银键合线及其制造方法与流程

文档序号:11161491阅读:670来源:国知局
(a)发明领域本发明的一个实施方案涉及具有改进的特性的键合线。此外,本发明的另一实施方案涉及具有根据本发明的一个实施方案的键合线的微电子组件和/或制造根据本发明的一个实施方案的键合线的方法。(b)相关技术描述在制造半导体器件的方法中使用键合线,以在半导体器件的制造中将集成电路电连接到印刷电路板上。此外,该键合线在电力电子应用中用于将晶体管和二极管电连接到外壳的引脚(pin)或焊盘(pad)上。该键合线最初用金制造,目前用低价材料如银制造。银线具有非常有利的电导率和热导率,但银线的键合本身具有问题。在本发明中,术语键合线包括所有横截面形状和所有典型的线直径。但是,优选使用具有圆形横截面和短直径的键合线。由于银比金便宜,最近的几个研究和发展的目标是具有使用银作为主要复合材料的芯材的键合线。但是,必须进一步改进该键合线本身和键合工艺的键合线技术。这一背景部分中公开的上述信息仅用于增强对发明背景的理解并因此可能含有不构成本国的本领域普通技术人员已知的现有技术的信息。发明概述为了提供改进的键合线,作出本发明。此外,为了提供由于具有有利的可加工性和没有相互连接困难而具有降低成本的优点的键合线,作出本发明。此外,为了提供具有表现出优异可键合性的优点的键合线,作出本发明。此外,为了提供具有表现出改进的成弧(looping)特性的优点的键合线,作出本发明。此外,为了提供具有解决线之间的粘性的优点的键合线,作出本发明。本发明的一个示例性实施方案提供一种键合线,其包含90.0至99.0重量%的银(Ag);0.2至2.0重量%的金(Au);0.2至4.0重量%的钯(Pd)、铂(Pt)或铑(Rh)或其组合;10至1000ppm的掺杂剂;和不可避免的杂质,其中(a)/(b)的比率为3至5。在此,(a)是指在线纵向上的晶体取向<hkl>中具有<100>取向的晶粒的量,且(b)是指在线纵向上的晶体取向<hkl>中具有<111>取向的晶粒的量。任一实施方案的键合线,其中:所述掺杂剂可以是钙(Ca)。任一实施方案的键合线,其中:所述掺杂剂可以是钙,钙含量可以为10至100ppm。任一实施方案的键合线,其中:所述键合线的孪晶界数可以为4至14%。任一实施方案的键合线,其中:所述键合线的(b)/(c)比率可以为1.5至8。在此,(b)是指在线纵向上的晶体取向<hkl>中具有<111>取向的晶粒的量,且(c)是指泰勒因子。任一实施方案的键合线,其中:纵向上的晶粒平均粒度可以为0.8至1.2微米。任一实施方案的键合线,其中:在所述线的最终拉制步骤之前,所述线可暴露在中间退火步骤中。任一实施方案的键合线,其中:所述中间退火步骤可进行一至三次。任一实施方案的键合线,其中:所述中间退火步骤可进行二至三次。任一实施方案的键合线,其中:所述中间退火步骤可包括第一分批中间退火步骤;第二连续中间退火步骤;和/或第三连续中间退火步骤。任一实施方案的键合线,其中:第一中间退火步骤可在400至800℃下进行50至150分钟并可包括将所述线冷却50至150分钟的步骤。任一实施方案的键合线,其中:第二中间退火步骤可在400至800℃下以100至300rpm的速度进行。任一实施方案的键合线,其中:第三中间退火步骤可在400至800℃下以100至300rpm的速度进行。任一实施方案的键合线,其中:所述线可通过垂直连续铸造法暴露在铸造步骤中,且所述垂直连续铸造法可以在1150至1350℃下进行。任一实施方案的键合线,其中:所述垂直连续铸造法可以在4至9cm/min的铸造速度下进行。本发明的另一示例性实施方案提供一种微电子组件封装件,其包括通过如上文提到的根据本发明的一个实施方案的键合线互相连接的电子器件和基底。本发明的再一示例性实施方案提供一种制造键合线的方法,其包括提供线原材料;通过垂直连续铸造法铸造所述线原材料;相继拉制所述铸造线直至达到最终直径;和将所述拉制的线退火,其中在所述线的最终拉制步骤之前进行中间退火步骤一至三次,且所述线原材料包含90.0至99.0重量%的银(Ag);0.2至2.0重量%的金(Au);0.2至4.0重量%的钯(Pd)、铂(Pt)或铑(Rh)或其组合;10至1000ppm的掺杂剂;和不可避免的杂质。任一实施方案的制造键合线的方法,其中:所述掺杂剂可以是钙,且钙含量可以为10至100ppm。任一实施方案的制造键合线的方法,其中:所述中间退火步骤可包括第一分批中间退火步骤;第二连续中间退火步骤;和/或第三连续中间退火步骤。任一实施方案的制造键合线的方法,其中:第一中间退火步骤可在400至800℃下进行50至150分钟并包括将所述线冷却50至150分钟的步骤。任一实施方案的制造键合线的方法,其中:第二中间退火步骤可在400至800℃下以100至300rpm的速度进行。任一实施方案的制造键合线的方法,其中:第三中间退火步骤可在400至800℃下以100至300rpm的速度进行。任一实施方案的制造键合线的方法,其中:在通过垂直连续铸造法铸造所述线原材料中,所述垂直连续铸造法可在1150至1350℃下进行。任一实施方案的制造键合线的方法,其中:所述垂直连续铸造法可在4至9cm/min的铸造速度下进行。任一实施方案的制造键合线的方法,其中:通过所述方法制成的键合线的(a)/(b)的比率可以为3至5。在此,(a)是指在线纵向上的晶体取向<hkl>中具有<100>取向的晶粒的量,且(b)是指在线纵向上的晶体取向<hkl>中具有<111>取向的晶粒的量。任一实施方案的制造键合线的方法,其中:通过所述方法制成的键合线的孪晶界数可以为4至14%。任一实施方案的制造键合线的方法,其中:通过所述方法制成的键合线的(b)/(c)比率可以为1.5至8。在此,(b)是指在线纵向上的晶体取向<hkl>中具有<111>取向的晶粒的量,且(c)是指泰勒因子。任一实施方案的制造键合线的方法,其中:通过所述方法制成的键合线在纵向上的晶粒平均粒度可以为0.8至1.2微米。任一实施方案的制造键合线的方法,其中:通过所述方法制成的键合线可以是根据本发明的各种实施方案的键合线。根据本发明的一个实施方案,可以提供能够由于具有有利的可加工性和没有相互连接的必要而降低制造成本的键合线。还可提供具有改进的键合特性的键合线。还可提供具有改进的成弧特性的键合线。此外,还可提供能够解决线之间的粘性的键合线。附图简述图1图解通过评估根据本发明的一个示例性实施方案的键合线的成弧特性而得的数据。图2图解通过评估根据本发明的示例性实施方案的键合线的键合特性而得的照片。实施方案详述下面将详细描述本发明的实施方案。这些实施方案仅作为实例给出并且无意限制本发明。实际上,本发明仅受所附权利要求书的范围限定。发现根据本发明的一个实施方案的线解决一个或多个上述目的。此外,发现制造该线的方法克服制线中的一个或多个问题。此外,发现包括本发明的线的系统在另一电元件和根据本发明的线之间的界面上更可靠。通过独立权利要求的主题实现本发明的一个实施方案的一个或多个目的。该独立权利要求的从属权利要求代表本发明的优选方面,也通过从属权利要求的主题实现一个或多个上述目的。在本发明的一个实施方案中,提供一种键合线,其包含90.0至99.0重量%的银(Ag);0.2至2.0重量%的金(Au);0.2至4.0重量%的钯(Pd)、铂(Pt)或铑(Rh)或其组合;10至1000ppm的掺杂剂;和不可避免的杂质,其中(a)/(b)的比率为3至5。(a)是指在线纵向上的晶体取向<hkl>中具有<100>取向的晶粒的量,且(b)是指在线纵向上的晶体取向<hkl>中具有<111>取向的晶粒的量。在此,该复合材料的所有含量或份额作为重量基份额表示。特别地,以百分比单位表示的复合材料份额是指重量%,以ppm(百万分率)单位表示的复合材料份额是指重量ppm。关于具有预定粒度和/或取向的晶粒的百分比值是指总粒子数的份额。为了测定晶粒粒度和/或晶粒取向,制造线样品,并使用EBSD(电子背散射衍射)测量制成的线并评估。下面,本发明的要求保护的特征的确切定义将参照本发明的示例性实施方案的描述。当任一复合材料的份额大于参考材料的所有其它复合材料的份额时,该复合材料是“主要复合材料”。主要复合材料优选构成该材料的总重量的50至100%。在一个优选实施方案中,该线包含银作为主要复合材料。当(a)/(b)的比率为至少3至5时,由于晶粒的恒定量大,可以降低该键合线的机械和电特性和根据产品的特性的变化。更具体地,该掺杂剂可以是钙(Ca)。钙含量可以为10至100ppm。通过使用钙掺杂剂,可以控制该线的摇摆(sway)和/或迂回(snake)现象。本发明不受这一范围限制,并可以根据所需特性选择适当的含量。更特别地,该键合线的(b)/(c)比率可以为1.5至8。(b)是指在线纵向上的晶体取向<hkl>中具有<111>取向的晶粒的量,且(c)是指泰勒因子。泰勒因子是用于描述各晶粒的变形行为和晶粒方向之间的关系的因子,当该因子满足(b)/(c)的比率范围时,可以改进键合特性。更特别地,该键合线的孪晶界数可以为4至14%。当孪晶界数满足这一范围时,可以降低受孪晶界数影响的电特性劣化。更特别地,纵向上的晶粒平均粒度可以为0.8至1.2微米。晶粒粒度特别均匀,并有助于线性质的有利可再现性。在最有利的实施方案中,晶粒粒度的标准偏差可以为0.1至0.5微米。更优选地,晶粒粒度的标准偏差可以为0.1至0.4微米,或0.1微米至0.25微米。发现当晶粒粒度特别均匀时,线的品质及其可再现性显著提高。一般而言,可通过适当选择已知制造参数调节晶粒的其它结构,如晶粒粒度和取向。这些制造参数是其它参数,如拉制步骤数和直径的降低,包括退火参数,如退火温度和暴露时间。在本发明的一个优选实施方案中,在最终拉制步骤之前,该线可暴露在中间退火步骤中。中间退火是指在影响该线的微结构的步骤之前进行退火。该中间退火步骤可进行一至三次。通过这三个中间退火步骤,可以改进该线的粘性特性。更特别地,该中间退火步骤可包括第一分批中间退火步骤;第二连续中间退火步骤;和/或第三连续中间退火步骤。对于具体实例,第一中间退火步骤可在400至800℃下进行50至150分钟,并可包括将所述线冷却50至150分钟的步骤。对于具体实例,第二中间退火步骤可在400至800℃下以100至300rpm的速度进行。对于具体实例,第三中间退火步骤可在400至800℃下以100至300rpm的速度进行。该中间退火步骤的工艺条件可以是通过多个重复实验获得的结果,并可影响该键合线的特性。应该理解的是,在该线用于键合法之前使该线暴露在退火步骤中通常是中间退火步骤或最终退火步骤。最终退火步骤是影响线微结构的制线法的最终步骤。最终退火步骤的参数是本领域中公知的。当该线暴露在最终退火步骤中时,最优选预先进行中间退火步骤,这是指在制线法中进行二至三个不同退火步骤。如在拉制步骤中,可以中间退火步骤和最终退火步骤之间进行影响该线的微结构的工艺。该工艺可特别优化本发明的线的晶体结构。该线可通过垂直连续铸造法暴露在铸造步骤中,该垂直连续铸造法可以在1150至1350℃下进行。垂直连续铸造法是主要铸造线原材料的方法并且是本领域中公知的。在这一步骤中可以将铸造温度范围控制在1150至1350℃。在这种情况下,可以解决在形成键合线的FAB时造成的如苹果咬型球(applebiteball)和蛇皮(snakeskin)之类的问题。此外,在该线的键合特性中,可以降低OCB(偏心球)发生率。更特别地,该垂直连续铸造法可以在4至9cm/min的铸造速度下进行。在这样的情况下,可以获得比现有铸造结构致密的枝晶结构,并且这样的均匀致密结构可改进键合特性。特别地,本发明的一个实施方案涉及细键合线。观察到的效应是特别具有控制该细线的晶粒粒度和晶粒取向的优点。在这种情况下,术语“细线”是指具有8微米至80微米直径的线。更优选地,根据本发明的细线具有14至25微米的直径。在该细线中,本发明的复合材料和退火过程特别有助于获得有利的性质。尽管不是强制性的,但大多数细线具有基本圆形横截面图。在本发明上下文中,术语“横截面图”是指该线的切割面,且其切割面垂直于该线的纵向延伸线。可以在该线的纵向延伸线上的任意位置观看横截面图。在横截面中穿过该线的“最长路径”是在横截面图的平面上穿过该线的横截面的最长弦。在横截面中穿过该线的“最短路径”是在上文定义的横截面图的平面上垂直于最长路径的最短弦。当该线具有完美圆形横截面时,不区分最长路径和最短路径,并且共享同一值。术语“直径”是任意平面和任意方向上的所有几何直径的算术平均值,且所有平面垂直于该线的纵向延伸线。本发明的另一实施方案涉及一种微电子组件,其包括通过根据本发明的一个实施方案的键合线互相连接的电子器件和基底。根据本发明的一个实施方案的键合线可适用于各种组件封装件,并可根据所需组件的特性,部分控制该线的特性。在本发明的再一实施方案中,提供一种制造键合线的方法。该方法包括提供线原材料;通过垂直连续铸造法铸造所述线原材料;相继拉制所述铸造线直至达到最终直径;和将所述拉制的线在最低退火温度下退火最小退火时间。在该线的最终拉制步骤之前进行中间退火步骤一至三次,且该线原材料包含90.0至99.0重量%的银(Ag);0.2至2.0重量%的金(Au);0.2至4.0重量%的钯(Pd)、铂(Pt)或铑(Rh)或其组合;10至1000ppm的掺杂剂;和不可避免的杂质。应该理解的是,原材料的拉制可以在各种步骤中进行。应该理解的是,该线原材料具有根据本发明的一个实施方案的线的复合材料。可以使用通过熔融限定量的银并加入限定量的附加复合材料而形成的均匀混合物,简单地获得线原材料。此后,该线原材料可使用熔融合金或固化合金通过任意已知方法铸造或模制。在描述根据本发明的一个实施方案的线时已经给出对该线原材料的掺杂剂的描述,因此不再给出其描述。在本发明的一个优选实施方案中,在该方法中,在该线的最终拉制步骤之前,中间退火步骤可进行一至三次。在附加中间退火步骤中,在该线的拉制步骤中造成强烈机械变形之前优化晶体结构。发现该中间退火有利于最终获得该线的微结构。例如,该中间退火步骤有助于降低最终产品中的晶粒粒度偏差和改进晶粒取向。可以调节该中间退火的参数以适合所需线参数。对中间退火的描述如上文提到。此外,对垂直连续铸造法的描述如上文提到。关于优化的退火参数,制造线的方法的更优选的具体实施方案参照对本发明的线的描述。下面描述本发明的一个优选示例性实施方案和对比例。但是,下列示例性实施方案仅是本发明的优选示例性实施方案,并且无意限制本发明。示例性实施方案通过示例性实施方案更具体例示本发明。该示例性实施方案给出本发明的示例性描述,并且无意限制权利要求书或本发明的范围。通过下列充分混合的复合材料(单位:重量%)制造合金,该复合材料通过熔融预定量的纯银并添加预定量的纯金、钯和钙获得:银:(94或更多余量(bal.))%、金:(0.2至2)%、钯:(1至5)%、钙(0.001至0.01)%通过将该熔融混合物铸造成模制品并冷却该模制品,获得线原材料。该线原材料的直径为6至10毫米。此时,铸造条件为1200℃,铸造速度为7cm/min,且冷却温度为20℃。随后,通过进行拉制数次并进行三个中间退火步骤,进行最终退火。首先,通过经第一拉制步骤拉制具有6毫米直径的线,获得具有2毫米直径的线。这次,拉制速度为10MPM,且这一过程进行大约17次。此后,进行第一中间退火步骤。第一中间退火步骤以分批方式进行,并在400℃下进行退火60分钟后,将该线冷却90分钟。第一中间退火步骤在Ar条件下进行。随后,通过附加拉制步骤获得具有从2毫米减至0.4毫米的直径的线。这次,拉制速度为30MPM。此后,通过附加拉制步骤获得具有从0.4毫米减至0.1毫米的直径的线。这次,拉制速度为100MPM。此后,通过附加拉制步骤获得具有从0.1毫米减至0.05毫米的直径的线。这次,拉制速度为250MPM。随后,进行第二中间退火步骤。第二中间退火步骤以连续方式在500℃下在200rpm下进行。在第二中间退火步骤后,通过附加拉制步骤获得具有从0.05毫米减至0.03毫米的直径的线。这次,拉制速度为250MPM。此后,进行第三中间退火步骤。第三中间退火步骤以连续方式在500℃下在200rpm下进行。随后,通过微拉制步骤获得具有0.7密尔直径的线。这次,拉制速度为300MPM。此后,最后进行最终退火。实验实施例:制成的线的独特特性的检查使用示例性实施方案中制成的线检查取向。使用EBSD设备进行该检查。检查出<100>/<111>的比率为3.3。检查出制成的示例性实施方案的孪晶界数为9%。检查出制成的示例性实施方案的泰勒因子为2.8且<111>/泰勒因子的值为1.67,其是取向<111>的数量与泰勒因子的比率。检查出制成的示例性实施方案的晶粒粒度为10微米。实验实施例:制成的线的性能特性的检查使用根据本发明的示例性实施方案获得的线进行各种试验。首先,将该线与使用银合金(其类似于本发明的示例性实施方案的线)作为基础材料的现有线进行比较。使用HeraeusHolding制造的AgUltra产品作为现有纳米线。对比测量值包括键合特性、成弧特性和脱绕(de-spooling)试验的数据。对该线的这些性质进行线键合领域中标准的试验方法。图1图解通过评估根据本发明的示例性实施方案的键合线的成弧特性而得的数据。可以看出,与现有产品相比显著解决本发明的示例性实施方案中的迂回、摇摆和短路(short)缺陷。图2是通过评估根据本发明的示例性实施方案的键合线的键合特性而得的照片。当在键合焊盘中通过形成该线的FAB(无空气球)进行球形键合时,键合球形状中的键合直径需要位于焊盘的中间,且键合直径内的侧面的键合环的长度需要恒定。表1代表图2的测量数据。A是等级A,且键合直径位于键合焊盘的中心。此外,A意味着键合环的长度在各位置处始终相等,并且可以看出,与现有产品相比,通过本发明的方法制成许多等级A的成果产品。[表1]类型ABC旧58.8%40%1.2%新94.17%5.83%0%表2代表脱绕试验的结果。特别地,在该线自由下落50至70厘米的同时评估该线的脱绕特性。当在脱绕过程中该线的退绕停止并且该线通过轻触再退绕时,计数在该线退绕中的停止数,否则,当该线需要变形时,计数扭结(kinks)数。表3代表7天的评估结果,并且可以看出,本发明的示例性实施方案的扭结数为10至1000ppm且其直线特性和粘性特性改进。[表2]对比例示例性实施方案超过1000ppm低于1000ppm本发明不限于示例性实施方案并可以以各种不同的形式制造。本领域技术人员应该理解,这些示例性实施方案可以以不同的具体形式实施而不改变本发明的技术精神和基本特征。因此,应该理解的是,上述示例性实施方案在所有方面中是示例性而非限制性的。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1