具有覆盖半导体构件的由水泥构成的包封物料的半导体模块的制作方法

文档序号:20082151发布日期:2020-03-13 05:46阅读:410来源:国知局
具有覆盖半导体构件的由水泥构成的包封物料的半导体模块的制作方法

本发明涉及具有覆盖半导体的包封物料的半导体模块。



背景技术:

us7,034,660b2公开了无线地工作的传感器,所述传感器被嵌入在混凝土或其它含水泥的材料中,以便检测参数,所述参数表明建筑物质的变化。传感器例如可以是适合于检测氯离子的电化学传感器。

衬底上的单个半导体和半导体部件(包括无源器件)的包封目前优选地通过基于环氧树脂的部分地具有无机填充物、如二氧化硅(sio2)的有机物料进行。us4,529,755例如公开了这种包封物料,所述包封物料包括多官能环氧化合物、苯乙烯嵌段共聚物、用于环氧化合物的硬化剂、和无机填充物。

这些被包封的器件和组件典型地具有用于所装入的功率器件的电连接端子和冷却连接面。硬化的环氧树脂(未增强地)具有典型的大约60-80ppm/k的热膨胀系数(cte,coefficientofthermalexpansion)。衬底(陶瓷、金属和有机核印制电路板)拥有明显更低的热膨胀系数(3-20ppm/k)。对于功率电子应用来说,具有高的损耗功率以及部分地也具有高的运行电压的器件和组件、即绝缘要求是重点。在功率电子器件和组件中主要采用具有由al2o3、aln或si3n4构成的核的、具有3-8ppm/k的cte的陶瓷衬底。

在此,这些组件进一步被有机物料包封,所述有机物料必须补偿由弹性膨胀和模块变形所产生的相对于陶瓷衬底的失配。但是,陶瓷衬底和包封物料之间的该失配通过机械剪切应力导致内部接触、例如接合线的分层和损坏。

有机基质材料通过具有低膨胀的填充物的积聚导致在处理期间的关键特性和低粘度。物料在高温的情况下被液化并且在高压的情况下被压入到工具外壳的空腔中,以便保证无缩孔的填充。不过,该过程随着升高的填充度而有缺陷(缩孔)并且由于高温(160℃-200℃)和高压(15-25mpa)是非常耗费能量的。

最后,有机基质的必要性导致非常低的导热性,所述导热性尽管填充物掺合物一般来说仅不显著地高于环氧树脂的导热性(大约0.4w/mk)。



技术实现要素:

因此本发明的任务是创建一种半导体模块、尤其一种功率电子组件,所述功率电子组件是耐热应力的。

该任务通过具有权利要求1的特征的半导体模块被解决。从属权利要求反映本发明的有利的设计方案。

本发明的基本思想是将水泥用作用于半导体构件的包封的纯无机的、无金属的材料。在此处于中心地位的是,形成半导体(cte典型地2.5-4ppm/k)和包封材料之间的所适配的热膨胀。

水泥是氧化材料并且作为无机的以及非金属的结构材料拥有如下特性组合,所述特性组合对于用于包封半导体来说是有利的,即高的电绝缘(20-100kv/mm)、相对良好的导热性(1-2w/mk)和低的热膨胀(2-10ppm/k)。水泥通常由天然的原料石灰石、粘土和泥灰获得并且作为掺合物可以具有用于更好的烧结的含氧化铁的物质和石英砂。特别优选地被用于本发明的水泥例如可以有利地由基础原料氧化镁、硅酸锆和磷酸镁制成。

为了提高导热性,功率器件的无机的、包封的物料优选地拥有氮化铝和/或氮化硼作为附加料。附加料氧化铝和/或氮化硅(必要时与前面提到的物质相组合地)也对导热产生有益的影响。

优选地,包封物料是热桥,所述热桥建立到由铝(al)或铜(cu)构成的金属冷却体的热路径,所述金属冷却体离开所包封的组件的边界面或者在没有覆盖的情况下被布置在表面的平面中。物料的附着通过化学键(即具有特别良好的导热的物质连接)变得特别优选。因此可以通过一方面与衬底连接的冷却以及与包封物料连接的冷却引起热量的多侧的排出。

衬底上的未被涂覆的器件或者未被涂覆的组件优选地可以具有尤其由聚丙烯酸酯分散体构成的增附层(底漆)。该分散体作为薄层(例如通过喷射)被施加到组件上并且覆盖要包封的器件和衬底的部件侧的面到如下程度,即所述部件侧的面被包封物料覆盖。

因为水泥典型地在凝固之后具有残余孔隙,所以可以设置耐湿的敷层。为此两种策略是可行的:要么通过低粘性的保护物料填充毛细管,所述保护料通过硬化持久地密封毛细管,为此尤其硅酸钾或硅酸锂的水溶液是适合的。要么以保护层覆盖水泥表面,所述保护层不被或仅仅少量地被湿气渗透,为此尤其硬化的环氧树脂层(漆)是适合的。

半导体器件、衬底和包封的膨胀差异虽然根据本发明通过选择无机的水泥被最小化,但是原则上未被避免。因此,通过所包封的体积之内的温度梯度也形成机械应力,所述机械应力尤其在到半导体以及到衬底的界面处导致水泥之内的切应力。水泥虽然相对地是压缩应力稳定的,但是相对于拉应力是敏感的。

因此优选地规定:将纤维作为附加料引入到水泥的原始物料中,所述原始物料将拉应力分布到更大的体积上并且由此提高耐拉应力性。这总得来说导致更高的耐温度变化性。合适的纤维必须如水泥一样是不导电的并且是能够与水泥物质地连接的。这里采用无机的纤维,诸如玻璃纤维、玄武岩纤维、硼纤维和陶瓷纤维、例如碳化硅纤维和氧化铝纤维。也能够采用高熔点的、有机的纤维、诸如芳族聚酰胺纤维。

水泥的物质接合可能性实现有损耗功率的半导体通过水泥物料到冷却体的优选的导热。这既可以是单侧的,又可以从半导体出发是多侧的。

附图说明

借助在附图中所示出的特别优选地被构造的实施例进一步解释本发明。

图1示出按照第一实施例的按照本发明所设计的半导体模块的示意性构造,在所述半导体模块中包封物料被构造为圆顶封装体(glob-top);

图2示出根据第二实施例的半导体模块的示意性构造,所述半导体模块除了机电接触引线之外完全被包封物料包封;

图3示出根据第三实施例的具有被布置在半导体的两侧的用于空气冷却的冷却体的半导体模块的示意性构造;

图4示出根据第四实施例的具有被布置在半导体的两侧的用于水冷却的冷却体的半导体模块的示意性构造;以及

图5示出根据第五实施例的具有被布置在半导体的一侧上的用于空气冷却的冷却体以及被布置在半导体的另一侧上的用于水冷却的冷却体的半导体模块的示意性构造。

具体实施方式

图1示出按照第一实施例的按照本发明所设计的半导体模块的示意性构造,在所述半导体模块中包封物料被构造为圆顶封装体。

图1示出优选地被构造为功率电子组件的具有半导体构件20的半导体模块10,所述半导体构件以根据按照本发明由水泥构成的包封物料被覆盖。优选地,接触半导体构件20的接合线也以包封物料至少部分地、但是特别优选地完全地被覆盖和/或被包封。

半导体构件在此如已知的那样被固定在陶瓷衬底50上,所述陶瓷衬底又被施加在散热板70的上侧上。所述散热板的下侧与冷却体80连接。除此之外,半导体模块10具有作为向外部被引导的电接触部的载体的框60。

在该第一实施例中,由水泥构成的包封物料30仅仅被构造为覆盖/包封半导体构件20及其接合线40的滴剂(“glob-top”)。“圆顶封装体”和半导体模块10的另外的表面区域在此被绝缘物料90、例如硅凝胶覆盖。

图2示出根据第二实施例以无框的构造所建造的半导体模块10,所述半导体模块除了电和热接触面之外完全以由水泥构成的包封物料包封。

该设计方案尤其适合作为在下列图中所示出的实施例的出发点:

图3示出具有被设置在两侧的空气冷却的功率组件,其中上部的冷却体80a与由无机包封物料构成的热桥连接,所述无机包封物料由水泥构成,所述无机包封物料物质地接触冷却体,并且下部的冷却体80b通过物质连接被连接到衬底。

所示出的冷却器结构分别是整体的并且配备有冷却片和冷却销,以便尽可能涡流地进行空气或水穿透。

图4示出对应于图3中所示出的设计方案的具有两侧的水冷却的功率组件,其中在图4中所示出的冷却器结构整体地被构造并且配备有内部的导水通道,以便水穿透可以尽可能在封闭的结构中以小的密封长度进行。

图5最后示出具有两侧的冷却的功率组件,其中下部的冷却体80b再次整体地被构造,但是上部的冷却体80c多部分地被构造。被示出为上部的冷却体80c的冷却器结构例如由多个在半导体模块10的上侧之上延伸的冷却板构成或由多个分布在半导体模块10的表面之上的冷却销构成。

根据本发明将水泥用作用于半导体构件或半导体组件、尤其功率电子组件的包封的包封物料或者基质的优点在于1.2至1.6w/mk的良好的导热性以及大概4.7ppm/k的低的热膨胀(cte)。此外,水泥是无卤素的以及与金属兼容的。因为半导体构件或者半导体组件的包封在大气条件下以及在对应于半导体模块的运行温度的温度范围中进行,所以半导体模块可以不走样。最后,水泥在印制电路板表面(cu,ni/au)上的附着也被给定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1