发光二极管封装的固晶方法和固晶结构的制作方法

文档序号:7255564阅读:139来源:国知局
发光二极管封装的固晶方法和固晶结构的制作方法
【专利摘要】一种发光二极管封装的固晶方法和结构,其中固晶结构包含具有透光特性且形成于一发光二极管芯片的一衬底的一表面上的黏着层、形成于黏着层上的第一金属层、形成于封装衬底上的第二金属层,以及多个金属化合层。金属化合层是由设置在第一金属层和第二金属层中至少一个上的第三金属层在加热后扩散至第一金属层和第二金属层中所形成。第一金属层和第二金属层的熔点高于第三属层的熔点。借此,可提高发光二极管芯片和封装衬底接合的可靠性和发光二极管的发光效率。
【专利说明】发光二极管封装的固晶方法和固晶结构
【技术领域】
[0001]本发明是关于一种发光二极管封装,特别是一种发光二极管封装的固晶方法和固晶结构。
【背景技术】
[0002]由于发光二极管(Light Emitting Diode, LED)具有体积小、发光效率高、寿命长与色彩变化丰富等优点,可预期地发光二极管的应用将会越来越多。一般来说,发光二极管裸晶需经过固晶(Die Bonding)、打线、封胶及商品分类等封装步骤,才能将芯片商品化至客户端。
[0003]固晶工艺在较低温度的条件下,可避免LED元件损毁,并且固晶结构具有良好的导热性,可使LED封装在运作时能发挥较好的散热效果,确保LED元件的发光效率。此外,固晶接合界面也必须有足够的机械强度与可靠度。
[0004]现有的固晶材料可分为两大类,第一类为高分子导电胶材,第二类则为金属焊接材料。
[0005]现有发光二极管的固晶方法,是先使用高分子导电胶材(如导电银胶)将发光二极管芯片黏着于导线架上,并以150°C的温度加热1.5小时以上,使导电银胶热固成型,进而将发光二极管芯片固定于导线架上。举例来说,中国台湾专利公告编号第463394号「芯片式发光二极管及其制造方法」中,该专利使用高分子导电胶材(如导电银胶),将晶粒与衬底(导线架或印刷电路板)进行连接,并送入空气炉内进行热固化烘烤。
[0006]上述方式虽简便,但若导电银胶涂抹不均匀时,将使晶粒无法固定在应固定的位置,而影响发光效率。另外,在高温的操作环境下,由于高分子胶质材料导热耐热性极差,银胶第二层在长时间使用下将易劣化,导致发光二极管芯片无法确实与导线架接合。另外,发光二极管也将因银胶难以导热(银胶热导系数仅1W/M-K)而无法确实散热,造成寿命减少与光电转化效率下降等现象。
[0007]另外,发光二极管芯片也可通过一金属焊接材料,将发光二极管芯片固定于导线架上,使得发光二极管芯片和导线架间的连接材料的散热性与耐热性都因此而有所提升。举例来说,中国台湾专利公开编号第200840079号「发光二极管封装的固晶材料与方法」中,该专利是于衬底表面上涂布一层适当范围的共晶接着材料。后续再将发光二极管晶粒设置于衬底表面上的共晶接着材料上,后续再经热板、烤箱或空气炉加热而完成共晶结合。由于此共晶结合的接合层为金属材料,散热性与耐热性均优于高分子导电胶。但相较于银胶固晶,由于利用金属焊接材料的固晶设备需外加温控系统与加压系统,因此其固晶设备较为复杂昂贵,且其产能也较低。
[0008]此外,若使用高熔点的金属焊接材料,发光二极管芯片将因接合温过高而易受热应力的影响,产生破坏。若改以低熔点的金属作为焊接材料,虽然接合温度降低,但在一般的工作环境下(约70-80°C ),由于接合层熔点较低,接合层材料将因原子的快速扩散,而有软化或介金属化合物(intermetallic compound)过度成长的现象产生,导致接点可靠度将因此而大幅下降。

【发明内容】

[0009]本发明提供一种发光二极管封装的固晶方法和固晶结构。
[0010]本发明所揭露的固晶方法,首先在一发光二极管芯片的一衬底上的一表面上形成具有透光特性的一黏着层,在黏着层上形成一第一金属层,在一封装衬底上形成一第二金属层,以及在第一金属层和第二金属层中至少一个上形成一第三金属层。
[0011]接着,使第一金属层、第二金属层与至少一第三金属层彼此堆叠,以使发光二极管芯片和封装衬底结合。最后,将相结合的发光二极管芯片和封装衬底加热,使至少一第三金属层扩散至第一金属层和第二金属层而分别形成一金属化合层。
[0012]其中,至少一个第三金属层的熔点低于第一金属层和第二金属层的熔点。
[0013]本发明所揭露的固晶结构,包括有一黏着层、一第一金属层、一第二金属层和多个金属化合层。黏着层具有透光特性且形成于一发光二极管芯片的一衬底的一表面上。第一金属层形成于黏着层上。第二金属层形成于封装衬底上。金属化合层则在固晶结构加热时,分别由形成在第一金属层和第二金属层中至少一个上的一第三金属层向第一金属层和第二金属层扩散而分别形成。第三金属层的熔点低于第一金属层和第二金属层的熔点。
[0014]本发明也揭露包含上述的固晶结构的发光二极管封装。
[0015]在本发明的一实施例中,第一金属层的材料为银、铝或包含银或铝的合金。
[0016]在本发明的一实施例中,第一金属层的厚度为0.1至10微米。
[0017]在本发明的一实施例中,第二金属层的材料为银、铜、镍或包含银、铜或镍元素的
么么
I=1-Wl O
[0018]在本发明的一实施例中,第二金属层的厚度为0.1至10微米。
[0019]在本发明的一实施例中,第三金属层的材料为铋、锡、铟或包含铋、铟或锡的合金。
[0020]在本发明的一实施例中,第三金属层的厚度范围为I至20微米。
[0021]在本发明的一实施例中,发光二极管芯片的衬底为一蓝宝石衬底、一娃衬底或一碳化娃衬底。
[0022]在本发明的一实施例中,黏着层的材料为铝或氧化铝。
[0023]在本发明的一实施例中,黏着层的厚度为10纳米至I微米。
[0024]在本发明的一实施例中,封装衬底的材料为银、铜、镍化铁、铝、氮化铝,或者封装衬底为铜或银的一引脚架。
[0025]根据上述本发明所揭露的固晶方法、固晶结构和发光二极管封装,通过在发光二极管芯片的衬底的一面形成具有透光透性的一黏着层,以及在黏着层上再形成具有反光特性的第一金属层,使穿透发光二极管芯片的衬底的光线能被第一金属层反射,而达到提高发光二极管封装的发光效率。
[0026]此外,本发明也借着上述至少一个第三金属层与第一金属层及第二金属层相堆叠的结构(第三金属层的熔点低于第一金属层和第二金属层的熔点),使固晶结构在加热时,此第三金属层分别与第一金属层和第二金属层间产生固相和液相的界面反应,形成上述的金属化合层。借此,发光二极管芯片与封装衬底的接合界面可承受较高的温度。
[0027]有关本发明的特征、实现与有益效果,现配合附图作优选实施例详细说明如下。【专利附图】

【附图说明】
[0028]图1A至图1F为根据本发明的一实施例的固晶方法的示意图。
[0029]图2A至图2F为根据本发明的一实施例的固晶方法的示意图。
[0030]图3A至图3G为根据本发明的一实施例的固晶方法的示意图。
[0031]【主要元件符号说明】
[0032]10发光二极管芯片;
[0033]11衬底;
[0034]111 表面;
[0035]112 出光面;
[0036]21黏着层;
[0037]22第一金属层;
[0038]23,32第三金属层;
[0039]31第二金属层;
[0040]40 封装衬底;
[0041]50、51金属化合层;
[0042]Fl至F7接合界面。
【具体实施方式】
[0043]本发明的一实施例的发光二极管封装的固晶方法,请同时参照「图1A」至「图1FJ所示,其中「图1F」为本发明的发光二极管封装的结构示意图。本发明的发光二极管封装包含一发光二极管芯片10、一固晶结构和一封装衬底40。
[0044]首先,在发光二极管芯片10的衬底11的一表面111上形成一黏着层21,以及在黏着层21上形成一第一金属层22,如「图1A」和「图1B」所示。另一方面,在封装衬底40上形成一第二金属层31,在第二金属层31上形成一第三金属层32,如「图1C」和「图1D」所
/Jn ο
[0045]接着,将第一金属层22和第三金属层32相堆叠,使黏着层21、第一金属层22、第三金属层32和第二金属层31由发光二极管芯片10往封装衬底40的方向依序堆叠,借此将发光二极管芯片10和封装衬底40相接合,如「图1E」所示。
[0046]在一实施例中,将发光二极管芯片10和封装衬底40的接合方法可利用一固晶机台,将第一金属层22和第三金属层31接触,在一定的接合温度的环境下(例如110°C ),对镀有第一金属层22的发光二极管芯片10和镀有第二金属层31与第三金属层32的封装衬底40施加一定的接合压力(例如1000牛顿(N)),并维持一定时间(例如5秒),使得发光二极管芯片10和封装衬底40相接合。
[0047] 最后,将相接合的发光二极管芯片10和封装衬底40—同置入高温炉中加热,以进行等温凝固工艺(Isothermal Solidification Process)。
[0048]当「图1E」的固晶结构的半成品加热时,第三金属层32会熔融。液化的第三金属层32会分别向第一金属层22和第二金属层31扩散,使第一金属层22与第三金属层32间的接合界面Fl以及第三金属层32和第二金属层31间的接合界面F2产生固相和液相的界面反应,而分别形成一金属化合层50和一金属化合层51。至终,第三金属层32进行扩散的结果,第三金属层32将会被消耗殆尽,如「图1F」所示。金属化合层50的面积可等于第一金属层22的面积。金属化合层51的面积可等于第二金属层31的面积。
[0049]上述的等温凝固工艺是指在发光二极管芯片10和封装衬底40的接合过程中,温度均维持在恒温状态下,第三金属层32由熔融状态转变为固态的介金属化合物,也就是金属化合物50和51。
[0050]在一实施例中,第一金属层22和第二金属层31的厚度取决于第三金属层32的厚度,也就是当第三金属层32在加热过程中完全消耗时,残留的第一金属层22和第二金属层31仍分别维持一厚度值,且残留的第一金属层22和残留的第二金属层31的厚度不一定要—致。
[0051]在另一实施例中,当第三金属层32和第二金属层31在加热过程中完全消耗时,残留的第一金属层22仍维持一厚度值。
[0052]本发明的一实施例的发光二极管封装的固晶方法,请同时参照「图2A」至「图2F」所示,其中「图2F」为本发明的发光二极管封装的结构示意图。本发明的发光二极管封装包含一发光二极管芯片10、一固晶结构和一封装衬底40。
[0053]首先,在发光二极管芯片10的衬底11的一表面111上形成一黏着层21,在黏着层21上形成一第一金属层22,以及在第一金属层22上形成一第三金属层23,如「图2A」至「图2C」所不。另一方面,在封装衬底40上形成一第二金属层31,如「图2D」所不。
[0054]接着,将第三金属层23和第二金属层31相堆叠,使黏着层21、第一金属层22、第三金属层23和第二金属层31由发光二极管芯片10往封装衬底40的方向依序堆叠,借此将发光二极管芯片10和封装衬底40相接合,如「图2E」所示。
[0055]最后,将相接合的发光二极管芯片10和封装衬底40—同置入高温炉中加热,以进行等温凝固工艺。
[0056]当「图2E」的固晶结构的半成品加热时,第三金属层23会熔融。液化的第三金属层23会分别向第一金属层22和第二金属层31扩散,使第一金属层22与第三金属层23间的接合界面F4以及第三金属层23和第二金属层31间的接合界面F3产生固相和液相的界面反应,而分别形成一金属化合层50和一金属化合层51。至终,第三金属层23进行扩散的结果,第三金属层23将会被消耗殆尽,如「图2F」所示。金属化合层50的面积可等于第一金属层22的面积。金属化合层51的面积可等于第二金属层31的面积。
[0057]在一实施例中,第一金属层22和第二金属层31的厚度取决于第三金属层23的厚度,也就是当第三金属层23在加热过程中完全消耗时,残留的第一金属层22和第二金属层31仍分别维持一厚度值,且残留的第一金属层22和残留的第二金属层31的厚度不一定要—致。
[0058]在另一实施例中,当第三金属层23和第二金属层31在加热过程中完全消耗时,残留的第一金属层22仍维持一厚度值。
[0059]本发明的一实施例的发光二极管封装的固晶方法,请同时参照「图3A」至「图3G」所示,其中「图3G」为本发明的发光二极管封装的结构示意图。本发明的发光二极管封装包含一发光二极管芯片10、一固晶结构和一封装衬底40。
[0060]首先,在发光二极管芯片10的衬底11的一表面111上形成一黏着层21,在黏着层21上形成一第一金属层22,以及在第一金属层22上形成一第三金属层23,如「图3A」至「图3C」所不。另一方面,在封装衬底40上形成一第二金属层31,以及在第二金属层31上形成另一第三金属层32,如「图3D」和「图3E」所示。
[0061]接着,将第三金属层23和第三金属层32相堆叠,使黏着层21、第一金属层22、第三金属层23、第三金属层32和第二金属层31由发光二极管芯片10往封装衬底40的方向依序堆叠,借此将发光二极管芯片10和封装衬底40相接合,如「图3F」所示。
[0062]最后,将相接合的发光二极管芯片10和封装衬底40—同置入高温炉中加热,以进行等温凝固工艺。
[0063]当「图3F」的固晶结构的半成品加热时,第三金属层23和32会熔融。液化的第三金属层23和32会在接合界面F5接合,并且会向第一金属层22和第二金属层31扩散,使第一金属层22与第三金属层23间的接合界面F6以及第三金属层32和第二金属层31间的接合界面F7产生固相和液相的界面反应,而分别形成一金属化合层50和一金属化合层51。至终,第三金属层23和32进行扩散的结果,第三金属层23和32将会被消耗殆尽,如「图3G」所示。金属化合层50的面积可等于第一金属层22的面积。金属化合层51的面积可等于第二金属层31的面积。
[0064]在一实施例中,第一金属层22和第二金属层31的厚度取决于第三金属层23和32的厚度,也就是当第三金属层23和32在加热过程中完全消耗时,残留的第一金属层22和第二金属层31仍分别维持一厚度值,且残留的第一金属层22和残留的第二金属层31的厚度不一定要一致。
[0065]在另一实施例中,当第三金属层23和32与第二金属层31在加热过程中完全消耗时,残留的第一金属层22仍维持一厚度值。
[0066]通过本发明的固晶结构,发光二极管芯片10所发出的光线不仅由其出射面112射出(如实线所标示),而其穿越衬底11的向下的光线(由虚线所标示)也可经由第一金属层22的反射而从出射面112射出。其中第一金属层22的反射率可达91%至96%。借此,提高了发光二极管封装的光出射率,即提高了发光效率。
[0067]本发明的黏着层21可通过蒸镀或溅射的方式形成。黏着层21具有透光特性,其材料可为金属薄膜或金属氧化物薄膜,例如铝、氧化铝(Al2O3),其厚度可为10纳米(nm)至I微米(um)。黏着层21的透光特性是指其至少允许发光二极管芯片所发出的光线穿透。
[0068]本发明的第一金属层22可通过蒸镀、溅射、电镀或沉积的方式形成。第一金属层22具有反光特性,其材料可为银、铝或包含银或铝元素的合金,其厚度可为0.1微米至10微米。
[0069]本发明的第二金属层31可通过蒸镀、溅射、电镀或沉积的方式形成于封装衬底40上,其材料可为银(Ag)、铜(Cu)、镍(Ni)或包含银、铜或镍元素的合金,其厚度可为0.1微米至10微米。
[0070]本发明的第三金属层23和32的熔点低于第一金属层22和第二金属层31的熔点,其材料可为锡(Sn)、铟(In)或铟锡(InSn),其厚度可为I至20微米。在一实施例中,当第三金属层31为复合的金属层时,每一单一材料设置的顺序可视需求而设计。
[0071]本发明的金属化合层50的材料是由第一金属层22和第三金属层32的材料所决定,或是由第一金属层22和第三金属层23的材料所决定。因此,金属化合层50的材料可为锡银(Ag3Sn)或铟银(Ag2In)。金属化合层51的材料是由第三金属层32和第二金属层31的材料所决定,或是由第三金属层23和第二金属层31的材料所决定。因此,金属化合层51的材料为良性锡铜(Cu6Sn5)、恶性锡铜(Cu3Sn)、锡镍(Ni3Sn4)、铟铜(Cu7In3)或铟镍(Ni3In)。
[0072]锡银(Ag3Sn)的熔点为480°C。铟银(Ag2In)的熔点为305°C。良性锡铜(V U6Sn5)的熔点为415°C。恶性锡铜CCu3Sn)的熔点为670°C。锡镍(Ni3Sn4)的熔点为795°C。铟铜(Cu7In3)的熔点为610°C。铟镍(Ni3In)的熔点为776°C。
[0073]本发明的发光二极管芯片10不限于任何一种材料、结构和工艺,其所激发出的光线的波长可根据使用者的需要来设计或选用。因此,发光二极管芯片10可具有p-1-n结构,且可为氮化镓(GaN)、氮化镓铟(GaInN)、磷化铝铟镓镓(AlInGaP)、氮化铝铟镓(AIInGaN)、氮化铝(AlN)、氮化铟(InN)、氮化镓铟砷(GaInAsN)、磷氮化镓铟(GaInPN)或其组合。
[0074]本发明的衬底11为具有透光特性的一透明衬底,可为一蓝宝石衬底、一娃(Si)衬底或一碳化硅(SiC)衬底。此外,此衬底11还可以为一单晶材料的衬底。封装衬底40可以为导线架、印刷电路板、具有塑料反射杯的基材、或陶瓷衬底。封装衬底40的材料可为银(Ag)、铜(Cu)、铁镍钴(Kovar)合金、镍化铁(FeNi)、铝(Al)、氮化铝(AlN)、硅(Si)或低温共烧多层陶瓷(Low-Temperature cofired Ceramics, LTCC)等。
[0075]在一实施例中,黏着层的材料为氧化招,第一金属层的材料为银,第二金属层的材料为锡,且黏着层的厚度为50nm,第一金属层的厚度为6-10um,第二金属层的厚度为4um。在此实施例中,黏着层的反射率可达91%。
[0076]在一实施例中,黏着层的材料为招,第一金属层的材料为银,第二金属层的材料为锡,且黏着层的厚度为Ium,第一金属层的厚度为6-10um,第二金属层的厚度为4um。在此实施例中,黏着层的反射率可达96 %。
[0077]根据上述本发明所揭露的固晶方法、固晶结构和发光二极管封装,通过在发光二极管芯片的衬底的一面形成具有透光透性的一黏着层,以及在黏着层上再形成具有反光特性的第一金属层,使穿透发光二极管芯片的衬底的光线能被第一金属层反射,而达到提高发光二极管封装的发光效率。
[0078]此外,本发明也借着上述至少一个第三金属层与第一金属层及第二金属层相堆叠的结构(第三金属层的熔点低于第一金属层和第二金属层的熔点),使固晶结构在加热时,此第三金属层分别与第一金属层和第二金属层间产生固相和液相的界面反应,形成上述的金属化合层。借此,第一堆叠结构和第二堆叠结构的接合界面可承受较高的温度,达到低温接合,高温使用的目的。
【权利要求】
1.一种固晶方法,其特征在于,包括有: 形成具有透光特性的一黏着层于一发光二极管芯片的一衬底的一表面上; 形成一第一金属层于该黏着层上; 形成一第二金属层于该封装衬底上; 形成至少一第三金属层于该第一金属层和该第二金属层中至少一个上,其中该至少一第三金属层的熔点低于该第一金属层和该第二金属层的熔点; 使该第一金属层、该第二金属层与该至少一第三金属层彼此堆叠,以使该发光二极管芯片和该封装衬底结合;以及 将相结合的该发光二极管芯片和该封装衬底进行加热,使该至少一第三金属层扩散至该第一金属层和该第二金属层而分别形成一金属化合层。
2.根据权利要求1所述的固晶方法,其中该第一金属层的材料为银、铝或包含银或铝元素的合金,该第一金属层的厚度为0.1至10微米。
3.根据权利要求1所述的固晶方法,其中该第二金属层的材料为银、铜、镍或包含银、铜或镍元素的合金,该第二金属层的厚度为0.1至10微米。
4.根据权利要求1所述的固晶方法,其中该至少一第三金属层的材料为铋或铟或锡或包含铋、铟、锡元素的合金,该第三金属层的厚度为I至20微米。
5.根据权利要求1所述的固晶方法,其中该发光二极管芯片的该衬底为一蓝宝石衬底、一娃衬底或一碳化娃衬 底。
6.根据权利要求1所述的固晶方法,其中该黏着层为金属薄膜或金属氧化物薄膜,该黏着层的厚度为10纳米至I微米。
7.根据权利要求1所述的固晶方法,其中该黏着层的材料为铝、氧化铝。
8.根据权利要求1所述的固晶方法,其中该封装衬底的材料为银、铜、镍化铁、铝、氮化铝,或者该封装衬底为铜或银的一引脚架。
9.一种固晶结构,其特征在于,包括有: 一黏着层,具有透光特性且形成于一发光二极管芯片的一衬底的一表面上; 一第一金属层,形成于该黏着层上; 一第二金属层,形成于一封装衬底上;以及 多个金属化合层,形成于该第一金属层和该第二金属层之间; 其中,该些金属化合层是在该固晶结构加热时,由形成于该第一金属层和该第二金属层中至少一个上的至少一第三金属层扩散至该第一金属层和该第二金属层而分别形成,该至少一第三金属层的熔点低于该第一金属层和该第二金属层的熔点。
10.根据权利要求9所述的固晶结构,其中该第一金属层的材料为银、铝或包含银或铝元素的合金,该第一金属层的厚度为0.1至10微米。
11.根据权利要求9所述的固晶结构,其中该第二金属层的材料为银、铜、镍或包含银、铜或镍元素的合金,其中该第二金属层的厚度为0.1至10微米。
12.根据权利要求9所述的固晶结构,其中该至少一第三金属层的材料为铋、铟、锡或包含铋、铟或锡元素的合金,其中该第三金属层的厚度为I至20微米。
13.根据权利要求9所述的固晶结构,其中该发光二极管芯片的该衬底为蓝宝石衬底、硅衬底或碳化硅衬底。
14.根据权利要求9所述的固晶结构,其中该黏着层为金属薄膜或金属氧化物薄膜,其中该黏着层的厚度为10纳米至I微米。
15.根据权利要求9所述的固晶结构,其中该黏着层的材料为铝或氧化铝。
16.根据权利要求9所述的固晶结构,其中该封装衬底的材料为银、铜、镍化铁、铝、氮化铝,或者该封装衬底为铜或银的一引脚架。
17.—种发光二极管封装,其特征在于,包含根据权利要求9的该发光二极管芯片、该封装衬底和该固晶结构,该发光二`极管芯片通过该固晶结构与该封装衬底结合。
【文档编号】H01L33/48GK103887404SQ201310036408
【公开日】2014年6月25日 申请日期:2013年1月30日 优先权日:2012年12月21日
【发明者】庄东汉, 林建宪, 苏胤淳, 黄萌祺 申请人:财团法人工业技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1