一种柔性温差发电微单元结构的制作方法

文档序号:6796764阅读:785来源:国知局
专利名称:一种柔性温差发电微单元结构的制作方法
技术领域
本实用新型涉及一种温差发电结构,尤其涉及一种柔性温差发电微单元结构。
背景技术
体内植入式医疗装置应用越来越广泛,例如心脏起搏器、除颤器、人工括约肌、植入式药物泵等,能够代替或提高器官的功能或者治疗某种疾病。为植入式医疗装置提供持久稳定的供能是当今世界一个研究热点和难题。现有供能方式主要依靠锂电池供电,其有效工作时间为通常不超过五年,更换电池需要外科手术,给患者带来身体上的痛苦。而可充电的二次锂电池需要外界电磁耦合、红外线辐射等充电,给患者带来很多不便。此外还有一些新型的供能方式,例如核电池、生物燃料电池、外界电磁耦合供能、温差发电等。核电池工作寿命可以超过十年,但一般体积较大,而且对人体具有毒性和辐射危险;生物燃料电池利用酶或者微生物作为催化剂,将葡萄糖等生物燃料的化学能转换成电能,但是供电寿命一般只有几天;通过体外电磁感应的方式供电在体外需要携带额外的装置,将会增加患者行动的负担。温差发电利用热电半导体的塞贝克效应,可将热能转化为电能。由于温差发电器件具有无移动部件、无噪音、无污染、结构简单、易于小型化等优点,同时,由于正常人体的体温恒定且体内与体表间具有较小的温差,而温差发电对温差的下限没有要求,因此,可以直接利用人体存在的温差进行发电。现有的微型柔性温差发电构件通常是在块体的微型热电材料间采用柔性连接,这类温差发电构件的总体体积小型化程度和柔性都比较有限,不适合植入人体作为供能电源,因为人体内环境存在许多曲面而且人体活动具有灵活性,就需要体内植入式温差发电构件具有更小的尺寸和更好的柔性;还有一些研究者将热电半导体材料浆液通过MEMS方法加工在柔性基底结构上,由于室温下碲化铋材料的热电优值较高,因此,采用碲化铋及其合金可以提高温差发电装置的发电`功率。但是,碲化铋(BiTe)材料力学性能较差,该材料的结构为-Te-B1-Te-Te-B1-Te-层状结构,在T1-Ti之间为范德瓦尔斯键,材料较脆,碲化铋材料在受到压力时Te-Te层易产生滑移,会导致断裂变形,这样直接加工在柔性基底上的碲化铋及其合金材料容易断裂,使温差发电单元失效。因此,开发一种能够减小冲击,柔性较好的温差发电微单元结构是十分必要的。
发明内容本实用新型的目的在于提供能够适应曲面、工艺简单、热电转换效率高、可靠性高、可加工成多种温差发电器的一种柔性温差发电微单元结构。本实用新型的基本原理是:根据塞贝克效应,P型及N型薄膜热电臂的温度差会在两端产生电压差,由于单个热电偶产生的电压很低,因此,可采用“热路并联,电路串联”的方式,将P型和N型薄膜热电臂组成的热电偶设计并布置形成单排或多排阵列型的热电模块从而提高输出电压值。[0009]室温下碲化铋材料的热电优值较高,采用碲化铋及其合金可以提高温差发电装置的发电功率。但是,由于碲化铋(BiTe)材料力学性能较差,该材料的结构为-Te-B1-Te-Te-B1-Te-层状结构,在T1-Ti之间为范德瓦尔斯键,容易断裂,所以碲化铋材料在受到压力时Te-Te层易产生滑移,导致断裂变形。使得直接加工在柔性基底上的碲化铋材料容易断裂引起温差发电单元失效。所以,若在聚酰亚胺基底上附加一层绝缘硬质薄膜,可以提高刚度、保持热电材料的原有形状结构,从而避免热电材料断裂引起温差发电单元失效。本实用新型解决其技术问题所采用的技术方案是:本实用新型在聚酰亚胺基底上表面沉积一层等间距分布的多个绝缘硬质薄膜,在每个绝缘硬质薄膜上面的两侧分别有相互平行且长度与厚度相等的一条P型薄膜热电臂和一条N型薄膜热电臂,每对P型薄膜热电臂和N型薄膜热电臂的一端用导电银胶导线,P型薄膜热电臂的另一端与相邻上一条的N型薄膜热电臂的另一端用导电银胶导线连接,N型薄膜热电臂的另一端与相邻下一条的P型薄膜热电臂的另一端用导电银胶导线连接,以相同连接方式依次构成柔性温差发电微单元结构。所述的绝缘硬质薄膜的材料为氮化硅或类金刚石。所述的薄膜热电臂的材料为掺杂的碲化铋。本实用新型具有的有益效果是:采用聚酰亚胺基底和导电银胶导线使温差发电单元结构具有柔性,可在多个方向变形,当温差发电单元发生结构变形时,绝缘硬质薄膜可避免延展性差的碲化铋热电材料发生断裂,避免温差发电单元的失效 。该发明主要针对体内植入式医疗微装置的供能,具有推广应用价值。

图1是本实用新型的结构示意图。图2是图1的左视图。图3是本实用新型卷曲封装的柔性温差发电装置示意图。图4是本实用新型并联后平面柔性温差发电薄膜示意图。图5是图4折叠后的柔性温差发电薄膜示意图。图6是图5封装折叠后的柔性温差发电装置示意图。图中:1.聚酰亚胺基底,2.绝缘硬质薄膜,3.P型薄膜热电臂,4.N型薄膜热电臂,
5.导电银胶导线,6.导热绝缘聚合物封装层。
具体实施方式
以下结合附图和实施例对本实用新型作进一步的说明。如图1、图2所示,本实用新型在聚酰亚胺基底I上表面通过PECVD方法沉积一层等间距分布的多个绝缘硬质薄膜(图1中为5个),在每个绝缘硬质薄膜2上面的两侧分别有相互平行且长度与厚度相等的一条P型薄膜热电臂3和一条N型薄膜热电臂4,每对P型薄膜热电臂3和N型薄膜热电臂4的一端用导电银胶导线5,P型薄膜热电臂3的另一端与相邻上一条的N型薄膜热电臂4的另一端用导电银胶导线5连接,N型薄膜热电臂3的另一端与相邻下一条的P型薄膜热电臂4的另一端用导电银胶导线5连接,以相同连接方式依次构成柔性温差发电微单元结构。导电银胶导线5可采用中温固化导电银胶导线材料,通过丝网印刷加工,导电银胶导线5与热电臂之间可实现导电、绝热。所述的绝缘硬质薄膜的材料为氮化硅或类金刚石。所述的薄膜热电臂的材料为掺杂的碲化铋及其合金,P型薄膜热电臂3和N型薄膜热电臂4交替排列,绝缘硬质薄膜2与薄膜热电臂之间可实现导热、绝缘。柔性温差发电微单元结构,可以折弯成所需形状,再通过封装PVDF/A1N复合薄膜或环氧树脂复合导热薄膜等导热绝缘的柔性材料,形成能量密度高的温差发电装置。采用的封装材料具有良好的生物相容性。P型薄膜热电臂3和N型薄膜热电臂4可通过丝网印刷、电化学沉积、磁控溅射等方式加工在绝缘硬质薄膜2上。例如采用磁控溅射的方式加工,P型薄膜热电臂3和N型薄膜热电臂4分两次加工,使用相应的掩膜板。先利用光刻的方法加工用于溅射的掩膜板,掩膜板上要设计定位孔,保证溅射热电臂的平行,P型和N型薄膜热电臂交替排列,相互平行组成热电偶,绝缘硬质薄膜与薄膜热电臂之间可以导热绝缘。P型薄膜热电臂3和N型薄膜热电臂4长度与绝缘硬质薄膜2长度与厚度相等。如图1、图3所示,将柔性 温差发电微单元结构经过卷曲形成圆盘状,采用PVDF/AlN复合薄膜或环氧树脂复合导热薄膜等导热绝缘的柔性材料上下封装,6为导热绝缘聚合物封装层,形成能量密度高的柔性温差发电装置,图3中,柔性温差发电装置的上端为热端,下端为冷端。多个柔性温差发电微单元结构并联加工,形成平面柔性温差发电薄膜,如图4所示;折叠后形成成波纹形状柔性温差发电薄膜结构,如图5所示;用PVDF/A1N复合薄膜或环氧树脂复合导热薄膜等导热绝缘的柔性材料封装,形成柔性温差发电装置,如图6所示,6为导热绝缘聚合物封装层;图6中柔性温差发电装置的上端为热端,下端为冷端。柔性温差发电装置的材料和结构都具有柔性,可以贴合曲面。
权利要求1.一种柔性温差发电微单元结构,其特征在于:在聚酰亚胺基底(I)上表面沉积一层等间距分布的多个绝缘硬质薄膜,在每个绝缘硬质薄膜(2)上面的两侧分别有相互平行且长度与厚度相等的一条P型薄膜热电臂(3)和一条N型薄膜热电臂(4),每对P型薄膜热电臂(3)和N型薄膜热电臂(4)的一端用导电银胶导线(5),P型薄膜热电臂(3)的另一端与相邻上一条的N型薄膜热电臂(4)的另一端用 导电银胶导线(5)连接,N型薄膜热电臂(3)的另一端与相邻下一条的P型薄膜热电臂(4)的另一端用导电银胶导线(5)连接,以相同连接方式依次构成柔性温差发电微单元结构。
2.根据权利要求1所述的一种柔性温差发电微单元结构,其特征在于:所述的绝缘硬质薄膜的材料为氮化硅或类金刚石。
3.根据权利要求1所述的一种柔性温差发电微单元结构,其特征在于:所述的薄膜热电臂的材料为掺杂的碲化铋。
专利摘要本实用新型公开了一种柔性温差发电微单元结构。在聚酰亚胺基底上表面沉积一层等间距分布的多个绝缘硬质薄膜,在每个绝缘硬质薄膜上面的两侧分别有相互平行且长度与厚度相等的P型薄膜热电臂和N型薄膜热电臂,每对P型薄膜热电臂和N型薄膜热电臂的一端用导线,P型薄膜热电臂的另一端与相邻上一条的N型薄膜热电臂的另一端用导线连接,N型薄膜热电臂的另一端与相邻下一条的P型薄膜热电臂的另一端用导线连接,依次构成柔性温差发电微单元结构。本实用新型具有柔性,可在多个方向变形,当温差发电单元发生结构变形时,绝缘硬质薄膜可避免延展性差的碲化铋热电材料发生断裂,避免失效。本实用新型主要针对体内植入式医疗微装置的供能,具有推广应用价值。
文档编号H01L35/00GK203119810SQ20132012516
公开日2013年8月7日 申请日期2013年3月19日 优先权日2013年3月19日
发明者史尧光, 梅德庆, 姚喆赫, 陈子辰 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1