具有可调节属性的纳米线的高吞吐量连续气相合成的制作方法

文档序号:7037703阅读:102来源:国知局
具有可调节属性的纳米线的高吞吐量连续气相合成的制作方法
【专利摘要】一种用于形成线的方法,其包括提供悬浮在气体中的催化种子粒子,提供包括要形成的线的成分的气体前体以及从所述催化种子粒子生长线。所述线可以在425和525C之间的温度范围内生长并且可以具有纯闪锌矿结构。所述线可以是具有V族终止表面和<111>B晶体生长方向的III-V半导体纳米线。
【专利说明】具有可调节属性的纳米线的高吞吐量连续气相合成

【技术领域】
[0001] 本发明针对纳米线的合成,尤其针对纳米线的气相合成。

【背景技术】
[0002] 半导体纳米线是用于下一代发光二极管\太阳能电池2和蓄电池3的关键构建 块。在工业规模上制造基于功能性纳米线的器件需要高效的方法,该方法实现具有完美结 晶度、可再现的和受控的尺寸和材料组分以及低成本的纳米线的大规模生产。迄今为止,尚 未有能够满足所有这些要求的可靠的方法的报告。


【发明内容】

[0003] -个实施例涉及一种用于形成线的方法,其包括提供悬浮在气体中的催化种子粒 子,提供包括要形成的线的成分的气体前体以及从催化种子粒子生长所述线,例如,在425 到525C之间的温度范围内。所述线可以具有纯闪锌矿(zincblende)结构。
[0004] 另一个实施例涉及一种用于形成III-V半导体纳米线的方法,其包括提供悬浮在 气体中的催化种子粒子,提供包括要形成的纳米线的成分的气体前体以及在催化种子粒子 悬浮在气体中的同时使用气体前体从催化种子粒子生长所述线,其中所述III-V半导体纳 米线具有V族终止表面和<111>B晶体生长方向。

【专利附图】

【附图说明】
[0005] 图1是根据实施例的纳米线的Aerotaxy?生长的器件和方法的示意性图示。 [0006] 图2a_2d是在不同生长条件下通过Aerotaxy?生长的GaAs纳米线的扫描 电子显微镜图像;纳米线利用2a) 35、2b) 50、2c) 70和2d) 120nm直径Au团聚体 (agglomerate)生长。
[0007] 图2e_2h是在不同生长条件下通过Aerotaxy?生长的GaAs纳米线的扫描电子显 微镜图像;纳米线在2e) 450、2f) 500、2g) 550和2h) 600°C的炉温的情况下生长,使用 50nm的Au团聚体和Is的生长时间。
[0008] 图2i是图示纳米线长度的温度依赖性的曲线图。误差条指示测量的纳米线长度 的标准差。
[0009] 图2 j-2k是在反应器管直径为2 j) 18和2k) 32mm、导致近似为0.3和Is的生长时 间的情况下生长的GaAs纳米线的扫描电子显微镜图像。
[0010] 图3a-3d是在3a) 450、3b) 500、3c) 550和3d) 600°C的温度生长的纳米线的透 射电子显微镜图像。在50nm的Au团聚体和Is的生长时间的情况下生长纳米线。
[0011] 图4是在625°C的生长温度和近似为0. 3s的生长时间的情况下在从50nm的Au团 聚体生长的纳米线上在4K的八个小型纳米线集合体(ensemble)的光致发光光谱。平均峰 值能量和FWHM分别为1. 513eV和23meV。
[0012] 图5是图示闪锌矿晶体结构的球形和棒形模型。
[0013] 图6是纳米线生长速率的Arrhenius图。可以在由虚线指示的450至550°C的温 度范围内抽取97kJ/mol的激活能量。误差条指示测量的生长速率的标准差。
[0014] 图7是沉积态(as deposited)纳米线的扫描电子显微镜(SEM)图像。
[0015] 图8 (a) -8 (d)是图3的纳米线的透射电子显微镜(TEM)图像;在(a) 450、(b) 500、(c) 550和(d) 600°C的情况下生长的纳米线。观察方向为〈110>。
[0016] 图9(a)是用于通过聚束电子衍射(CBED)的生长方向确定的纳米线的TEM图像。 图(b)是来自具有用于所指示的CBED的两个反射行的相同纳米线的选定区域衍射图案。图 (c) 是示出002盘中的相长干涉的针对G=000、002和004个反射的CBED图案的详情。图 (d) 是示出相消干涉的针对-G的对应的CBED图案。
[0017] 图10是在〈110>观察方向上记录的,来自与用于图4中的光致发光测量的那些相 同的生长运行的纳米线的TEM图像。
[0018] 图11是示出Si衬底上的沉积态纳米线的SEM图像。一些纳米线示出与垂直于衬 底的电场线的对准。

【具体实施方式】
[0019] 本发明的实施例示出Aerotaxy?、基于气溶胶的生长方法4 (如在转让给Qunano AB的PCT公开申请W0 11/142,717( '717公开)中所描述、并通过引用以其整体合并于 此)能够被用来以纳米级受控尺寸、高度的结晶度和卓越的生长速率来持续生长纳米线。在 Aerotaxy?方法中,催化的大小选定的气溶胶粒子(诸如,Au)引起纳米线(例如,GaAs纳米 线)以大于〇. 1 U m/s (诸如,0. 5-1 y m/s)的生长速率的成核(nucleation)和生长,所述生 长速率是先前报告的用于传统的基于衬底的III-V纳米线生长5_7速率的20-1000倍。在 Aerotaxy?方法中,纳米线不根植于衬底生长。也就是说,与需要从单个晶体衬底的生长 的传统的方法相对,Aerotaxy?方法中的纳米线在没有衬底的情况下以气体/气溶胶相生 长。所述方法通过变化生长温度、时间以及Au粒子大小而实现对纳米线尺寸和形状的敏感 且可再现的控制,并且因此实现受控的光学和电学属性。光致发光测量揭示了甚至生长态 (as-grown)纳米线具有良好的光学属性和优越的光谱均匀性。详细的透射电子显微镜研究 示出Aerotaxy?-生长纳米线沿〈111>B结晶方向形成,所述〈111>B结晶方向也是对于单晶 衬底上由Au粒子做种子的III-V纳米线的优选生长方向。在实施例中,纳米线的至少99% 具有V族终止表面和晶体生长方向。可以预期连续且有潜力的高吞吐量方法显著 地降低生产高质量纳米线的成本并可以使能在工业规模上的基于纳米线的器件的低成本 实现。
[0020] 纳米线是纳米尺度的结构,其具有小于1微米的直径或宽度,诸如2_500nm,包括 10-200nm,例如25-100nm或100-200nm,诸如150-180nm (例如,对于纵向纳米线太阳能电 池)。然而,长度可以远大于1微米。
[0021] 半导体纳米线通常通过自下而上(bottom up)的方法生长,其中位于单晶衬底顶 部的金属粒子在一维(1-D)上增强生长,形成高长宽比的纳米结构8。纳米线生长机制允许 对纳米线尺寸、晶体结构和材料组分的敏感控制,例如掺杂9或异构设计1(1,如果所使用的 生长方法足够灵活以适应广泛集合的生长参数的话。用于生产这些结构的常用方法包括金 属有机气相外延(M0VPE)、分子束外延和化学束外延。然而,由于需要昂贵的单晶衬底,这些 方法与其它方法相比是缓慢的以及昂贵的。基于例如溶液n'12和气相13生长的可替换的方 法(尽管可能较廉价)通常与约束相关联或者仅允许对基本纳米线属性(诸如结晶度、直径、 长度和形状)的不良控制。基于Aerotaxy?的生长方法能够在生长纳米线时克服所有这些 问题。Aerotaxy?的原理基于连续气流中的纳米粒子和纳米线的形成及操纵。Aerotaxy? 消除对引起成核的单晶衬底的需要并通过提供连续过程规避了分批(batch-wise)生长的 限制。比较生长装置与2英寸M0VPE反应器,其中Au粒子以1 y nT2的密度被沉积在晶片 上,可以使用当前的Aerotaxy?系统而使纳米线生产速率增加到50倍(下文更详细地讨 论)。例如,100, 〇〇〇或更多纳米线(例如,多于500, 000,诸如多于一百万纳米线)可以在单 个Aerotaxy?反应器中制作。例如,对于连续Aerotaxy?过程,在实验室规模的反应器的生 长区域内的纳米线的数目在任何给定的时间大约为5百万(6X105纳米线每Cm3,8cm 3/S流 动速率和Is停留时间(residence time))。可以在更大的反应器中和更高的流动速率下生 产更大的数目。
[0022] 因为单晶半导体器件的高成本迄今为止已经是例如能量相关半导体应用的大规 模实施的限制因素,所以本文描述的基于Aerotaxy?的纳米线生长方法可以提供用于制造 大面积的基于纳米线的器件的可缩放方法。
[0023] 图1图示用于纳米线的Aerotaxy?-生长的系统和方法的实施例。在步骤1中,形 成金的团聚体的气溶胶。在步骤2中,使用DMA根据大小对金团聚体进行分类。在步骤3 中,将金团聚体压紧成球形粒子。在步骤4中,生长纳米线。在步骤5中,收集纳米线以用 于进一步处理(例如,被沉积在衬底上)。
[0024] Au纳米粒子可以用来催化全部以气溶胶相发生的GaAs纳米线的1-D生长(图1)。 然而,也可以使用其它催化剂粒子和其它纳米线材料,例如,Ni粒子和半导体纳米线(诸如 InSb或其三元或四元组合),金属纳米线或绝缘纳米线(例如,Si02, A1203等)。用高程度控 制14来根据大小选择纳米粒子以允许对纳米线横向尺寸的敏感调节,并由此对诸如量子约 束和电子散射之类的材料属性的敏感调节,这实现纳米线的光学15和电气16属性的调整。 粒子大小选择通过在由如下各项构成的设置中生成并按大小选择Au气溶胶粒子来实现: 用于Au团聚体形成的蒸汽凝结步骤1、粒子充电器2、用于团聚体的大小选择的差分迁移率 分析器(DMA)以及用于粒子压缩17的烧结炉3。类似的方法先前已经成功用于提供针对相 关类的1-D材料、碳纳米管的气相生长的种子粒子,其中可以控制和调节直径18。
[0025] 为了发起形成纳米线的反应,按大小选择的Au粒子与承载纳米线材料的成分的 反应物(前体)相混合,并且在加热管式炉4中在良好受控的生长时间期间暴露于升高的温 度。在实施例中,使用三甲基镓(TMGa)和砷化氢(AsH3)。这些材料通常用于利用M0VPE的薄 膜GaAs晶体和纳米线的生长。根据对纳米线生长的当前理解,Au-Ga的合金纳米粒子应该 形成并且新的原子平面随后在管式炉中的升高温度花费的时间期间在晶体-纳米粒子-蒸 汽三相界面19处成核。在实施例中,晶体-纳米粒子界面在过程的开始是不存在的,但通过 GaAs微晶的形成而在纳米粒子表面上生成,纳米线生长可以从所述GaAs微晶扩展。与使 用M0VPE利用相同前体生长的Au粒子成核纳米线相比,纳米线优先地以相对较低的V/III 比率形成。由于不存在能够提供Ga以使Au粒子过饱和的衬底,所以这必须改为从气相被 直接提供。高V/III比率将降低抑制纳米线成核的该过饱和并改为有助于GaAs粒子形成。 在纳米线已经形成之后,它们仍以气溶胶相被传输到沉积腔室5,其中它们被沉积在选择的 表面上并可以由电场辅助,(例如,由此在纳米线中的电极化使它们沿电场对准,如在11年 6月30日公开的PCT公开申请W0 11/078, 780及其美国国家阶段申请序列号13/518,259 中所描述的,其二者通过引用以其整体合并于此)。
[0026] 图2图示在不同生长条件下通过Aerotaxy?生长的GaAs纳米线的扫描电子显微 镜图像。图2a-2d图示在525°C炉温的情况下分别利用35、50、70和120nm直径的Au团聚 体生长的纳米线。在粒子压缩和纳米线生长之后,这导致30、41、51和66nm的平均纳米线 顶直径。图2e-2h图示使用50nm的Au团聚体和Is生长时间分别在450、500、550和600°C 的炉温的情况下生长的纳米线。图2i是图示纳米线长度的温度依赖性的曲线图。误差条 指示测量的纳米线长度的标准差。图2j-2k图示分别利用18和32_的反应器管直径生长 的纳米线,这导致近似为0. 3和Is的生长时间。在每个系列的图像中,除了一个变化之外 所有其它生长参数都保持恒定。
[0027] 因而,通过分别改变Au粒子大小(图2a_d)、生长温度(图2e_h)和/或生长时间 (图2j-k)可以控制纳米线直径、长度和形状。控制这些参数导致具有在大规模半导体应用 中优选的可再现属性的纳米线,其中数百万纳米线需要被平行合并以构建功能器件。生长 时间由通过反应器管的气体速度所控制(对于给定的炉长度),并且可以例如通过改变反应 器管直径而变化。Au粒子大小通过DMA确定,并且Au粒子可以具有从5至80nm范围的直 径。温度的影响比粒子大小或生长时间的改变更复杂,由于其影响纳米线的长度(图2i)和 形状二者。这是由于在较高温度的情况下在Au粒子-纳米线界面和纳米线侧面这二者处 的反应速率的增加,这是来自传统的纳米线生长的公知现象。在较高温度的情况下增加的 反应速率还导致可以形成小GaAs粒子的气相的TMGa和AsH3之间的寄生反应,在图2g中 是明显的。
[0028] 生长速率的研究示出轴向生长速率,其可以超过1 U m/s,具有450到550°C之间的 Arrhenius依赖性(图6)。由此,可以确定针对轴向生长的97kJ/mol的激活能量。该值在 关于衬底成核的GaAs纳米线的激活能量的先前报告的范围内(67-102kJ/mol2°'21)。对于 Aerotaxy?-生长纳米线的速率限制步骤可能并不以任何显著的方式不同。然而,明显的差 异是对于Aerotaxy?-生长纳米线在较高温度的情况下不存在降低的生长速率。当纳米线 在原生单晶衬底上做种子时,衬底表面上的生长在较高温度的情况下变得更占优势,降低 纳米线生长速率。Aerotaxy?中衬底的不存在消除了该效应,使得高生长速率能够在更宽 泛的温度区间上被维持。
[0029] 图3a_3d图示纳米线晶体结构的温度依赖性。附图示出在3a) 450、3b) 500、3c) 550和3d) 600°C的温度情况下生长的纳米线的TEM图像。利用50nm的Au团聚体和Is的 生长时间来生长纳米线。观察方向是〈11〇>。
[0030] 除了影响生长速率之外,生长温度还影响纳米线的晶体结构(图3a-d)。III-V纳 米线通常表现出多型晶体结构,其中立方闪锌矿和六边纤维锌矿(wurtzite)相混杂22。在 425 (表现出纳米线生长的最低温度)和525°C之间,纳米线表现出纯闪锌矿晶体结构(图5 中所示),其中,在纳米线的轴向方向上行进的电子的潜在景观中的多型性相关调制被避免 (图3a、b)。然而,这对于某些器件应用(诸如,太阳能电池)并不是大问题,并且闪锌矿结构 不是本发明的必要特征。如图5中所示,闪锌矿结构包括两个不同的原子,其中两个原子类 型形成两个互相渗透的面心(face-centered)立方晶格。闪锌矿结构具有四面体配位。也 就是说,每个原子的最近邻居由定位成类似正四面体的四个顶点的另一个类型的四个原子 组成。闪锌矿结构中原子的布置与钻石立方结构相同,但在不同的晶格格位处具有交替的 原子类型。
[0031] 在较高生长温度的情况下,晶体相的混杂被观察到具有闪锌矿主导的纳米线中的 孪晶面和小纤维锌矿内含物的形成(图3c、d)。其中可以使用Aerotaxy?技术生长单晶相 纳米线的相对较大的温度区间进一步证明该技术的可应用性及其控制纳米线属性的能力。
[0032] 使用高分辨率透射电子显微镜(TEM)图像在多于99%的受研究纳米线中确定纳米 线晶体生长方向为〈111>。使用聚束电子衍射(CBED)来进一步研究十个纳米线以便区分两 种类型的〈111>生长方向,其可以在对应的{111}平面上具有III族或V族终止表面。在 所有情况下,发现生长已经出现在V族终止方向(图9),如针对衬底生长III-V纳 米线最通常报告的。这示出纳米线的生长方向和极性仍然与在生长期间使用衬底的情况相 同,指示该基础属性在种子粒子/纳米线界面处决定,而不由衬底决定。
[0033] 无视表面处理或高带隙钝化不用于降低表面重组的事实,光致发光测量揭示了优 越的均匀性的光谱(图4),指示生长态纳米线具有良好的光学属性。在落入针对大块GaAs 中被束缚的和自由的激子的已知范围(1. 513-1. 516eV23)内并且与M0VPE-生长纳米线的先 前报告24对应良好的1. 514eV处可以观察到峰值最大值。八个测量光谱的平均峰值全宽 度半最大值(FWHM)是23meV。在使用50nm大小的Au团聚体、625°C的生长温度和0. 3s的 生长时间生长的纳米线上执行测量。与在相同温度下在较长时间(大约Is)期间生长的纳 米线相比,在该较短时间期间生长的纳米线通常示出较低密度的堆叠缺陷(例如,改变原子 层堆叠的周期序列的缺陷,诸如,六方晶形ABAB到面心立方ABC)。用上述参数生长的纳米 线的TEM示出孪晶闪锌矿晶体结构,其中孪晶距离从几纳米直到60nm变化(图10)。鉴于 此,在主峰值下方观察到的光致发光可以归因于孪晶面边界处的II型过渡25。在同质性和 FWHM方面,与以溶液或气相生长的GaAs纳米线的先前报告相比(其中仅观察到(如果存在 的话)非常宽的发光26'27 ),光致发光结果更好。所报告的数据更好或者与在单晶Si上生 长的GaAs纳米线的数据相当28。在高纳米线生长温度的情况下对纳米线多型性的增加控 制和表面钝化壳的附加可以改善光学特性以便达到在原生衬底上生长的本领域GaAs纳米 线的状态,其能够表现窄至3meV的FWHM24。
[0034] 基于Aerotaxy?的生长方法可以对纳米级器件的领域(主要基于纳米线的领域)将 在未来如何发展具有显著的影响。所述方法是通用的并适用于其它常用前体材料和种子纳 米粒子形成技术。对于大面积应用来说,吞吐量(即,每单位时间生产的纳米线的数目)可以 有高重要性。超过对于衬底成核的纳米线可用的那些的生产速率已经被证明。因为图1中 所示的系统当前由能够被生产的种子粒子的数目所限制,所以粒子生产中的增长将导致纳 米线生产的类似增长并因此导致纳米线制造成本的降低。通过例如添加附加的高温炉用于 团聚体形成或通过实施具有较高吞吐量的不同纳米粒子生成过程(例如,火花或弧放电)可 以提商粒子生广。
[0035] 在Aerotaxy?期间纳米线的掺杂,以及尤其是pn结或p-i-n结的形成也是合期望 的。来自单段纳米线上的次级离子质谱学测量的结果示出Zn在存在前体DEZn的生长期间 被合并。通过提供顺序生长炉(其中在每个炉中引入不同前体)或通过在相同炉的不同位置 插入气体可以形成包含具有不同掺杂物和掺杂浓度的区段的pn结。在实施例中,如果掺杂 物前体在生长期间被耗尽,掺杂分布(profile)可以是非均匀的。这可以影响接触形成。可 以通过优化过程设计连同化学和动力学建模来优化所述系统。
[0036] 对于一些器件和系统应用的另一个考虑是对准非衬底束缚纳米线的能力。这可以 通过例如电场来实现,其先前已经被证明导致具有卓越的高产出的纳米线对准29。使用带 电荷的气溶胶粒子还打开了直接从气相的纳米线沉积并同时对准(图11)的可能性。为了 控制包含pn结的纳米线的对准过程中p和n区段的垂直定向(这对于太阳能电池并在一定 程度上对于LED应用是重要的),可以利用pn结的内建电势,其中每个纳米线将在光照下形 成小偶极子,例如,如在美国专利申请序列号13/518, 259中描述的,该专利是2010年12月 22日提交、6月30日公布的PCT公开申请W0 2011/078780的美国国家阶段,该二者通过引 用以其整体被合并于此。
[0037] 作为上述方法的替换,Aerotaxy?-生产的纳米线还能够使用各种洗涤器技术直接 从气相得到液体。纳米线溶液此后可以被存储并用于另外的处理步骤,其中使用例如流体 对准3°来沉积纳米线,这可能对于热电应用31'32来说是理想的。
[0038] 然而,诸如锂离子蓄电池之类的许多应用不需要纳米线对准。具有Si纳米线作为 阳极材料的锂离子蓄电池已经在过去几年里受到显著的注意,因为Si具有最高的已知理 论电荷电势并且以纳米线形式,已经观察到由电荷循环引起的性能恶化上的减少3。随着生 长和器件处理领域中的进一步发展,Aerotaxy?因而可以提供完美半导体纳米线器件结构 的可缩放生产以用于各种应用,诸如大面积太阳能电池、固态照明和锂离子蓄电池。
[0039] 图4示出在625°C的生长温度和近似0. 3s的生长时间的情况下从50nm的Au团聚 体生长的纳米线上在4K的八个小纳米线集合体的光致发光光谱。未使用表面处理或高带 隙钝化来减少表面重组。尽管缺少表面处理或高带隙钝化,光致发光测量揭示了优越均匀 性的光谱,指示生长态线具有良好的光学属性。
[0040] 具体地,Au团聚体通过在1750-1850°c之间工作的高温炉中的蒸发凝结过程形 成。使用确定Au团聚体大小的具有101/min的鞘流(sheath flow)和变化的电压的差分迁 移率分析器(DMA)来执行Au团聚体的大小选择。对于按大小选择的团聚体,它们被提供在 DMA之前定位的63Ni@辐射充电器供应的单个电子电荷量。在大小选择之后,使用工作在 450°C的烧结炉将团聚体压缩成球形粒子。Au粒子与前体气体AsH3和TMGa混合;通过质量 流量控制器(MFC)从气瓶供应AsH3。从具有通过第二MFC供应的H2载气TMGa的标准温度 和压力受控的金属有机鼓泡器(bubbler)供应TMGa。在总气流为1.68/min的情况下,AsH3摩尔分数是3*1(T6,并且在所有实验中V/III比率是0.9。主载气是N2。Au粒子和气体的 混合物通过反应炉,所述反应炉由被电阻加热器围绕的烧结的A1203反应器管组成。反应器 管是可更换的,并且在实验中使用具有不同内直径(18和32_)的两个管。在反应炉之后, 纳米线可以被传递到测量气溶胶中的电荷量的静电计或者被传递到沉积腔室,其中纳米粒 子/纳米线可以借助于电场而被沉积。沉积腔室中的电场强度是l〇5V/m。在实验期间,Si 衬底被用来收集纳米线。
[0041] 特性描述。用操作于10kV的扫描电子显微镜来研究样本,并且所选的样本被选出 以用于进一步分析来确定原子结构和光学属性。使用具有1.7 A的点分辨率的JE0L 3000F TEM (300kV)来研究晶体结构。使用CBED通过观察在±002盘中的非对称性对比度来确定 晶体极性,非对称性对比度起因于当奇索引(odd-indexed)、高阶反射被同时激发时的动态 衍射33。
[0042] 通过在(002)平面中倾斜近似7°直到针对002或00-2以及两个弱的、奇索引反 射(在00-2的情况下为-1-1-11和-1-1 9) Bragg条件被满足为止来进行CBED测量。在 将会聚角设置成近似3. 7mrad之后,在00-2盘的中心看见亮的干涉图案(在002盘中为暗 的)。该差异允许衍射图案被明确地索引33。与由M0VPE在衬底上生长的GaAs纳米 线的比较被用来解析由于可能的图像变换而引起的180°歧义性。
[0043] 在1. 3meV的光谱分辨率的情况下在4K使用微光致发光设置来研究光学属性。来 自双倍频率NdYAG激光器的532nm光线被用作激发源,具有近似为lOW/cm2的强度。为了 测量单个纳米线和小纳米线集合体,一些纳米线被转移到Au覆盖Si衬底。
[0044] M0VPE和Aerotaxy?之间的比较在纳米线生产速率方面被呈现。图6呈现伴随上 述图2i的Arrhenius图。图7呈现显示其均勻性的沉积态纳米线的总体SEM图像。图8示 出伴随上述图3a-d的TEM图像。在下文更详细地讨论的图9解释了 CBED测量,进行CBED 测量以识别纳米线生长方向的极性。在图10中,示出来自其中执行PL (图4)的生长运行 的典型纳米线的TEM图像。图11示出沉积态纳米线的侧视图,其示出一些纳米线与用于沉 积纳米线的电场的对准。
[0045] 在图1中所示的Aerotaxy?系统中,纳米线生产被所供应的Au粒子量所限制。在 实施例中,每分钟供应1. 7*109Au粒子,这等于每小时1. 0*10n纳米线。
[0046] M0VPE被衬底的大小所限制,所述衬底被插入到反应器中,并且每个生长运行花费 的时间包括加热、冷却以及加载/卸载。典型的研究工具(可以与我们的Aerotaxy?系统相 比较)能够处理一个2英寸晶片。其中生产1 y m纳米线的一个运行通常花费一个小时,包 括加载/卸载。如果Au粒子以1 y nT2的密度沉积在晶片上,则将可以每小时生产2. 0*109纳米线,或者是Aerotaxy?过程的1/50。
[0047] 可以对两个过程进行改进以便优化和增长所形成的纳米线的数目。对于 Aerotaxy?过程,每单位时间所生产的Au粒子的数目可以增加。这能够例如通过并联连接 几个Au粒子生产炉来完成。使用M0VPE来增加纳米线的数目将需要能够处理较大/较多 衬底的较大的生长反应器或者较高密度的Au粒子。然而,如果要维持单分散性Au大小分 布,使用较高密度将需要一些形式的高级光刻。
[0048] 图2i和图6中的纳米线长度通过TEM来测量以便避免对纳米线的测量位于沉积 衬底上的倾斜角度。在每个测量点中测量的纳米线的数目在下表1中概述。
[0049] 表1.在图2i和6中的每个测量点中测量的纳米线的数目

【权利要求】
1. 一种用于形成线的方法,包括: 提供悬浮在气体中的催化种子粒子; 提供包括要形成的所述线的成分的气体前体;以及 从所述催化种子粒子生长所述线, 其特征在于以下中的至少一个:在425与525C之间的温度范围中生长所述线或者线具 有纯闪锌矿结构。
2. 根据权利要求1所述的方法,其中所述线包括Ga、Al或In中的一个或多个以及As、 P、N或Sb中的一个或多个。
3. 根据权利要求1所述的方法,其中所述线包括GaAs、GaP、GaN、GaSb、AlP、AlAs、AlN、 AlSb、InP、InAs、InSb或者其三元或四元组合。
4. 根据权利要求1所述的方法,其中所述线是单晶并且基本上不具有堆叠缺陷。
5. 根据权利要求1所述的方法,其中所述线在催化种子粒子悬浮在气体中时使用气体 前体以大于〇. 1微米/秒的速率生长。
6. 根据权利要求5所述的方法,其中所述生长速率包括0. 5至1微米/秒。
7. 根据权利要求1所述的方法,其中所述线包括具有小于1微米的宽度或直径的半导 体纳米线并且所述种子粒子包括金属纳米粒子。
8. 根据权利要求1所述的方法,其中所述线包括具有2-500nm的宽度或直径的III-V 半导体纳米线,并且所述种子粒子包括以气溶胶形式提供的金属纳米粒子。
9. 根据权利要求8所述的方法,其中所述III-V半导体纳米线具有V族终止表面和 晶体生长方向。
10. 根据权利要求8所述的方法,其中所述金属纳米粒子包括金纳米粒子。
11. 根据权利要求1所述的方法,其中所述线在425与525C之间的温度范围内生长。
12. 根据权利要求1所述的方法,其中所述线具有纯闪锌矿结构。
13. 根据权利要求1所述的方法,其中所述线在425与525C之间的温度范围内生长,并 且所述线具有纯闪锌矿结构。
14. 一种用于形成III-V半导体纳米线的方法,包括: 提供悬浮在气体中的催化种子粒子; 提供包括要形成的纳米线的成分的气体前体;以及 在催化种子粒子悬浮在气体中时使用气体前体从催化种子粒子生长所述线,其中 III-V半导体纳米线具有V族终止表面和<111>B晶体生长方向。
15. 根据权利要求14所述的方法,其中所述纳米线生长速率包括0. 5至1微米/秒。
16. 根据权利要求14所述的方法,其中所述半导体纳米线具有小于1微米的宽度或直 径,并且所述种子粒子包括金属纳米粒子。
17. 根据权利要求14所述的方法,其中所述半导体纳米线具有2-500nm的宽度或直径, 并且所述种子粒子包括以气溶胶形式提供的金纳米粒子。
18. 根据权利要求14所述的方法,其中所述纳米线包括单晶纳米线。
19. 根据权利要求14所述的方法,其中所述纳米线具有纯闪锌矿结构。
20. 多个III-V半导体纳米线,其中至少99%的纳米线具有V族终止表面和<111>B晶 体生长方向。
21. 根据权利要求20所述的半导体纳米线,其中所述纳米线在气相中生长并且不根植 于衬底生长。
22. 根据权利要求20所述的半导体纳米线,其中所述多个包括至少100, 000个纳米线。
23. 根据权利要求20所述的半导体纳米线,其中所述纳米线位于太阳能电池中。
【文档编号】H01L21/02GK104302816SQ201380018747
【公开日】2015年1月21日 申请日期:2013年2月1日 优先权日:2012年2月3日
【发明者】M.霍伊尔林, M.H.芒努松, K.德佩尔特, L.萨米尔森 申请人:昆南诺股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1