车辆的制作方法

文档序号:7056921阅读:131来源:国知局
车辆的制作方法
【专利摘要】本发明提供一种车辆,所述车辆包括电池模块、与所述电池模块分开的DC/DC转换器模块、管道、一个鼓风机和跨接管道。所述电池模块包括电池进气口和电池出气口。所述DC/DC转换器模块包括转换器进气口和转换器出气口。所述管道被布置为将冷却空气引导到所述电池进气口和所述转换器进气口中的每个中。所述鼓风机被布置为从所述管道吸入冷却空气、使所述冷却空气通过所述模块并从所述电池出气口和所述转换器出气口流出。所述跨接管道与所述转换器出气口布置在所述鼓风机的上游,并且被构造为减小所述转换器出气口的有效截面面积,以限定进入所述电池进气口中的冷却空气的流量。
【专利说明】车辆

【技术领域】
[0001]本公开涉及一种车辆,更具体地讲,涉及一种用于在车辆中使用的高压电池的热管理系统。

【背景技术】
[0002]诸如纯电动车辆(BEV)、插电式电动车辆(PHEV)或混合动力电动车辆(HEV)的车辆包括牵引电池,例如,高压(HV)电池,以用作车辆的推进动力源。HV电池可包括用于辅助管理车辆性能和操作的组件和系统。HV电池可包括带有一个或更多个电池单体阵列的电池模块,所述一个或更多个电池单体在电池单体端子与互连器汇流排之间相互电连接。HV电池和周围环境可包括热管理系统以辅助调节HV电池组件、系统和各个电池单体的温度。


【发明内容】

[0003]—种车辆包括牵引电池模块、与所述电池模块分开的DC/DC转换器模块、管道、鼓风机和跨接管道。所述电池模块包括电池进气口和电池出气口。所述DC/DC转换器模块包括转换器进气口和转换器出气口。所述管道被布置为将冷却空气引导到所述进气口的每个中。所述鼓风机被布置为从管道吸入冷却空气,使冷却空气通过所述模块并使所述冷却空气从所述出气口排出。所述跨接管道与所述转换器出气口布置在所述鼓风机的上游,并且被构造为减小所述转换器出气口的有效截面面积,以限定进入所述电池进气口中的冷却空气的流量。进入所述电池进气口中的冷却空气的流量可小于进入所述转换器进气口中的冷却空气的流量。所述牵引电池模块可包括另一电池进气口。另一管道可被布置为将冷却空气引导到另一电池进气口中,使得进入所述电池进气口中的冷却空气的净流量大于进入所述转换器进气口中的冷却空气的流量。所述鼓风机还可包括鼓风机出气口,所述鼓风机出气口的有效截面面积近似等于管道和另一管道中的每个的有效截面面积的一半。所述鼓风机出气口的有效截面面积可近似等于一平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。所述管道和所述进气口各自可具有彼此近似相等的进气口有效截面面积。所述进气口有效截面面积可近似等于两平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。所述跨接管道可设置在所述转换器出气口内。所述跨接管道可设置在所述转换器出气口和所述鼓风机之间,并且与所述转换器出气口和所述鼓风机流体连通。
[0004]—种车辆包括牵引电池模块,所述牵引电池模块具有第一电池进气口、第二电池进气口和电池出气口。DC/DC转换器模块与所述牵引电池模块分开,并且包括转换器进气口和转换器出气口。第一管道被构造为将冷却空气引导到所述第一电池进气口中。第二管道被构造为将冷却空气引导到所述第二电池进气口和所述转换器进气口中。一个鼓风机被构造为从第一管道和第二管道吸入冷却空气,使得所述冷却空气通过所述模块,并使所述冷却空气从所述电池出气口和转换器出气口排出。跨接管道与所述转换器出气口布置在所述鼓风机的上游。所述跨接管道被构造为弓I导进入所述第二电池进气口中的冷却空气的分配,使得穿过所述牵引电池模块的冷却空气的净流量大于穿过所述DC/DC转换器模块的冷却空气的流量。所述跨接管道可设置在所述转换器出气口内。所述跨接管道可设置在所述转换器出气口与所述鼓风机之间,并且与所述转换器出气口与所述鼓风机流体连通。所述鼓风机还可包括鼓风机出气口,所述鼓风机出气口的有效截面面积近似等于第一管道和第二管道中的每个的有效截面面积的一半。所述鼓风机出气口的有效截面面积可近似等于一平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。所述第二管道和所述第二电池进气口各自可具有彼此近似相等的进气口有效截面面积。所述进气口有效截面面积可近似等于两平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。所述第一管道和所述第二管道也可与车厢流体连通。
[0005]—种车辆包括电池模块、转换器模块、鼓风机和跨接管道。所述电池模块包括电池进气口和电池出气口。所述转换器模块包括转换器进气口和转换器出气口。所述鼓风机被布置为吸入空气,使得所述空气通过所述模块和所述电池出气口和所述转换器出气口。所述跨接管道与所述转换器出气口设置在所述鼓风机的上游,并且被构造为减小所述转换器出气口的有效截面面积,以限定从所述电池出气口流出的冷却空气的流量。进入所述电池模块的第一进气口中的冷却空气的流量可小于进入所述转换器进气口中的冷却空气的流量。第一管道可被布置为将冷却空气引导到所述电池模块的第二进气口中。进入所述电池模块第一进气口和第二进气口中的冷却空气的净流量可大于进入所述转换器模块进气口中的冷却空气的流量。第二管道可被布置为将冷却空气引导到所述电池模块的第一进气口和所述转换器进气口中。所述鼓风机出气口的有效截面面积可近似等于所述第一管道和所述第二管道中的每个的有效截面面积的一半。所述鼓风机出口的有效截面面积可近似等于一平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。

【专利附图】

【附图说明】
[0006]图1是电池包的透视图;
[0007]图2是图1中的电池包移除了电池模块盖和DC/DC转换器模块盖之后的透视图;
[0008]图3A是管道系统、鼓风机单元和图1中的电池包的透视图;
[0009]图3B是图1和图3A中的电池包和管道系统的平面视图;
[0010]图4A是跨接管道的透视图;
[0011]图4B是DC/DC转换器单元的一部分、图4A中的跨接管道以及鼓风机单元的透视图;
[0012]图4C是图4A中的跨接管道的截面透视图;
[0013]图4D是图4A中的跨接管道的截面侧视图;
[0014]图5是两个电池单体阵列的一部分的透视图,示出了气流穿过所述两个电池单体阵列;
[0015]图6是两个电池单体阵列的截面侧视图,示出了气流穿过所述两个电池单体阵列。

【具体实施方式】
[0016]这里将描述本公开的实施例。然而,应该理解的是,所公开的实施例仅是示例,其它实施例可以采用各种和替代的形式。不需要按照比例绘制附图,为了显示具体组件的细节,可能会夸大或缩小一些特征。因此,在此公开的具体结构和功能的细节不应当被解释为限制,而仅作为用于教导本领域的技术人员以各种方式采用本发明的代表性基础。如本领域的普通技术人员将理解的,参照任何一个附图描述和示出的各个特征能够与在一个或更多个其它附图中示出的特征结合以得到没有明确示出或描述的实施例。所示特征的组合提供用于典型应用的代表性实施例。然而,与本公开的教导一致的特征的各种组合和修改能够被期望用于特定的应用或实施。
[0017]使用HV电池的车辆可包括具有电池包的能量系统,该电池包具有多个组件,诸如,一个或更多个带有电池单体的电池模块、电主控模块(BECM)和带有DC/DC转换器单元(直流/直流转换器单元)的DC/DC转换器模块(直流/直流转换器模块)。电池单体可提供用于操作车辆驱动电机和其他车辆系统的能量。电池包可设置在多个不同的位置,这些位置包括前排座位、后排座位的下面或车辆后排座位的后面的位置。两个电池单体阵列可以通过BECM、DC/DC转换器单元以及其他车辆组件而电连通。BECM可以接收来自多种控制系统的输入信号、处理包括在输入信号中的信息并作为响应产生合适的控制信号。这些控制信号可激活多种组件和/或使多种组件停用。DC/DC转换器单元可将来自电池单体的高电压转换成低电压以供组件和系统使用。
[0018]每个电池单体阵列可包括多个电池单体。电池单体(例如,方形蓄电池单体)可包括将储存的化学能转换为电能的电化学单元。方形蓄电池单体可包括罐体、正电极(阴极)和负电极(阳极)。电解质可允许离子在放电期间在阳极和阴极之间运动,然后在再充电期间返回。端子可允许电流从电池单体流出以供车辆使用。当多个电池单体按照阵列设置时,每个电池单体的端子可与另一相邻的相对的端子对齐(正的和负的),以便于多个电池单体之间的串联连接。
[0019]汇流排可用于帮助完成相邻的电池单体或彼此接近的电池单体组之间的串联连接。不同的电池包构造可适用于处理单独的车辆变量,车辆变量包括在此进一步描述的封装约束和功率要求。可通过热管理系统来加热和/或冷却电池单体。热管理系统的示例可包括空冷系统、液冷系统以及气液组合的系统。
[0020]空冷系统可使用一个或更多个鼓风机和管道以分配空气穿过例如电池模块和DC/DC转换器模块的组件,从而去除在车辆操作期间产生的热量。这些操作可包括使电池单体充电和放电以及去除在DC/DC转换器单元进行电压转换期间所产生的热量。电池包周围的环境中的车辆组件可被用来辅助管理电池包的热条件。
[0021 ] 例如,现在参照图1和图2,示出了说明性的电池包8,电池包8可包括电池模块9和DC/DC转换器模块10。电池模块9也可被称作牵引电池模块。电池包8还可包括两个电池单体阵列12a和12b (被一起称作“电池单体阵列12”)、BECM 14、DC/DC转换器单元16和空冷系统。电池单体阵列12还可被称作电池单体堆或第一电池单体堆和第二电池单体堆。图3A示出了与电池包8布置在一起(为示出的目的以虚线示出电池包8)的空冷系统的一些组件的透视图。空冷系统可包括鼓风机单元22、第一管道系统24、第二管道系统26以及一个或更多个通风口 28。鼓风机单元22的另外的示例可包括风扇单元和/或气泵。电池进气口 32和34可通向第一管道系统24和第二管道系统26,以便于第一管道系统24和第二管道系统26与电池包8流体连通。
[0022]图3B不出了电池包8,电池包8设置在后排座位18的后面并与后备箱部分相邻,后备箱可包括下面描述的货厢。通风口 28可作为通往第一管道系统24和第二管道系统26的进气口。这样,通风口 28可辅助促进车厢气候系统与第一管道系统24之间以及车厢气候系统与第二管道系统26之间的流体连通。第二管道系统26还可经由DC/DC转换器进气口 25与DC/DC转换器单元16流体连通。鼓风机单元22可设置在电池单体阵列12和DC/DC转换器单元16的下游。另外,鼓风机单元22可设置为靠近电池出气口 30和DC/DC转换器单元出气口 31,从而在沿第一方向致动鼓风机单元22时,抽吸空气使之穿过电池单体阵列12、DC/DC转换器单元16然后从鼓风机出气口和/或排气口 33排出。这里的出气口还可称为排气口。由于排气口 33与鼓风机单元22流体连通,所以排气口 33还可用作用于冷却电池包8的空气的排气口。实线和参考箭头29A表示气流从车厢经由通风口 28进入管道系统。虚线和参考箭头29B表示气流经过管道系统、穿过电池包8的组件、经过鼓风机单元22然后从鼓风机的排气口 33排出。这里,所述线和参考箭头是气流的非限制性的示例。
[0023]现在再参照图4A至图4D,跨接管道40可与DC/DC转换器单元出气口 31布置在一起并设置在鼓风机单元22的上游。跨接管道40还可位于DC/DC转换器单元出气口 31中。跨接管道40可包括开口 42、第一斜面44和第二斜面46。开口 42的横截面积以及与斜面44和46相关的角度的优化调节可影响从第二管道系统26到电池进气口 34以及DC/DC转换器进气口 25的气流。例如,跨接管道40可减小DC/DC转换器单元出气口 31的有效截面面积。减小后的有效截面面积可与电池进气口 34的有效截面面积不同,使得在致动鼓风机单元22时通过转换器单元出气口 31和电池进气口 34中的每个的气流量也会不同。另外,开口 42的横截面积以及与斜面44和46相关的角度的优化调节可影响从电池出气口 30流出的气流。
[0024]在一个示例性的构造中,进入到电池进气口 34的冷却空气的流量可小于进入到DC/DC转换器进气口 25的冷却空气的流量。虽然可使用各种构造,但是DC/DC转换器进气口 25与电池进气口 34之间的优选的气流分配比可等于60/40,即,有百分之六十的气流被引导到DC/DC转换器模块10且百分之四十的气流被引导到电池模块9。另外,进入到电池进气口 34和电池进气口 32的冷却空气的净流量可大于进入到DC/DC转换器进气口 25的冷却空气的流量。也可用进气口的其他的横截面积来获得期望的流量和流量分配比。例如,减小开口 42的横截面积可减小被引导到DC/DC转换器单元16的那部分气流并增大被引导到电池单体阵列12的那部分气流。
[0025]另外,第一斜面44和第二斜面46的角度还会影响来自第二管道系统26的空气的分配。增大和减小斜面的角度可改变被引导到DC/DC转换器单元16的气流和被引导到电池单体阵列12的那部分气流的量。这样,在利用第一管道系统24和第二管道系统26而将冷却空气分配到电池模块9和DC/DC转换器模块10时,通过调节跨接管道40的构造可提供多个气流分配情形。由于对电池模块9和DC/DC转换器模块10来讲不需要两个单独的冷却系统,所以这样做可节约成本、减少重量和封装空间。
[0026]另外,电池进气口 32、电池进气口 34和DC/DC转换器进气口 25的有效截面面积等于两平方英寸,使得每分钟的气流为N立方英尺,这可降低通风口 28处的空气涌入噪声,其中,N为从鼓风机出气口 33流出的目标气流量。例如,目标气流量可等于每分钟的气流为十立方英尺。此外,使用两平方英寸的截面面积,使得每分钟通过第一管道系统24和第二管道系统26的气流为十立方英尺,以及使用一平方英寸的有效截面面积,使得鼓风机出气口 33处每分钟的气流为十立方英尺,可使得沿着气流路径的压力下降减小,并提供使鼓风机单元22以可降低车辆内部噪声的较低速度运转的机会。
[0027]在该示例性的构造中,进入到第一管道系统24和第二管道系统26的总气流的大体上百分之七十可被输送到电池模块9。另外,进入到第一管道系统24和第二管道系统26的总气流的大约百分之三十可被输送到DC/DC转换器模块10。或者进入到第二管道系统26的总气流的百分之六十可被输送到DC/DC转换器模块10并且进入到第二管道系统26的总气流的百分之四十被输送到电池模块9。对于进气口的其他的横截面积也可用来获得期望的流量和流量分配比。
[0028]如上所述,在本领域中现有的电池模块设计可能已经使用了分别用于电池单体阵列和DC/DC转换器单元的单独的冷却系统。省去冷却系统中的一个可以减小重量并降低封装的复杂性。现在再参照图1并再参照图5和图6,电池模块托盘60和电池模块盖62可被构造成影响进入电池单体阵列12的空气的分配。如上所述,可从车厢抽出空气。电池模块托盘60和电池模块盖62可辅助将从车厢抽出的空气引导到前阵列12a和后阵列12b。流过前阵列12a的空气可在冷却前阵列12a的同时热量增加。然后,从前阵列12a流出的被加热了的空气可被引导到后阵列12b。在图5和图6中示出了气流73和71的示例性的模式。
[0029]例如,前阵列12a和后阵列12b可被支撑在电池模块托盘60上,并且通常被布置为彼此平行且彼此隔开。前阵列12a和电池模块托盘60可一起限定通道和/或通路,例如通道70和71。通道70可被构造成引导进入电池模块9的空气的一部分在前阵列12a下面流动。后阵列12b可被支撑在电池模块托盘60上,使得在后阵列12b与电池模块托盘60之间流动的空气被引导到后阵列12b中。例如,电池模块托盘60可包括斜坡72,该斜坡72被设置在后阵列12b下面并被定向,从而接触斜坡72的气流可被引导到后阵列12b中。斜坡72的角度和斜坡72的高度可被调整为进一步调节被引导到后阵列12b中的空气量。
[0030]电池模块盖62和电池模块托盘60可限定用于电池单体阵列12的容纳部并还限定电池进气口 32和电池进气口 34。这些电池进气口 32和34可与前阵列12a的前侧74相邻。电池进气口 32和34还可被倾斜地布置和/或相对于电池单体阵列12以一定角度布置,以有助于引导空气离开所述前侧74,这可改进穿过电池单体阵列12和/或遍布电池模块9的空气分配。当与可引导气流大体上垂直穿过电池单体阵列12的进气口方向相比时,电池进气口 32和34相对于电池单体阵列12的这种角度方向可提供穿过电池单体阵列12的更宽的气流分配。
[0031]前阵列12a可包括横侧面80a和80b。后阵列12b可包括横侧面82a和82b。横侧面80b和82a可限定使气流流过这二者之间的通道79。如图6所示,在横侧面80b和横侧面82a之间可能有极少量的组件或没有组件阻挡气流流过这二者之间。虽然可存在少量的组件(例如,结构柱)来支撑电池单体阵列12,但是前阵列12a与后阵列12b之间基本上不存在组件,可使从横侧面80b流出的空气以受到最少干扰(如果有的话)的方式进入横侧面82a。这样,气流可通过通道70和斜坡72而被输送到后阵列12b,并且在气流从前阵列12a流出之后,还可通过通道79输送气流。气流可包括流到前阵列12a的车厢空气以及流到后阵列12b的车厢空气与被加热了的车厢空气的组合。
[0032]虽然在上面描述了示例性实施例,但是并不意味着这些实施例描述了由权利要求所包含的所有可能形式。在说明书中使用的词语是描述性词语而非限制性词语,应该理解,在不脱离本公开的精神和范围的情况下能够进行各种改变。如之前描述的,各个实施例的特征可组合,以形成可能未明确描述或示出的本发明的进一步的实施例。虽然各个实施例可能已经被描述为提供优点或者在一个或更多个期望特性方面优于其它实施例或现有技术实施方式,但是本领域的普通技术人员应该认识到,根据具体应用和实施方式,可综合一个或更多个特征或特性,以实现期望的总体系统属性。这些属性可包括但是不限于成本、强度、耐用性、生命周期成本、可销售性、外观、包装、尺寸、可维修性、重量、可制造性、装配容易性等。这样,在一个或多个特性方面被描述为比其它实施例或现有技术实施方式效果稍差的实施例仍在本公开的范围之内,且可期望用于特定应用。
【权利要求】
1.一种车辆,包括: 牵引电池模块,包括电池进气口和电池出气口 ; DC/DC转换器模块,与所述牵引电池模块分开,并且包括转换器进气口和转换器出气Π ; 管道,被布置为将冷却空气引导到所述电池进气口和所述转换器进气口中的每个中; 一个鼓风机,被布置为从所述管道吸入冷却空气,使所述冷却空气通过所述模块并从所述电池出气口和所述转换器出气口流出; 跨接管道,跨接管道与所述转换器出气口布置在所述鼓风机的上游,并且被构造为减小所述转换器出气口的有效截面面积,以限定进入所述电池进气口中的冷却空气的流量。
2.根据权利要求1所述的车辆,其中,进入所述电池进气口中的冷却空气的流量小于进入所述转换器进气口中的冷却空气的流量。
3.根据权利要求2所述的车辆,其中,所述牵引电池模块还包括另一电池进气口和另一管道,所述另一管道被布置为将冷却空气引导到另一电池进气口中,其中,进入电池进气口中的冷却空气的净流量大于进入转换器进气口中的冷却空气的流量。
4.根据权利要求3所述的车辆,其中,所述鼓风机还包括鼓风机出气口,所述鼓风机出气口的有效截面面积近似等于所述管道和所述另一管道中的每个的有效截面面积的一半。
5.根据权利要求4所述的车辆,其中,所述鼓风机出气口的有效截面面积近似等于一平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。
6.根据权利要求1所述的车辆,其中,所述牵引电池模块还包括另一电池进气口和另一管道,所述另一管道被布置为将冷却空气引导到另一电池进气口中,其中,所述另一管道和所述另一电池进气口各自具有彼此近似相等的进气口有效截面面积。
7.根据权利要求6所述的车辆,其中,所述进气口有效截面面积近似等于两平方英寸,使得每分钟的流量为N立方英尺,其中,N是从所述鼓风机出气口流出的目标气流量。
8.根据权利要求1所述的车辆,其中,所述跨接管道设置在所述转换器出气口内。
9.根据权利要求1所述的车辆,其中,所述跨接管道设置在所述转换器出气口和所述鼓风机之间,并且与所述转换器出气口和所述鼓风机流体连通。
【文档编号】H01M10/625GK104425855SQ201410433440
【公开日】2015年3月18日 申请日期:2014年8月28日 优先权日:2013年8月30日
【发明者】瑟瑞亚普拉卡斯·艾亚恩格·泽纳萨纳姆, 李安·王, 詹姆士·乔治·加比 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1