半导体结构的形成方法与流程

文档序号:16724205发布日期:2019-01-25 16:43阅读:334来源:国知局
半导体结构的形成方法与流程

本发明涉及半导体制作领域,特别涉及一种半导体结构的形成方法。



背景技术:

随着半导体集成电路技术的不断发展,半导体器件尺寸和互连结构尺寸不断减小,从而导致金属连线之间的间距在逐渐缩小,用于隔离金属连线之间的介质层也变得越来越薄,这样会导致金属连线之间可能会发生串扰。现在,通过降低金属连线层间的介质层的介电常数,可有效地降低这种串扰,且低K的介质层可有效地降低金属连线层间的电阻电容延迟(RC delay),因此,超低K介电材料已越来越广泛地应用于互连工艺的介质层。

现有技术在超低K介质层中形成金属互连结构的过程为:在基底上形成超低K介质层;刻蚀所述超低K介质层,在超低K介质层中形成凹槽;在凹槽中形成金属互连结构,所述金属互连结构包括位于凹槽侧壁和底部表面的扩散阻挡层和位于扩散阻挡层上的金属层。

但是现有技术形成金属互连结构的稳定性和电学性能仍有待提高。



技术实现要素:

本发明解决的问题是怎样提高超低K介质层中形成金属互连结构的性能。

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,在所述基底上形成超低K介质层,所述超低K介质层中包括硅甲基键;刻蚀所述超低K介质层,在所述超低K介质层中形成凹槽,在刻蚀过程中,等离子体损伤使得所述凹槽侧壁暴露的超低K介质层中硅甲基键转化为硅氢氧键;对凹槽侧壁暴露的超低K介质层进行惰性等离子处理,使得硅氢氧键中的氢氧基从硅原子上断裂,在凹槽侧壁暴露的超低K介质层表面形成硅悬挂键;进行碳化处理工艺,将硅悬挂键转化为硅碳氢键;进行氮化处理工艺,将硅碳氢键转化为硅碳氮氢键,在凹槽侧壁暴露的超低K介质层表面形成SiCNH薄膜层。

可选的,所述惰性等离子体处理工艺采用的惰性等离子体为He等离子体、Ne等离子体或Ar等离子体。

可选的,所述惰性等离子体处理工艺采用的等离子体为Ar等离子体,惰性等离子处理工艺采用的气体为Ar,Ar的流量为200~2000sccm,高频射频功率0~200W,低频射频功率200~2000W,腔室压力5~10Torr,腔室温度 250~400℃。

可选的,所述碳化处理工艺为含碳和氢的等离子处理,所述碳化处理工艺采用的气体为三甲基硅烷或四甲基硅烷,气体的流量为200~2000sccm,高频射频功率0~200W,低频射频功率200~2000W,腔室压力5~10Torr,腔室温度250~400℃。

可选的,所述氮化处理工艺为含氮的等离子处理,所述氮化处理工艺采用的气体为NH3或N2中的一种或几种,气体的流量为200~2000sccm,高频射频功率0~200W,低频射频功率200~2000W,腔室压力5~10Torr,腔室温度250~400℃。

可选的,所述硅碳氢 键为Si-CHy,0<y≤3。

可选的,还包括:循环进行对凹槽侧壁暴露的超低K介质层进行惰性等离子处理、进行碳化处理工艺、进行氮化处理工艺的步骤。

可选的,所述循环的次数为2~10次。

可选的,所述基底包括半导体衬底和位于半导体衬底上的介质层,所述介质层中形成有第一金属互连结构;在介质层上形成超低K介质层,所述凹槽暴露出第一金属互连层的表面。

可选的,在所述凹槽的侧壁和底部形成扩散阻挡层;在扩散阻挡层上形成金属层,所述金属层填充凹槽。

可选的,所述扩散阻挡层为材料为Ti、Ta、TiN、TaN中的一种或几种。

可选的,所述扩散阻挡层的形成工艺为溅射。

可选的,所述凹槽为矩形凹槽或大马士革凹槽。

可选的,所述超低K介质层中包括硅元素、碳元素、氢元素和氧元素。

可选的,所述超低K介质层的介电常数K小于3.0。

可选的,所述超低K介质层中形成过程为:在反应腔室中通入前驱体、造孔剂和氧气进行反应,在基底上形成超低K介质层;对所述超低K介质层进行UV处理工艺,去除超低K介质层中的造孔剂,在超低K介质层中形成孔洞。

可选的,所述前驱体为四乙氧基硅烷、甲基二乙氧基硅烷、二乙氧基二甲基硅烷或甲基三乙氧基硅烷。

可选的,所述造孔剂为a-松油烯或二环庚二烯。

与现有技术相比,本发明的技术方案具有以下优点:

本发明的半导体结构的形成方法,在刻蚀超低K介质层,在超低K介质层中形成凹槽后,先后进行惰性等离子处理、碳化处理工艺和氮化处理工艺,去除凹槽侧壁暴露的超低K介质层中由等离子体损伤带来的硅氢氧键,在凹槽侧壁暴露的超低K介质层表面形成SiCNH薄膜层,从而消除或者改善凹槽侧壁暴露的超低K介质层的表面粗糙度,使得在凹槽和侧壁和底部形成扩散阻挡层时,提供了良好的界面形貌性能,形成的扩散阻挡层的表面平整度也较好。

进一步,所述惰性等离子体处理工艺采用的惰性等离子体为He等离子体、Ne等离子体或Ar等离子体,一方面,惰性等离子体不具有导电性,不会影响超低K介质层的隔离性能,另一方面,惰性等离子体活性较低,不会与硅悬挂键结合。

附图说明

图1为本发明实施例半导体结构的形成方法的流程示意图;

图2~图8为本发明实施例半导体结构的形成过程的结构示意图。

具体实施方式

如背景技术所言,现有超低K介质层形成的金属互连结构的稳定性和电学性能仍有待提高,比如:击穿电压和与时间相关的介质击穿性能(TDDB,time dependent dielectric breakdown)等参数受到影响。

研究发现,在采用等离子刻蚀工艺刻蚀超低K介质层形成凹槽的过程中,等离子的损伤作用会使得超低K介质层中的部分硅甲基键(Si-CH3)转化为硅氢氧键(Si-OH),使得形成的凹槽的侧壁表面平整度差、粗糙度高,因此在凹槽的侧壁和底部形成扩散阻挡层时,扩散阻挡层受到凹槽的侧壁表面的形貌影响,形成的扩散阻挡层表面平整度也差、粗糙度也高,使得扩散阻挡层不能很好的阻挡金属层中金属原子向超低K介质层中的扩散,因而超低K 介质层形成的金属互连结构的稳定性和电学性能受到影响。

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明的保护范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。

图1为本发明实施例半导体结构的形成方法的流程示意图;图2~图8为本发明实施例半导体结构的形成过程的结构示意图。

请参考图1,所述半导体结构的形成方法,包括步骤:

步骤S101,提供基底,在所述基底上形成超低K介质层,所述超低K介质层中包括硅甲基键;

步骤S102,刻蚀所述超低K介质层,在所述超低K介质层中形成凹槽,在刻蚀过程中,等离子体损伤使得所述凹槽侧壁暴露的超低K介质层中硅甲基键转化为硅氢氧键;

步骤S103,对凹槽侧壁暴露的超低K介质层进行惰性等离子处理,使得硅氢氧键中的氢氧基从硅原子上断裂,在凹槽侧壁暴露的超低K介质层表面形成硅悬挂键;

步骤S104,进行碳化处理工艺,将硅悬挂键转化为硅碳氢键;

步骤S105,进行氮化处理工艺,将硅碳氢键转化为硅碳氮氢键,在凹槽侧壁暴露的超低K介质层表面形成SiCNH薄膜层;

步骤S106,在所述凹槽的侧壁和底部形成扩散阻挡层;

步骤S107,在扩散阻挡层上形成金属层,所述金属层填充凹槽。

下面结合图2~图8对上述过程进行详细的描述。

请参考图2,提供基底201。

所述基底201作为后续工艺的平台。

所述基底201上形成有第一金属互连结构202。第一金属互连结构202可以为金属层、导电材料层或者金属插塞等。

在一实施例中,所述基底201包括半导体衬底和位于半导体衬底上的介质层。所述半导体衬底中形成有半导体器件,比如晶体管等,所述介质层覆盖所述半导体衬底和半导体器件,所述介质层中形成有与半导体器件的电连接的第一金属互连结构202,比如金属插塞。

在一实施例中,所述基底201可以直接为介质层,介质层中形成有第一金属互连结构,所述第一金属互连结构可以为金属线或者金属插塞等。

参考图3,在所述基底201上形成超低K介质层203。

所述超低K介质层203中包括硅元素、碳元素、氢元素和氧元素,所述超低K介质层203中存在硅甲基键(Si-CH3)。所述超低K介质层203的介电常数K小于3.0。

所述超低K介质层203中形成过程为:在反应腔室中通入前驱体、造孔剂和氧气进行反应,在基底上形成超低K介质层;对所述超低K介质层进行 UV处理工艺,去除超低K介质层中的造孔剂,在超低K介质层中形成孔洞。

所述前驱体为四乙氧基硅烷、甲基二乙氧基硅烷、二乙氧基二甲基硅烷或甲基三乙氧基硅烷。

所述造孔剂为a-松油烯或二环庚二烯。

在形成超低K介质层203后,在所述超低K介质层上形成掩膜层204,所述掩膜层204中具有暴露出超低K介质层203表面的开口,所述掩膜层204 作为后续刻蚀超低K介质层时的掩膜。

所述掩膜层204可以为单层或多层(≥2层)堆叠结构。

参考图4,刻蚀所述超低K介质层203,在所述超低K介质层203中形成凹槽205,在刻蚀过程中,等离子体损伤使得所述凹槽205侧壁暴露的超低 K介质层中硅甲基键(Si-CH3)转化为硅氢氧键(Si-OH)。

刻蚀所述超低K介质层203采用等离子刻蚀工艺。在一实施例中,所述等离子刻蚀采用的刻蚀气体为C2F6。

在等离子刻蚀的过程中,高能量的等离子体使得凹槽205侧壁暴露的超低K介质层中硅甲基键(Si-CH3)中甲基与硅原子上脱离,形成硅的悬挂键,硅的悬挂键容易与等离子中的氢元素和氧元素结合形成硅氢氧键(Si-OH)。由于Si-CH3的键能较弱,在刻蚀的等离子体的作用下,Si-CH3容易断裂,形成Si悬挂键,使得凹槽205表面变为吸水性,易形成Si-OH键。

硅氢氧键的存在使得凹槽205侧壁暴露的超低K介质层的表面的平坦度较差和粗糙度高。

本实施例中,所述凹槽205暴露出第一金属互连结构202的表面。

所述凹槽205可以为矩形凹槽、U形凹槽或V型凹槽。本实施例中,所述凹槽205为矩形凹槽。

在本发明的其他实施例中,所述凹槽可以为大马士革凹槽,大马士革凹槽包括位于超低K介质层中的通孔,和位于通孔上部与通孔相互贯穿的开口。大马士革凹槽的具体形成工艺请参考现有的形成工艺,在此不再赘述。

参考图5,对凹槽205侧壁暴露的超低K介质层203进行惰性等离子处理21,使得硅氢氧键中(Si-OH)的氢氧基(OH)从硅原子上断裂,在凹槽 205侧壁暴露的超低K介质层203表面形成硅悬挂键(Si-)。

所述惰性等离子体处理工艺21采用的惰性等离子体为He等离子体、Ne 等离子体或Ar等离子体。

惰性等离子体处理工艺21采用惰性等离子体,一方面,惰性等离子体不具有导电性,不会影响超低K介质层203的隔离性能,另一方面,惰性等离子体活性较低,不会与硅悬挂键结合。

惰性等离子体处理工艺21利用高能量的惰性等离子体使得硅氢氧键中 (Si-OH)的氢氧基(OH)从硅原子上断裂。

在一实施例中,所述惰性等离子体处理工艺21采用的等离子体为Ar等离子体,惰性等离子处理工艺采用的气体为Ar,Ar的流量为200~2000sccm,高频射频功率0~200W(瓦),低频射频功率200~2000W,腔室压力5~10Torr,腔室温度250~400℃。

参考图6,进行碳化处理工艺22,将硅悬挂键(Si-)转化为硅碳氢键 (Si-CHy,0<y≤3)。

所述碳化处理工艺22为含碳和氢的等离子处理,所述碳化处理工艺22 采用的气体为三甲基硅烷或四甲基硅烷,气体的流量为200~2000sccm,高频射频功率0~200W,低频射频功率200~2000W,腔室压力5~10Torr,腔室温度250~400℃。

三甲基硅烷或四甲基硅烷被离子化后产生碳等离子、氢等离子、碳氢等离子体等,碳等离子、氢等离子、碳氢等离子体易于硅悬挂键结合形成硅碳氢键(Si-CHy,0<y≤3)。

进行碳化处理工艺22后,在凹槽205侧壁暴露的超低K介质层表面形成硅碳氢薄膜层。

参考图7,进行氮化处理工艺23,将硅碳氢键(Si-CH)转化为硅碳氮氢键(Si-CNH),在凹槽205侧壁暴露的超低K介质层203表面形成SiCNH薄膜层206。

所述氮化处理工艺23为含氮的等离子处理,所述氮化处理工艺采用的气体为NH3或N2中的一种或几种,气体的流量为200~2000sccm,高频射频功率0~200W,低频射频功率200~2000W,腔室压力5~10Torr,腔室温度250~400 ℃。

所述氮化处理工艺23后形成的SiCNH薄膜层206的厚度为20~100埃。

本发明实施例中,经过惰性等离子体处理工艺21(参考图5)、碳化处理工艺22(参考图6)、氮化处理工艺23,去除凹槽侧壁暴露的超低K介质层表面的被等离子损伤后形成的硅氢氧键,消除和改善凹槽侧壁暴露的超低K 介质层表面粗糙度,为后续形成扩散阻挡层提高了良好的界面形貌。

为了使得消除凹槽侧壁暴露的超低K介质层表面的粗糙度效果进一步提高,在本发明的其他实施例中,循环进行对凹槽侧壁暴露的超低K介质层进行惰性等离子处理(参考图5)、碳化处理工艺22(参考图6)、氮化处理工艺 23的步骤。

在一实施例中,所述循环的次数为2~10次。

参考图8,在所述凹槽205(参考图7)的侧壁和底部形成扩散阻挡层207;在扩散阻挡层上形成金属层208,所述金属层208填充凹槽205(参考图7)。

所述扩散阻挡层207为材料为Ti、Ta、TiN、TaN中的一种或几种。

所述扩散阻挡层207可以为单层或多层(≥2)堆叠结。在一具体实施例中,所述扩散阻挡层207为双层堆叠结构,包括位于凹槽205(参考图7)的侧壁和底部TiN层和位于TiN层上的Ti层,或者包括位于凹槽205(参考图 7)的侧壁和底部TaN层和位于TaN层上的Ta层。

所述扩散阻挡层207的形成工艺为溅射。

所述金属层208的材料为Cu、Al或者W等。

所述金属层208和扩散阻挡层208构成第二金属互连结构。

所述金属层和扩散阻挡层208形成的具体过程为:在所述凹槽205(参考图7)的侧壁和底部表面以及掩膜层204(参考图7)的表面形成扩散阻挡材料层;在扩散阻挡材料层表面形成金属材料层,所述金属材料层填充满凹槽;采用化学机械研磨工艺去除超低K介质层203表面上的扩散阻挡材料层、金属材料层和掩膜层,在凹槽的侧壁和底部表面上形成扩散阻挡层207,在扩散阻挡层207上形成金属层208。

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1