耐弯曲性导电材料及使用其的电缆的制作方法

文档序号:7251053阅读:134来源:国知局
耐弯曲性导电材料及使用其的电缆的制作方法
【专利摘要】本发明提供一种耐受100万次以上的动态驱动、特别适合机器人或汽车的配线的耐弯曲性导电材料及使用其的电缆,构成母材的金属组织的晶粒(20)的平均晶体粒径为2μm以下,且以截面面积率计含有至少20%以上的1μm以下的晶粒(20)。而且,优选含有0.1质量%~20质量%的纳米颗粒(22)。
【专利说明】耐弯曲性导电材料及使用其的电缆
【技术领域】
[0001]本发明涉及在例如工业用机器人、民用机器人、汽车的配线等中,特别是施加反复弯曲的弓丨线等所使用的耐弯曲性导电材料及使用其的电缆。
【背景技术】
[0002]在将以金属材料、特别是铜或铝为主要材料制造的导线用于工业用机器人、民用机器人、汽车等的配线的情况下,在机械臂(7 — A )的驱动时、门的开关时施加反复弯曲载荷,因此,不使用通常的导线而是使用耐反复弯曲载荷的导线。另外,当直径变细时,导线变得更耐反复弯曲,因此,不使用单线而是使用由多根细线构成的绞线。
[0003]而且,关于导电性材料,例如,如专利文献1中所述,提出如下铝合金线材:其由成分中含有0.1?0.4质量%的铁、0.1?0.3质量%的铜、0.02?0.2质量%的镁、0.02?0.2质量%的硅,并合计含有0.001?0.01质量%的钛和钒的铝合金构成,拉丝方向的垂直截面上的晶体粒径为5?25 μ m,且赋予常温下的应变振幅为±0.15%的反复疲劳的情况下疲劳寿命为50000次以上。
[0004]现有技术文献
[0005]专利文献
[0006]专利文献1:特开2010-163675号公报
【发明内容】

[0007]发明要解决的课题
[0008]但是,专利文献1所述的技术将疲劳寿命设定为50000次以上,在实际的机器人等中,若一次动作为两秒,则两天动作86400次,专利文献1所述的技术寿命不充分。于是,本发明人以耐受100万次以上的动态驱动试验为条件,对影响疲劳寿命的因素进行深入研究,完成了本发明。
[0009]本发明是鉴于上述情况而完成的,其目的在于,提供一种也耐受100万次以上的动态驱动(例如反复弯曲),且特别适合机器人或汽车的配线的耐弯曲性导电材料及使用其的电缆。
[0010]用于解决课题的手段
[0011]涉及按照所述目的的第一发明的耐弯曲性导电材料,构成母材的金属组织的晶粒的平均晶体粒径为2μπι以下,耐受100万次以上的动态驱动试验。
[0012]作为使构成母材的金属组织的晶粒的平均晶体粒径为2 μ m以下的方法有:⑴利用极低温轧制(包括拉拔)、异步轧制等加工的方法;(2)对凝固中的金属同时施加交流电流和直流磁场而赋予电磁振动力进行细化的方法;(3)对粉碎成平均2 μ m以下的金属粉末进行高速烧结(例如等离子放电烧结等)的方法;(4)对金属粉末进行高速烧结的方法;
(5)将加工(例如,利用旋锻机进行的旋锻加工)及热处理组合的方法等。
[0013]通过使构成母材的金属组织的晶粒的平均晶体粒径为2μπι以下,使母材的金属组织中存在大量的晶粒,当产生的龟裂发展时,可频繁地与晶粒碰撞。由此,随着龟裂的发展方向变化,能够促进龟裂的分岔,降低龟裂的发展速度,能够提高母材的金属组织的耐弯曲性。
[0014]涉及按照所述目的的第二发明的一种耐弯曲性导电材料,构成母材的金属组织的晶粒的平均晶体粒径为2μπι以下,且以截面面积率计含有至少20%以上的lym以下的该晶粒,耐受100万次以上的动态驱动试验。
[0015]通过使构成母材的金属组织的晶粒的平均晶体粒径为2μπι以下,使母材的金属组织中存在大量的晶粒,在产生的龟裂发展时,可频繁地与晶粒碰撞。由此,随着龟裂的发展方向变化,能够促进龟裂的分岔,降低龟裂的发展速度,能够提高导电材料的耐弯曲性。而且,通过以Ιμπι以下的晶粒以截面面积率计至少成为20%以上的方式进行组织控制,能够进一步增大母材的金属组织中的晶粒个数,当龟裂发展时,龟裂与晶粒的碰撞变得显著,能够使龟裂的发展方向变化及分岔频发。
[0016]涉及第一、第二发明的耐弯曲性导电材料中,优选含有0.1质量%?20质量%的纳米颗粒。
[0017]在龟裂与纳米颗粒碰撞时,龟裂停止,能够降低龟裂的发展速度。在此,在纳米颗粒的含有率不足0.1质量%的情况下,纳米颗粒的个数变少,龟裂与纳米颗粒的碰撞频率降低,不会显著发生龟裂的停止。另一方面,在纳米颗粒的含有率超过20质量%的情况下,晶界中存在大量的纳米颗粒,导电材料的强度降低,故不优选。
[0018]涉及第一、第二发明的耐弯曲性导电材料中,也可以含有0.1质量%?20质量%的球状的纳米颗粒。
[0019]通过使纳米颗粒变成球状,可防止在纳米颗粒附近产生显著的应力集中部位。
[0020]在此,纳米颗粒是指粒径处于lnm以上999nm以下的范围的颗粒。
[0021 ] 另外,纳米颗粒存在于构成导电性材料的主要的金属组织的颗粒的晶界、晶粒内或晶界及晶粒内。为了使纳米颗粒分散于晶界、晶粒内或晶界及晶粒内,具有:(1)使纳米颗粒熔化于金属中,凝固时在晶粒内或晶界析出的方法;(2)在熔融金属中预先混合纳米颗粒,一边搅拌(例如电磁搅拌)一边使之凝固并强制性地分散于晶界的方法;(3)对在平均2 μ m以下的金属粉末中均匀地分散有纳米颗粒的混合粉末进行高速烧结,使纳米颗粒存在于金属颗粒间(晶界)的方法;(4)向熔融金属中添加与该金属形成化合物的元素,使其在凝固时作为纳米尺寸的化合物在晶粒内、晶界、晶内及晶界析出的方法等。
[0022]涉及第一、第二发明的耐弯曲性导电材料中,所述母材可以由铜、铝及镁的任一种形成。
[0023]涉及第一、第二发明的耐弯曲性导电材料中,所述纳米颗粒可以设定为:富勒烯、硅纳米颗粒、过渡金属纳米颗粒、由与所述母材的化合物构成的化合物纳米颗粒、由所述母材的氧化物构成的氧化物纳米颗粒及由所述母材的氮化物构成的氮化物纳米颗粒的任一种。
[0024]涉及按照所述目的的第三发明的电缆,其中,使用涉及第一、第二发明的耐弯曲性导电材料。
[0025]发明效果
[0026]涉及第一、第二发明的耐弯曲性导电材料中,由于耐受100万次以上的动态驱动试验,因此,能够适用于反复弯曲等负载反复载荷的用途(例如,机器人或汽车)中使用的电线或电缆。其结果,能够防止电线或电缆在使用时的断线,提高设备的可靠性,并且能够减轻设备的维护负担。
[0027]涉及第一、第二发明的耐弯曲性导电材料中,在含有0.1质量%?20质量%的纳米颗粒的情况下,由于反复载荷的负载而产生的龟裂在晶界传播时,龟裂的前端被纳米颗粒阻止,引起龟裂发展停止或龟裂的发展速度降低,能够延长直到导电材料断裂的时间(寿命)(进一步提闻耐弯曲性)。
[0028]另外,为球状的纳米颗粒的情况下,可防止在纳米颗粒附近产生显著的应力集中部位,因此,能够进一步延长直到导电材料断裂的时间(进一步提高耐弯曲性)。
[0029]涉及第一、第二发明的耐弯曲性导电材料中,母材由铜或铝形成的情况下,能够提高导电材料的电导率,可提供电导率良好的引线或电缆。
[0030]另外,母材为镁的情况下,虽然与铜、铝相比电导率降低,但实现了材料大幅度的轻质化。其结果,可以制造耐弯曲性优异的轻质的引线或电缆。
[0031]涉及第一、第二发明的耐弯曲性导电材料中,在纳米颗粒为富勒烯、硅纳米颗粒、过渡金属纳米颗粒、由与所述母材的化合物构成的化合物纳米颗粒、由所述母材的氧化物构成的氧化物纳米颗粒及由所述母材的氮化物构成的氮化物纳米颗粒的任一种的情况下,可以根据特性或用途分散最适合的纳米颗粒。
[0032]涉及第三发明的电缆中,使用涉及第一、第二发明的耐弯曲性导电材料,因此,能够制作耐弯曲性优异的电缆。由此,能够防止电缆使用时的断线,提高使用该电缆的设备的可靠性,并且能够减轻设备的维护负担。
【专利附图】

【附图说明】
[0033]图1 (A)是形成构成本发明的第一实施例的电缆的芯线的耐弯曲性导电材料的组织的说明图,(B)是形成芯线的母材的金属组织由粗大晶粒构成时的组织的说明图;
[0034]图2(A)是形成构成本发明的第二实施例的电缆的芯线的耐弯曲性导电材料的组织的说明图,(B)是形成芯线的母材的金属组织中的纳米颗粒含有率过低的情况下的组织的说明图,(C)是形成芯线的母材的金属组织中的纳米颗粒含量过多的情况下的组织的说明图。
【具体实施方式】
[0035]接着,参照附图对将本发明具体化的实施例进行说明。
[0036]本发明的第一实施例的电缆由耐受100万次以上的电缆弯曲试验(动态驱动试验的一例)的耐弯曲性导电材料形成,如图1(A)所示,构成电缆的芯线10中,构成母材的金属组织的晶粒11的平均晶体粒径为2μπι以下。另外,母材由铜、铝或镁的任一种形成。
[0037]在母材为铜或铝的情况下,能够提高芯线10的导电率(电导率),可制作导电性优异的引线或电缆。另外,母材为镁的情况下,虽然与铜、铝相比,芯线11的导电率降低,但实现了材料的大幅度的轻质化,可以制造耐弯曲性优异的轻质的引线或电缆。在此,电缆弯曲试验如下进行:例如,以使用线径为80 μ m的芯线制作的截面面积为0.2mm2的电缆为试验体,在试验体负载了 100g的载荷的状态下,施加弯曲半径为15mm、弯曲角度范围为±90度的左右反复弯曲。
[0038]在电缆弯曲试验时,当在芯线10的表面(负载了最大的反复弯曲应力的部位)产生龟裂时,龟裂主要在构成芯线10的晶粒11彼此的晶界12上发展。因此,在晶界12上发展的龟裂与晶粒11碰撞,每次龟裂的发展方向变化,龟裂以芯线10表面上的一点为起点,按照一定方向发展一定距离时的平均龟裂发展速度(例如,龟裂从芯线10的一侧表面上的一点向着对向的另一侧表面上的一点而横断芯线10时的平均龟裂发展速度)在外观上均变慢。进而,当龟裂由于碰撞晶粒11而分岔时,分别作用在龟裂前端的龟裂发展能量降低,龟裂的发展速度降低。
[0039]因此,构成形成芯线10的导电材料的主要的金属组织的晶粒11的平均晶体粒径为2μπι以下的情况下,可以维持芯线10(母材)的强度,同时通过龟裂与晶粒11的碰撞,可以促进龟裂发展方向变化及龟裂分岔。其结果,即使芯线10产生龟裂,芯线10直到因龟裂而切断的时间也变长,电缆弯曲试验的电缆断裂次数增加。
[0040]在此,优选以使晶粒11的平均晶体粒径为2 μ m以下,并且以截面面积率计含有至少20%以上的Ιμπι以下的晶粒11的方式进行组织控制。由此,能够显著引起龟裂与晶粒11的碰撞,可以使龟裂发展方向变化及龟裂分岔频发。其结果,电缆弯曲试验的电缆断裂次数进一步增加。
[0041]另外,如图1(B)所示,在芯线16由粗大晶粒17(例如晶体粒径为8μπι以上)构成的情况下,具有提高芯线16的导电率的优点,但母材的强度变得强烈地受晶界18的强度支配,存在母材的强度降低的问题。另外,龟裂与粗大晶粒17的碰撞频率减少,且龟裂的分岔频率也降低。由此,电缆弯曲试验的电缆断裂次数降低。因此,不优选利用由粗大晶粒17构成的导电材料形成芯线16。
[0042]本发明的第二实施例的电缆由耐受100万次以上的电缆弯曲试验的耐弯曲性导电材料形成,如图2(A)所示,构成电缆的芯线19中,构成母材的金属组织的晶粒20的平均晶体粒径为2μπι以下,且在金属组织中(形成金属组织的晶粒20彼此的晶界21)分散有纳米颗粒22(粒径为1?999nm)。另外,母材由铜、铝及镁的任一种形成。
[0043]在电缆弯曲试验时,芯线19产生的龟裂主要在构成芯线19的晶粒20彼此的晶界21上发展,因此当在晶界21上存在纳米颗粒22时,在晶界21上发展的龟裂与纳米颗粒22碰撞,每次龟裂的发展都停止。而且,与纳米颗粒22碰撞的龟裂进一步发展时,龟裂需要绕过纳米颗粒22(沿着纳米颗粒22和晶粒20的界面进行)并再次到达晶界21。因此,当在晶界21上存在纳米颗粒22时,以芯线19表面上的一点为起点,龟裂以一定方向发展一定距离时的平均龟裂发展速度(例如,龟裂从芯线19的一侧表面上的一点向着对向的另一侧表面上的一点而横断芯线19时的平均龟裂发展速度)在外观上变得非常缓慢。其结果,即使芯线19产生龟裂,芯线19直到因龟裂而切断的时间也变长,电缆弯曲试验的电缆断裂次数进一步增加。
[0044]在此,当使纳米颗粒22为球状时,可防止在纳米颗粒22附近产生显著的应力集中部位,所以能够确实使龟裂沿着纳米颗粒22的表面发展。因此,能够进一步延长直到导电材料断裂的时间(进一步提闻耐弯曲性)。
[0045]另外,纳米颗粒22的含量为0.1质量%?20质量%。而且,纳米颗粒22为富勒烯、硅纳米颗粒、过渡金属纳米颗粒(例如,金、银、铜、铁等金属纳米颗粒)、由与母材的化合物(例如金属间化合物)构成的化合物纳米颗粒、由母材的氧化物构成的氧化物纳米颗粒(例如,母材为铝的情况下,添加A1203的纳米颗粒)以及由母材的氮化物构成的氮化物纳米颗粒(例如,母材为铝时,添加A1N的纳米颗粒)的任一种。而且,作为纳米颗粒,也可以使用碳纳米管。
[0046]如图2 (B)所示,即使以构成形成芯线23的母材的金属组织的晶粒24的平均晶体粒径为2μπι以下,且以截面面积率计含有至少20%以上的lym以下的晶粒的方式进行组织控制,当纳米颗粒25的含量过少(含量不足0.1质量%)时,在晶界26上纳米颗粒25存在的频率降低,沿着晶界26发展的龟裂与纳米颗粒25碰撞而引起龟裂发展停止的频率降低。因此,即使使纳米颗粒25存在,也不能有效地减缓龟裂发展速度。
[0047]另外,如图2(C)所示,即使构成形成芯线27的母材的金属组织的晶粒28的平均晶体粒径为2μπι以下,且以截面面积率计含有至少20%以上的lym以下的晶粒的方式进行组织控制,当纳米颗粒29的含量过多(含量超过20质量%)时,在晶界30上存在的纳米颗粒29的粒径增大,并且晶界30上的存在频率上升,晶界30的强度降低,龟裂可以在晶界30上容易地发展。因此,龟裂发展速度增加,电缆弯曲试验的电缆断裂次数减少。
[0048]接着,下面对为了确认本发明的作用效果而进行的实验例进行说明。
[0049](实验例1?4)
[0050]使含有0.6质量%的镁、0.3质量%的硅、0.05质量%的铁、余量由铝及不可避免的杂质构成的配合物熔化后,在520°C下实施固溶处理,再在175°C下进行8小时的时效处理,制作铝系的导电材料块。接着,由导电材料块通过切削加工制作四条直径10_的盘条,利用旋锻机分别实施旋锻加工,直到直径5mm(l条)、直径2mm(两条)及直径1.5mm(1条),并将得到的各线材在热处理炉中进行加热处理。在此,利用热分析装置预先求得盘条的再结晶温度,在氩气氛中,在比再结晶温度低50°C的温度下分别进行2?40小时加热处理。然后,使用热处理后自然冷却的各线材进一步通过在冷态下进行拉模拉丝加工,直到直径为80 μ m,形成拉伸线材。
[0051]从拉伸线材的组织观察可知,将直径1.5mm的线材的加热处理设定为2小时的情况下构成金属组织的晶粒的平均晶体粒径为1 μ m,将直径2mm的线材的加热处理设定为8小时的情况下,晶粒的平均晶体粒径为2 μ m,将直径2mm的线材的加热处理设定为16小时情况下的晶粒的平均晶体粒径为3 μ m,将直径5mm的线材的加热处理设定为40小时的情况下的晶粒的平均晶体粒径为8 μ m。另外,平均晶体粒径为1、2及3μπι的各拉伸线材中的1 μ m以下的晶粒比例以截面面积率计分别为50%、20%、20%,平均晶体粒径为8 μ m的拉伸线材中的1 μ m以下的晶粒比例以截面面积率计为0%。另外,各拉伸线材中,作为纳米颗粒,存在0.3质量%的粒径为10?lOOnm的β双撇相(夕' 7'' > 7° 9 4 Α相)。
[0052]而且,测定所得到的拉伸线材的导电率。另外,将拉伸线材用于芯线而制作截面面积为0.2mm2的电缆,并以该电缆为试验体在负载100g载荷的状态下,施加弯曲半径为15mm、弯曲角度范围为±90度的左右反复弯曲,由此,进行电缆弯曲试验。将导电率的值及电缆弯曲试验结果显示于在表1中。
[0053][表 1]
[0054]
【权利要求】
1.一种耐弯曲性导电材料,其特征在于,构成母材的金属组织的晶粒的平均晶体粒径为2μηι以下,耐受100万次以上的动态驱动试验。
2.一种耐弯曲性导电材料,其特征在于,构成母材的金属组织的晶粒的平均晶体粒径为2 μ m以下,且以截面面积率计含有至少20%以上的1 μ m以下的该晶粒,耐受100万次以上的动态驱动试验。
3.如权利要求1或2所述的耐弯曲性导电材料,其特征在于,含有0.1质量%?20质量%的纳米颗粒。
4.如权利要求1或2所述的耐弯曲性导电材料,其特征在于,含有0.1质量%?20质量%的球状的纳米颗粒。
5.如权利要求1?4任一项所述的耐弯曲性导电材料,其特征在于,所述母材由铜、铝及镁的任一种形成。
6.如权利要求3或4所述的耐弯曲性导电材料,其特征在于,所述纳米颗粒为:富勒烯、硅纳米颗粒、过渡金属纳米颗粒、由与所述母材的化合物构成的化合物纳米颗粒、由所述母材的氧化物构成的氧化物纳米颗粒及由所述母材的氮化物构成的氮化物纳米颗粒的任一种。
7.—种电缆,其特征在于,使用权利要求1?6任一项所述的耐弯曲性导电材料。
【文档编号】H01B1/02GK103635976SQ201280031774
【公开日】2014年3月12日 申请日期:2012年6月27日 优先权日:2011年6月30日
【发明者】因浩之, 案纳芙美代, 松永大辅, 北原弘基, 安藤新二, 津志田雅之, 小川俊文 申请人:大电株式会社, 福冈县, 国立大学法人熊本大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1