt变成0。在钠硫电池3进行放电及充电的任意一种情况下,基于风力发电装置7的输出 (功率Pw),在电力储藏补偿装置5中通过改变双向转换器4的控制目标值使钠硫电池3充 电或放电,以输入或输出用来补偿风力发电装置7输出的功率,从而吸收风力发电装置7的 输出变化。由于该互联系统8能够使用几乎不排出二氧化碳的自然能源发电装置(风力发 电装置7)及钠硫电池3 (电力储藏补偿装置幻来供给稳定而质量良好的功率,因此可以说 是理想的发电装置。接着,参照图2及图3,对在图1所示的互联系统8中,该互联系统8的发电功率计 划值(运转计划值)接近风力发电装置7的功率Pw的情况下的钠硫电池3的控制进行说明。图2表示决定分配给互联系统8中的各钠硫电池3 (No. 1 No. nNAS电池)的运转 基准量(控制量)的逻辑方框图。如图2所示,通过将以下两个值相加能求出功率基准量 (控制量),其中一个值通过以下方法得到,即以运转计划值减去风车功率(由风力发电装 置所发的功率Pw)得到的值为基础,进行比例操作,并通过限幅器去掉设定值以上的值;另 一个值通过以下方法得到,即以运转计划值减去现时(欲求出功率基准量的时点)的总功 率(功率Pt)得到的值为基准,进行比例操作及积分操作。另外,将其分配给各钠硫电池3。 这样,就将运转基准量(控制量)分别给予各钠硫电池3 (No. 1 No. nNAS电池(单元)运 转基准量)。图3表示钠硫电池的控制方法的逻辑方框图,是发电功率计划值接近风力发电功 率时的一例的逻辑方框图。在图3中,首先判断运转基准量是否在额定输出的1/4以下(图 3中为< )。然后,如果运转基准量为额定输出的1/4(以下),接着确定优选顺序(与图3 中的优选条件A的逻辑积),如果是优选顺序高的,先通过控制极封锁(gate block)使其停 止运转(向图3中的NAS电池的控制极封锁的预置输出(set output))。例如,作为决定 优选顺序的逻辑(参照图幻可以考虑如下逻辑每隔10秒观察一次放电深度,从(No. 1 No. η中)的小编号开始使其停止运转(图3中No. 1 No. η优选条件A的输出)。另外, 例如,有No. 1 No. 15的NAS电池(单元)时,能使No. 3 No. 6NAS电池(单元)停止运 转。当然,停止运转的对象也可以不是号码连续的NAS电池(单元)。另外,复原条件是达 到NAS电池(单元)的上限限幅时。如果满足条件,就使其顺次复原。该复原与停止同样 地,确定优选顺序(与图3中的优选条件B的逻辑积(优选条件B与优选条件A可以相同也 可以不同(图3中未表示对决定不同情况下的优选条件B的优选顺序进行决定的逻辑))), 优选地,根据该优选顺序,使其顺次复原(向图3中的NAS电池的控制极封锁的复位输出 (reset output))。产业上利用的可能性
本发明适合作为互联系统中的钠硫电池的控制方法来利用,所述互联系统组合了 风力发电装置等其输出变化的发电装置和具有多个钠硫电池的电力储藏补偿装置并向电 力系统供给电力。
权利要求
1.一种钠硫电池的控制方法,是多个钠硫电池的控制方法,所述多个钠硫电池在组合 了其输出功率变化的发电装置和电力储藏补偿装置并向电力系统供给电力的互联系统中, 构成所述电力储藏补偿装置并补偿所述发电装置的输出功率变化,包含于该多个钠硫电池的各个钠硫电池的充电功率或放电功率变为额定输出的1/η (η 为自然数)以下时,使各个钠硫电池顺次停止运转,并在各个钠硫电池的充电功率或放电功率变为额定输出的(χ为自然数)以上时, 使各个钠硫电池顺次再运转。
2.权利要求1所述的钠硫电池的控制方法,所述1/η在1/8以上、1/2以下。
3.权利要求1所述的钠硫电池的控制方法,所述χ在80以上、100以下。
4.权利要求1-3任一项所述的钠硫电池的控制方法,使所述各个钠硫电池停止运转 时,事先确定该停止的优选顺序,其后将先停止的钠硫电池的优选顺序降至最后位置。
5.权利要求1-4任一项所述的钠硫电池的控制方法,所述其输出变化的发电装置为使 用了风力、太阳光、地热中的一种或两种以上的自然能源的自然能源发电装置。
全文摘要
本发明的钠硫电池的控制方法,在包含于多个钠硫电池的各个钠硫电池的充电功率或放电功率变为额定输出的1/n(n为自然数)以下时,使各个钠硫电池顺次停止运转。这样,钠硫电池的放电功率(或充电功率)就不会变微小,就能精确管理钠硫电池的电池深度(或剩余容量)。
文档编号H01M10/44GK102150319SQ20098013536
公开日2011年8月10日 申请日期2009年9月25日 优先权日2008年9月30日
发明者福原基广 申请人:日本碍子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1