单晶硅蚀刻方法及所获得的半导体结构的制作方法

文档序号:7048715阅读:209来源:国知局
单晶硅蚀刻方法及所获得的半导体结构的制作方法
【专利摘要】本发明涉及一种半导体结构和一种单晶硅蚀刻方法。所述方法包括提供其中具有至少一个沟槽的单晶硅衬底。将所述衬底暴露至缓冲氟化物蚀刻溶液,所述溶液底切硅以在沿<100>方向图案化时提供横向承架。当沿<100>方向图案化时,所获得的结构包括底切特征。可使用本发明来制作先前认为过于昂贵、复杂及/或良率不佳的装置。
【专利说明】单晶硅蚀刻方法及所获得的半导体结构
[0001]本申请是申请日为2007年5月31日,申请号为200780020525.X、发明名称为“适用于在硅(SI)中产生方形切口的湿式蚀刻及所获得的结构”的发明专利申请的分案申请。
【技术领域】
[0002]本发明大体来说涉及使用湿式蚀刻剂来底切单晶硅的方法。更具体地说,本发明涉及用于在单晶硅中产生方形底切的方法及所获得的结构。
【背景技术】
[0003]当前技术发展水平:半导体组件的更高效能、更低成本、更加小型化及集成电路的更大封装密度正成为计算机行业的当前目标。一种降低半导体组件总成本的方法是降低此组件的制造成本。降低制造成本可通过加快生产速度以及减少制作半导体组件的材料用量来实现。近年来,半导体行业已将其重点大力扩展到开发及生产光电组件,例如电荷耦合装置(CXD)及最近的CMOS成像仪。如同其它半导体组件一样,存在一种旨在以不断降低的成本获得更高效能参数及更大良率的持续努力。
[0004]微机电系统("MEMS")是另一种在诸多行业(包括电子行业)中受到广泛关注的技术。MEMS使用微制作技术将超小型电组件及机械组件整合于同一衬底(例如,娃衬底)上以形成极小的设备。电组件可使用集成电路制作("IC")工艺来制作,而机械组件可使用与集成电路制作工艺相容的微机加工工艺来制作。在很多情况下,多种方法的此种组合使得使用常规制造工艺在芯片上制作完整超小型系统成为可能。然而,现有制作技术中仍存在诸多缺点,从而限制了可制作的MEMS组件及总成的类型及尺寸。
[0005]当前对(100)硅实施用于DRAM、微处理器等的常规IC处理。氢氧化钾及TMAH可用于通过下述方式在(110)硅中产生垂直蚀刻:使用(110)衬底晶片或使衬底晶片的表面再结晶以具有(110)晶体定向。然而,所获得的结构并非始终是合意的且可能将增加成本的额外处理步骤及程序引入至制作过程及产生低效能装置。
[0006]各种常规化学品已用来蚀刻硅。例如,单晶硅及多晶硅二者通常在硝酸(HNO3)与氢氟酸(HF)的混合物中进行湿式蚀刻。在使用此等蚀刻剂的情况下,蚀刻通常为各向同性。所述反应由HNO3引发,从而在硅上形成二氧化硅层,而HF用于将氧化硅溶解掉。在某些情形中,使用水来稀释蚀刻剂,其中乙酸(CH3COOH)是一种优选缓冲剂。
[0007]在某些应用中,沿一个或多个晶面的硅蚀刻相对于其它晶面而言更快是有用的。例如,在硅的菱形晶格中,(111)平面通常比(100)平面更密实,且因此(111)定向表面的蚀刻速率预期低于具有(100)定向的那些表面。不同平面的键合定向还会造成蚀刻剂对暴露平面的选择性。一种展示此等定向相依性蚀刻特性的蚀刻剂由KOH与异丙醇的混合物组成。例如,此种混合物沿(100)平面比沿(111)平面的蚀刻可快约一百(100)倍。
[0008]可使用氢氧化物蚀刻剂及TMAH在(100)硅中产生垂直底切。图1及2显示借助不同的蚀刻剂溶液以标准硅定向(图1A及图2A)及45°旋转方向(图1B及图2B) 二者实施的硅蚀刻。在标准定向中,掩模沿〈110〉方向对准。{111}平面界定自(100)表面平面倾斜的侧壁。对于45°旋转,掩模沿〈100〉方向对准。在图1中,蚀刻剂是在26°C下施用的稀释NH4OH,而在图2中,蚀刻剂是在26°C下施用的稀释TMAH。尽管两种蚀刻剂显示不同的选择性,但二者皆可底切硅10并产生斜切边缘或切角12。斜切边缘对于某些应用来说并非是合意的且可能会限制组件在集成电路上的间隔。
[0009]因此,合意的情形是在(100)硅中产生无斜切边缘或切角的方形底切及/或可操纵底切的形状。此外,合意的情形是使用湿蚀刻化学品在(100)硅中产生横向承架。

【发明内容】

[0010]如本文中
【发明者】所认识到,业内需要使用湿式蚀刻化学品来底切(100)硅。当初始图案沿〈100〉方向定向时,可使用缓冲氟化物蚀刻溶液在(100)硅中产生方形拐角及横向承架,而不会产生用氢氧化物蚀刻时产生的典型斜切。可使用本发明的湿式蚀刻化学品来制作先前认为过于昂贵、复杂及/或良率不佳的装置。
[0011]本发明进一步包括采用蚀刻剂溶液以操纵在单晶硅下面的沟槽的空腔形状的方法。蚀刻化学品对晶体定向具有高选择性,当使用(100)晶面定向及沿〈100〉方向图案化时,可达成不含斜切拐角且包括横向承架的空腔形状。本发明进一步包括一种蚀刻(100)晶体硅平面比(110)及(111)硅平面慢2-3倍的方法。在低温下的稀释蚀刻剂中,(100)硅的蚀刻速率可约为5-10,000 人/min且优选为10-500 人/min。所述方法可包括将硅暴露至本发明的缓冲氟化物蚀刻溶液。所述方法可进一步包括比(100)硅蚀刻慢的同步氧化物及/或氮化物蚀刻。
[0012]在本发明进一步包括,通过下述步骤在单晶硅中产生方形底切:提供其中包括至少一个沟槽的单晶硅;沿〈100〉方向图案化单晶硅及将单晶硅暴露至包括氟化物组份、氧化剂及无机酸的溶液。
[0013]在本发明进一步包括,通过将单晶硅暴露至各向异性蚀刻剂且随后至缓冲氟化物蚀刻溶液而产生横向承架。或者,可通过将单晶硅暴露至第一各向同性蚀刻剂以产生沟槽来产生横向承架。可施用各向异性蚀刻剂来底切硅并可施用缓冲氟化物蚀刻溶液以使底切空腔的拐角成方形。应了解,在不具有第一各向异性蚀刻剂的情形下,可在沟槽中使用缓冲氟化物蚀刻溶液,其可在不同的暴露平面中以不同的速率蚀刻硅。
[0014]本发明的半导体装置可包括具有方形底切特征的单晶硅。所述底切特征包括平滑表面。
[0015]本发明的半导体装置可包括具有横向承架的单晶硅。
【专利附图】

【附图说明】
[0016]下图绘示了当前被视为实施本发明的最佳模式,图式中:
[0017]图1A是沿〈110〉方向遮掩并借助在26°C施用的NH4OH底切的单晶硅的剖视图。图1B显示沿〈100〉方向遮掩并借助在26°C施用的NH4OH底切的单晶硅。
[0018]图2A是沿〈110〉方向遮掩并借助在26°C施用的稀释TMAH底切的单晶硅的剖视图。图2B显示沿〈100〉方向遮掩并借助在26°C施用的稀释TMAH底切的单晶硅。
[0019]图3A是沿〈110〉方向遮掩并借助在23°C施用的本发明缓冲氟化物蚀刻溶液底切的单晶硅的剖视图。图3B显示沿〈100〉方向遮掩并借助在23°C施用的本发明缓冲氟化物蚀刻溶液底切的单晶硅。
[0020]图4-11显示根据本发明一实施例处于制作过程各阶段的单晶硅晶片。图4A是根据本发明一实施例的单晶硅晶片的平面图。图4B是沿图4A中的线-4B-截取的同一单晶硅晶片的剖视图。
[0021]图5A是根据本发明一实施例的单晶硅晶片的平面图。图5B是沿图5A中的线-5B-截取的同一单晶硅晶片的剖视图。
[0022]图6A是根据本发明一实施例的单晶硅晶片的平面图。图6B是沿图6A中的线-6B-截取的同一单晶硅晶片的剖视图。
[0023]图7A是根据本发明一实施例的单晶硅晶片的平面图。图7B是沿图7A中的线-7B-截取的同一单晶硅晶片的剖视图。
[0024]图8A是根据本发明一实施例的单晶硅晶片的平面图。图8B是沿图8A中的线-8B-截取的同一单晶硅晶片的剖视图。
[0025]图9A是根据本发明一实施例的单晶硅晶片的平面图。图9B是沿图9A中的线-9B-截取的同一单晶硅晶片的剖视图。
[0026]图1OA是根据本发明一实施例的单晶硅晶片的平面图。图1OB是沿图1OA中的线-10B-截取的同一单晶硅晶片的剖视图。图1OC是沿图1OA中的线-10C-截取的图1OA单晶硅晶片的剖视图。
[0027]图1lA是根据本发明一实施例的单晶硅晶片的平面图。图1lB是沿图1lA中的线-1lB-截取的同一单晶硅晶片的剖视图。图1lC是沿图1lA中的线-1lC-截取的图1lA单晶硅晶片的剖视图。图1lD是沿图1lA中的线-1lD-截取的图1lA单晶硅晶片的剖视图。
[0028]图12A-E显示使用本发明的缓冲氟化物蚀刻溶液对单晶硅的逐步底切蚀刻。(100)硅上的沟槽沿〈100〉方向。
[0029]图13A-D显示在暴露至NH4OH后使用本发明的缓冲氟化物蚀刻溶液对单晶硅的逐步底切蚀刻。(100)硅上的沟槽沿〈100〉方向。
[0030]图14A-B显示集成PSOI DRAM存取结构的穿透式电子显微照片(TEM)。
【具体实施方式】
[0031]下文将参照附图对本发明加以详细说明,所述附图形成本发明的一部分且其中以图解方式示出了可实施本发明的具体实施例。在附图中,类似的编号代表各视图中大致相似的组件。所述实施例的说明极其详细,以使熟悉此项技术者能够实施本发明。熟悉此项技术者也可利用其它实施例并可在不背离本发明范畴的前提下对本发明作出结构、逻辑及电方面的改动。
[0032]下文说明中所使用的术语"晶片"及"衬底"包括任何具有用以形成本发明集成电路(IC)结构的暴露表面的结构。术语衬底应理解为包括半导体晶片。术语衬底还用于指代处理期间的半导体结构,并可包括已制作于其上的其它层。晶片及衬底二者包括经掺杂及未掺杂的半导体、由基底半导体或绝缘体支撑的磊晶半导体层、以及为熟悉此项技术的人员已知的其它半导体结构。术语"导体"应理解为包括半导体,且术语"绝缘体"定义为包括导电性低于称作导体的材料的任何材料。因此,下文的详细说明不应视为具有限定性意义,且本发明的范畴仅由随附权利要求书及归属于所述权利要求书的等效内容的全部范畴界定。
[0033]本申请案中所使用的措词"水平"定义为一平面平行于晶片或衬底的常规平面或表面,而无论所述晶片或衬底的定向如何。措词"垂直"指垂直于以上所定义的水平方向的方向。诸如“在...上(on)”、“侧(side)”(如在“侧壁(sidewall)”中)、“更高(higher) ”、“更低(lower) ”、“在...上面(over) ”及“在...下面(under) ”等介词皆相对于位于晶片或基板顶表面上的常规平面或表面而定义,而无论该晶片或基板的定向如何。
[0034]如本文中
【发明者】所认识到,业内需要使用湿式蚀刻化学品来底切(100)硅。当初始图案沿〈100〉方向定向时,可使用缓冲氟化物蚀刻溶液在(100)硅中产生方形拐角及横向承架,而不会产生用氢氧化物蚀刻时产生的典型斜切。可使用本发明的湿式蚀刻化学品来制作先前认为过于昂贵、复杂及/或良率不佳的装置。
[0035]本发明的一实施例进一步包括采用蚀刻剂溶液以操纵在单晶硅下面的沟槽的空腔形状的方法。蚀刻化学品对晶体定向具有高选择性,当使用(100)晶面定向及沿〈100〉方向图案化时,可达成不含斜切拐角且包括横向承架的空腔形状。
[0036]本发明的一实施例包括一种蚀刻(100)晶体硅平面比(110)及(111)硅平面慢2-3倍的方法。在低温下的稀释蚀刻剂中,(100)硅的蚀刻速率可约为5-丨0,000人/min且优选为10-500人/min。所述方法可包括将硅暴露至本发明的缓冲氟化物蚀刻溶液。所述方法可进一步包括比(100)硅蚀刻慢的同步氧化物及/或氮化物蚀刻。
[0037]在本发明的一实施例中,可通过下述步骤在单晶硅中产生方形底切:提供其中包括至少一个沟槽的单晶硅;沿〈100〉方向图案化单晶硅及将单晶硅暴露至包括氟化物组份、氧化剂及无机酸的溶液。
[0038]在本发明的一实施例中,可通过将单晶硅暴露至各向异性蚀刻剂且随后至缓冲氟化物蚀刻溶液而产生横向承架。或者,可通过将单晶硅暴露至第一各向同性蚀刻剂以产生沟槽来产生横向承架。可施用各向异性蚀刻剂来底切硅并可施用缓冲氟化物蚀刻溶液以使底切空腔的拐角成方形。应了解,在不具有第一各向异性蚀刻剂的情形下,可在沟槽中使用缓冲氟化物蚀刻溶液,其可在不同的暴露平面中以不同的速率蚀刻硅。
[0039]本发明的一实施例所包括的半导体装置包括具有方形底切特征的单晶硅。所述底切特征包括平滑表面。本发明的一实施例所包括的半导体装置包括具有横向承架的单晶硅。
[0040]下文将大体阐述用于使硅氧化并蚀刻二氧化硅以形成所期望本发明结构的蚀刻组合物。根据下文所提供的说明,熟悉此项技术的人员将易于明了本文中所述的缓冲氟化物蚀刻组合物可用于各种应用中。换言之,可在实施硅蚀刻且其中需要方形底切或横向承架时使用所述缓冲氟化物蚀刻组合物。例如,可使用本发明来形成用于制作集成电路的隔离结构。此外,例如,本发明可有益于制作晶体管结构,例如假绝缘体上硅装置(包括DRAM、SRAM、闪存、成像仪、PCRAM、MRAM、CAM等)、FinFet (鳍式场效应晶体管)、环绕栅极晶体管、以及微机电系统("MEMS")及光电组件。
[0041 ] 在一实施例中,用于底切单晶硅以形成横向承架的缓冲氟化物蚀刻组合物通常包括氟化物组份、无机酸及氧化剂。氟化物组份可为(但不限于)HF、HF2-、NH4F、或四甲基氟化铵(TMAF)。氟化铵可由氢氧化铵与HF的混合物形成。氟化物组份或溶液应能使得当蚀刻组合物与硅反应形成二氧化硅时,氟化物组份或溶液溶解掉由此形成的二氧化硅。氟化物组份可以0.5-50重量%的量存在。
[0042]缓冲氟化物蚀刻组合物的氧化剂可为任何氧化剂,例如(诸如)过氧化氢或臭氧。一种当前优选的氧化剂是过氧化氢。
[0043]无机酸组份可包括至少一种选自氢氟酸(HF)、磷酸(Η3Ρ04)、硫酸(H2S04)、硝酸(HNO3)、盐酸(HCl)、碳酸(H2CO3)的酸,或任何其它合适的无机酸。当前优选的无机酸为H3PO4或&0)3。市售无机酸通常呈浓溶液(X)形式,随后可将其稀释至期望的浓度(H2O: X)。例如,市售浓酸可呈以下形式:HC1以37重量%存于去离子水中;HN03以70重量%存于去离子水中;H2S04W96重量%存于去离子水中;且H3PO4W 85重量%存于去离子水中。本文所述蚀刻组合物的浓度根据市售溶液而给出。例如,如果蚀刻组合物具有30%HCl浓度,则所述溶液包括30重量%的市售HCl溶液。过氧化氢(H2O2)也作为存于去离子水中的约29重量%浓溶液形式市售。此外,氟化铵也作为存于去离子水中的约40重量%浓溶液形式市售。此外,应认识到,所述溶液的多种组份可由市售溶液提供。例如,可从Olin微电子材料公司(Olin Microelectronics Materials (Newalk, Conn.))购得的 QEII 提供NH4F(?39.4w%)及无机酸(即H3PO4?0.6w% ) 二者,所述无机酸可用于调节溶液的pH。
[0044]其它适合的实例性蚀刻剂揭示于美国专利第7,166, 539号及美国专利第6,391,793号中。缓冲氟化物蚀刻剂溶液优选具有介于约5.0至约9.0范围内的pH。更佳地,缓冲氟化物蚀刻组合物具有约7.8的pH。优选地,缓冲氟化物蚀刻组合物包括:氟化物组份,其占缓冲氟化物蚀刻组合物的约0.5重量%至约50重量氧化剂,其占缓冲氟化物蚀刻组合物的约0.5重量%至约30重量%;及无机酸,其占约0.1-2重量%。例如,缓冲氟化物蚀刻组合物优选可包括体积比约为4: 2: 3的NH4F: QEII: H202。
[0045]此外,优选地,缓冲氟化物蚀刻组合物的离子强度大于I ;更优选地,所述离子强度介于约5至约20的范围内。如本文中所使用,离子强度指组合物中离子间平均静电相互作用的量度,其等于通过将每一离子的重量摩尔浓度乘以其化合价所获得各项的和的一半。再进一步,优选地,蚀刻组合物的氧化还原电位介于约-0.5至约+0.7或更高的范围内(与标准氢电极(SHE)相比)。如本文中所使用,氧化还原电位是蚀刻组合物作为氧化剂的有效性的量度,即,蚀刻组合物使硅氧化以供蚀刻组合物的HF组份移除的能力。
[0046]缓冲氟化物蚀刻溶液的上述范围特别适用于使用氟化铵及过氧化氢,但似乎同样适用于具有上述组份的其它组合的缓冲氟化物蚀刻组合物,例如当氟化铵由氢氧化铵及氢氟酸提供时。换言之,可混合适合量的氢氧化铵与氢氟酸以提供充足量的氟化铵。当将臭氧用作氧化剂时,臭氧优选以约百万分之一(PPm)至约50ppm的范围存在。
[0047]缓冲氟化物蚀刻溶液可呈现较暴露至同一蚀刻组合物的氧化物的蚀刻速率大3倍的硅蚀刻速率,即,硅与氧化物之间的选择性大于3。更优选地,与〈100〉硅蚀刻速率相比,使用所述蚀刻组合物时,硅与氧化物之间的选择性大于6。
[0048]此外,为了达成所期望的晶片通量,使用蚀刻组合物的硅蚀刻速率优选大于约5人/min。更优选地,硅蚀刻速率大于18 A/min。甚至更优选地,硅蚀刻速率大于每分钟30-50 A。
[0049]优选地,所述蚀刻组合物应能使得在使用所述蚀刻组合物移除硅之后,硅表面具有适于供随后处理的合意表面粗糙度。优选地,硅表面在蚀刻后的粗糙度介于约1.25A RMS至约1.30 A RMS的范围内。在移除多于180 A的硅后,硅表面可合意地位于此一
粗糙度范围内。通常,粗糙度可由例如原子力显微镜检查法(AFM)来确定,通过原子力显微镜检查法扫描约I μ m2的表面积并给出跨越此I μ m2表面积的平均峰谷测量值rms。
[0050]优选地,上述对氧化物的高选择性是对热氧化物的高选择性。例如,此热氧化物可通过热氧化(例如使用湿或干炉氧化)来形成。然而,此选择性也可适用于通过化学气相沉积(CVD)形成的氧化物,例如通常用于隔离过程(例如,浅沟槽隔离)中的高密度等离子体氧化物。
[0051]一般而言,可使用任何已知方法将硅暴露至缓冲氟化物蚀刻溶液。例如,可将硅浸入缓冲氟化物蚀刻溶液罐中。亦可将溶液喷洒于欲蚀刻的晶片上或可以任何其它方式(例如滴注、喷洒、气化等)引入溶液以与晶片接触。蚀刻过程可在介于约10°c至约90°C范围内的温度下实施。优选地,蚀刻过程发生在介于21°C至约30°C之间且更佳地介于约22°C与25 °C之间的温度下。
[0052]如本文先前所述,图1及2显示当使用NH4OH或TMAH来底切硅时,实质上未形成横向承架。当以45°旋转(即,沿〈100〉方向图案化)实施时,底切结构的拐角具有切角12(图1B及图2B)。所获得的这些结构对于许多制造过程而言是不期望的。参见图3,根据本发明,使用26°C下的缓冲氟化物蚀刻溶液(10升NH4F+5升QEII+7.5升H2O2)在(100)硅中以标准硅定向(即,沿〈110〉方向图案化)及45°旋转来实施硅10底切。图3中所用缓冲氟化物蚀刻溶液表明(100)硅平面是慢蚀刻平面,当图案沿〈100〉方向对准时,此可允许产生方形底切。在典型的基于 氢氧化物的蚀刻中,(111)平面是慢蚀刻平面;因此,令人惊奇地发现湿式蚀刻包括(100)硅中的慢平面蚀刻。
[0053]缓冲氟化物蚀刻溶液可对(100)硅提供极有用的选择性、平滑表面及可控制蚀亥|J。参见图3B,横向承架14及不含斜切拐角使得在其上容易形成电装置,例如,制造于
(100)硅上的标准CMOS晶片中的FinFElMg SOI或RAD钵。使用缓冲氟化物蚀刻溶液还可产生不包括横向间隔物的方形凹角,此对于薄片硅指状件(其具有与未受到材料蚀刻的毗邻材料迥然不同的特性)中的电子特性是合意的。图3B中所绘示的方形凹角也可用于在制作MEMS时分别改变装置机械及光学特性。(100)硅中的凹角还允许CMOS装置中的简单整合并使MEMS机械及光学结构更容易地与CMOS处理整合在一起。
[0054]缓冲氟化物蚀刻溶液的蚀刻速率及选择性取决于两种竞争机制-硅的氧化及氧化物的蚀刻速率。此可绘示于以下简化反应中:
[0055]Si+2H202 = H2Si03+H20 = Si02+2H20 (I)
[0056]半电池还原/氧化反应:
[0057]
H2O2 +2 H+ + 2e 一 2 H2O= +1.77 V(2)
[0058]
Sis + 2 OH- 一 = Si(OH) 2 + 26-(3)
[0059]
H2SiO3 +6 HF η H2SiF6 + 3 H2O(4)[0060](100)硅晶体定向与热氧化物之间的典型选择性约为6。(110)方向蚀刻比(100)硅蚀刻约高2.5倍。
[0061]虽然缓冲氟化物蚀刻溶液可用于各种应用中,但图4-11绘示根据本发明一方法用于产生假SOI结构的部分过程。在图4-11的每一者中,A部分显示所述结构的平面图而B部分显示沿-B-截取的对应结构的剖视图。图4A及B绘示单晶硅衬底100。氮化硅衬层112形成于所述衬底上。在氮化硅衬层112上形成此项技术中已知的掩模层128(例如,光致抗蚀剂)。掩模层128可经图案化以形成至少一个沟槽掩模开口 132。本发明也涵盖常规光刻法或其它光刻或非光刻方法,无论是否存在掩模层128。
[0062]参见图5A及5B,氮化硅衬层112及单晶硅衬底100经蚀刻穿过掩模开口 132以在单晶硅衬底100中形成至少一个沟槽116。该蚀刻可利用包括例如氨及至少一种碳氟化合物的干式各向异性化学品(其可包括或不包括等离子体)来实施。在蚀刻至单晶硅衬底100中时,掩模层128可保留或被移除。虽然已揭示了一种形成沟槽116的具体方法,但熟悉此项技术的人员应了解,可利用任何方法形成沟槽116。
[0063]参见图6A及6B,氮化物层可沉积于氮化硅衬层112及沟槽116上,随后进行蚀刻以从沟槽116的底部126移除氮化物,但在沟槽116的侧壁130上产生氮化物间隔物118。Si3N4衬层可通过常规技术形成。
[0064]然后,可施加本发明的缓冲氟化物蚀刻溶液来底切单晶硅衬底10。优选地,所述缓冲氟化物蚀刻溶液可在约23°C下施加约5分钟,此取决于横向承架114的期望尺寸。如图7A及7B中所示,所述缓冲氟化物蚀刻溶液沿平行于单晶硅衬底100的方向的蚀刻快于穿过沟槽116的底部126的垂直蚀刻。如图7B中所示,可形成具有约450 A至550 A厚度的横向承架114。
[0065]若需要,如图8A及B中所示,可在沟槽116的底部126及侧壁130上沉积氮化物衬层120并随后以氧化物材料122(例如,旋涂电介质(SOD))来填充沟槽116。
[0066]在氮化硅衬层112及氧化物材料122上沉积掩模124并实施图案化。可如图9A、B及10A、B、C中所示来实施对氧化物具有一定选择性的常规硅蚀刻。
[0067]如图11A、B、C及D中所示,可沉积可选氮化物衬层136及实施SOD充填。在图11中所绘示的SOD充填后,结构150可经受进一步处理以在其上形成(例如)晶体管、电容器及数字线来完成假SOI结构。结构150包括具有约500 A (+/-10% )的厚度的横向承架114。
[0068]包括任何晶体管(例如,阵列晶体管或存取晶体管)、叠加结构150的所获得结构因硅下面存在氧化物材料122而具有明显降低的泄漏(参见例如图11B)。应了解,结构150并不局限于作为中间假SOI结构。可结合本发明实施任何数量的额外制作步骤以形成任何合意的装置。
[0069]图12A-E绘示使用NH4F、QEII及H2O2的溶液(以4: 2: 3的比率提供)的硅氧化及蚀刻。将衬底浸入23°C下的NH4F、QEII及H2O2的滞流浴中。图12A绘示在添加本发明的缓冲氟化物蚀刻溶液前单晶硅300中具有氮化物衬层320的沟槽310。所述单晶硅的顶表面312代表(100)平面。沟槽310是(100)平面上的〈110〉。在暴露至约23°C下的缓冲氟化物蚀刻溶液达16分钟后,可见到具有横向承架314的底切轮廓。(图12B)。如图12C、D及E中所示,在分别暴露22分钟、25分钟及28分钟后,所述蚀刻沿垂直于(100)方向(即,垂直于STI侧壁)的进程快于沿(100)方向(即,垂直于晶片表面)。如图12A-E中所看到,下面的硅支腿或支柱350的宽度随着至缓冲氟化物蚀刻溶液的暴露的增加而减小。
[0070]缓冲氟化物蚀刻溶液可结合图案角度与其它组份相结合以便以各种方式来制造垂直壁。图13A-D绘示在23°C下的5分钟各向异性NH4OH蚀刻后,单晶硅400在暴露至NH4F, QEII及H2O2溶液(缓冲氟化物蚀刻溶液)O分钟(图13A)、3分钟(图13B)、6分钟(图13C)及9分钟(图13D)时的蚀刻进程。暴露是使用滞流浴达成的。所述单晶硅的顶表面412代表(100)平面。沟槽410是(100)平面上的〈110〉。增加缓冲氟化物蚀刻溶液的蚀刻时间可形成硅有效面积的承架底切而不会明显增加沟槽深度。此外,可看到,单晶硅400下面的硅支腿或支柱450随着蚀刻进程而变得越来越窄。因此,应了解,结合本发明的蚀刻剂溶液使用适宜的图案角度可制造具有各种特征的装置。通过操纵蚀刻时间及蚀刻剂组合,可达成不同的底切轮廓。例如,所述缓冲氟化物蚀刻溶液可结合氢氧化物、NH4OH,NH4F, TMAH或其组合。
[0071]通过以下非限制性实例可进一步理解本发明。
[0072]实例I
[0073]图14A及B绘示集成PSOI DRAM存取结构的两个TEM。所述轮廓通过在25°C下进行4分36秒的TMAH(100: I)蚀刻而产生。使用缓冲氟化物蚀刻溶液(以4: 2: 3的比率提供的NH4F、QEII及H2O2)在25°C下进行6分钟的第二蚀刻。常规氧化物间隔物用于该两次湿式蚀刻并在空腔产生后被移除。在将存取晶体管及位线连同多晶硅引脚整合于晶体管栅极之间后,沿〈100〉方向显示影像。
[0074]本文引用的所有文献均完整地并入本文中,仿佛每一文献单独地并入本文中一样。文中已参照示例性实施例阐述了本发明,但并非意欲理解为具有限定意义。如先前所述,熟悉此项技术的人员将认识到,各种其它示例性应用可利用本文中所述的蚀刻组合物。参考本说明,熟悉此项技术的人员将了解对本文示例性实施例的各种修改以及本发明的其它实施例。虽然本文中阐述了本发明的优选实施例,但本发明由本文中的权利要求书所界定且不受上文说明中所阐述的具体细节的限制,因为本发明可具有诸多显而易见的变化形式,且此并不背离本发明的精神或范畴。
【权利要求】
1.一种半导体结构,其包括: 在单晶硅中至少一个沟槽且包含在所述单晶硅中由方形凹角界定的底切特征;及 延伸至所述底切特征中的所述单晶硅的至少一部分。
2.如权利要求1所述的半导体结构,其中所述至少一个沟槽是在所述单晶硅的(100)平面。
3.如权利要求1所述的半导体结构,其中所述底切特征包括与所述单晶硅的上表面垂直的第一沟槽壁及与所述单晶硅的所述上表面平行的第二沟槽壁。
4.如权利要求3所述的半导体结构,其中所述第二沟槽壁在所述单晶硅的一部分之下延伸。
5.如权利要求3所述的半导体结构,其中延伸至所述底切区域中的所述单晶硅衬底的所述至少一部分与所述第一沟槽壁平行延伸。
6.如权利要求1所述的半导体结构,其中所述单晶硅中的所述至少一个沟槽包括无斜切边缘的至少一个方形底切特征。
7.如权利要求1所述的半导体结构,其中所述底切特征由在所述单晶硅的一部分之下延伸的至少一个表面界定。
8.如权利要求1所述的半导体结构,其中延伸至所述底切特征中的所述单晶硅的所述至少一部分沿垂直所述单晶硅的表面的方向突出至所述底切特征。
9.一种蚀刻单晶硅的方法,所述方法包括: 在单晶硅上形成至少一个沟槽;及 移除所述至少一个沟槽两侧和下方的额外单晶硅以形成所述单晶硅的支柱,每个支柱在其一部分中包括底切。
10.如权利要求9所述的方法,其中在单晶硅中形成至少一个沟槽包括:沿所述单晶硅的〈100〉方向形成所述至少一个沟槽。
11.如权利要求9所述的方法,其中在单晶硅中形成至少一个沟槽包括:形成包括与所述单晶硅的表面垂直的第一沟槽壁及与所述单晶硅的所述表面平行的第二沟槽壁的所述至少一个沟槽。
12.如权利要求9所述的方法,其中移除所述至少一个沟槽两侧和下方的额外单晶硅包括:移除沿平行所述单晶硅方向的所述额外单晶硅。
13.如权利要求9所述的方法,其中移除所述至少一个沟槽两侧和下方的额外单晶硅包括:以比移除在(110)硅平面和(111)硅平面的所述额外单晶硅更慢的速度移除在(100)硅平面的所述额外单晶硅。
14.如权利要求9所述的方法,其中移除所述至少一个沟槽两侧和下方的额外单晶硅以形成所述单晶硅的支柱包括:在每个支柱的中间部分形成所述底切。
15.如权利要求9所述的方法,其中移除所述至少一个沟槽两侧和下方的额外单晶硅以形成所述单晶硅的支柱包括:形成在所述底切包括减小的宽度的所述支柱。
16.如权利要求9所述的方法,其中移除所述至少一个沟槽两侧和下方的额外单晶硅以形成所述单晶硅的支柱包括:将所述额外单晶硅暴露于各向异性蚀刻剂。
17.如权利要求9所述的方法,其中移除所述至少一个沟槽两侧和下方的额外单晶硅以形成所述单晶硅的支柱包括:将所述额外单晶硅与包括氟化铵、过氧化氢和磷酸的溶液接触
【文档编号】H01L21/306GK103956321SQ201410209104
【公开日】2014年7月30日 申请日期:2007年5月31日 优先权日:2006年6月2日
【发明者】李宏奇, 亚诺什·富克斯科, 戴维·H·韦尔斯 申请人:美光科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1