具有降低翘曲风险的反向导通闸控双极导通装置及方法与流程

文档序号:11531429阅读:232来源:国知局
具有降低翘曲风险的反向导通闸控双极导通装置及方法与流程

相关申请的交叉参考

本申请要求于2015年1月5日申请的美国专利申请书62/099,710的优先权,其通过引用并入本文。



背景技术:

本申请涉及使用具有背面注入少数载体的双极导通的功率装置,更具体地涉及包括反向导通二极管的绝缘闸极双极晶体管(rc-igbt)。

注意,下面讨论的点可能反映从所公开的申请中获得的后见,并且不一定被承认为现有技术。

绝缘闸极双极晶体管(igbt)是一种主要用作电子开关的三端功率半导体装置,双极晶体管的动作由mos控制闸极启动,(在概念上,igbt可被认为是合并装置,其中场效控制晶体管控制对垂直双极晶体管的基极驱动)。igbt结合了功率场效应晶体管与功率双极晶体管的许多优点。igbt在许多现代设备中用于切换电力:变频驱动器(vfd)、电动车、火车、变速冰箱、灯镇流器、空调、甚至具有切换放大器的立体声系统。使用igbt的放大器可使用脉冲宽度调制和低通滤波器合成复杂波形。

目前,igbt的现有技术是利用所谓的场截止(fs)、或光穿通(lpt)、或软穿通(spt)技术来优化n型缓冲层以防止在p型集电极(阳极)区附近的高电场。这些技术分别在以下出版物中描述,所有这些文献通过引用并入本文:t.laska等人的“shortcircuitpropertiesoftrench/fieldstopigbtsdesignaspectsforasuperiorrobustness”,proc.ispsd2002;h.k.nakamura等人的“advancedwidecellpitchigbthavinglightpunchthrough(lpt)structures”,proc.ispsd2002;m.rahimo等人的“extendingtheboundarylimitsofhighvoltageigbtsanddiodestoabove8kv”,proc.ispsd2002。

与极薄(透明)p+集电极结合的具有n型缓冲层的精确设计的igbt在装置击穿电压、导通损耗、和切换损耗方面具有非常有前途的权衡特性。这种先进igbt的单位胞元结构在图2a和图2b中被显示。

图2a示出了没有反向导通能力的传统场截止igbt(fs-igbt)(因为此装置不包括体二极管)。图2b示出了具有反向导通(rc)能力的经过改进的传统结构。这是具有“短路阳极”结构的传统场截止反向导通型igbt(rc-igbt),用于当装置处于飞轮操作时产生通过体二极管的反向导通的能力。

在这两种结构中,前表面组件覆盖n型漂移区200,并包括绝缘沟槽闸极230、浅n++源极区242、p型射极区244、和围绕射极区244的p型主体区246。在图2a中,背表面结构仅包括比漂移区200更重掺杂的n型缓冲层210和薄p+集电极区220。集电极侧金属镀层202与集电极区220欧姆接触。

图2b的装置具有不同的背表面结构。这里,集电极区220不覆盖整个背表面。相反,在一些位置处,n+二极管接触区212位于缓冲层210下方。

为了优化这些结构以获得最佳效能,n-缓冲层和p+阳极的深度(或厚度)是非常关键的。n-缓冲的深度通常在几微米(~2um)的范围内,并且p+阳极的深度小于一微米(~0.5um)。用于形成具有这种小尺寸的这些层的目前的制作过程是将n-晶圆研磨至适当的厚度。例如,对于600vfs-igbt,晶圆厚度约为70um,而对于1200vfs-igbt,晶圆厚度约为110um。

然后,通过使用或不使用掩膜从晶圆背面注入n型掺杂剂(例如磷)和p型掺杂剂(例如硼)来完成n-缓冲和p+阳极的结构。这些掺杂剂的激活通过雷射退火或炉退火来进行。然而,为了以最小偏差实现良好性能,这些退火程序的热预算是非常关键的,并且必须精确控制以便在退火程序期间使掺杂剂重新分布和层深度的变化最小化。

然而,从制造的观点来看在薄晶圆上执行这些程序步骤是非常具有挑战性的。众所周知,薄晶圆不太稳定,并且在处理期间更易于受到应力、断裂和翘曲。这些事件不仅会在基板研磨期间发生,而且会在包括注入、退火和蚀刻以及掩膜的后续程序步骤中发生。改进这些问题的当前技术是使用与特殊晶圆支撑系统和载体结合的暂时晶圆。遗憾的是,这些技术增加了制造程序的复杂性并增加了制造成本。



技术实现要素:

本申请公开了用于实现具有反向导通(rc)能力的igbt(和类似装置)的新方法,特别是在薄集电极区上使用薄缓冲层的情况下。本发明人已经认知由于提供反向导通二极管的二极管端区(在背面上)不需要具有与集电极区(在同一表面上)的掺杂剂分布一样的精确控制,因此这些区域中的半导体材料的附加厚度可用于机械支撑区域以避免翘曲问题。因此,集电极区可被优化以使用缓冲和集电极区的精确控制以及半导体材料的小的总厚度,而没有处理非常薄的晶圆的缺点。

公开了实现这些观念的几种不同方式。

附图说明

将参照附图来说明所公开的应用,附图显示重要的示范具体实施例,并通过引用并入本说明书中,其中:

图1a、1b、1c、1d、1e、和1f示出了在二极管端区中具有比在集电极区中更厚的半导体材料的新的反向导通场截止igbt的六个实现方式;

图2a示出了没有反向导通能力的传统场截止igbt(fs-igbt),图2b示出了具有反向导通(rc)能力的不同传统结构;

图3、4、和5示出了可用于制造图1a-1f的结构的一系列步骤;

图6示出了使用肖特基接触集电极的实现方式;

图7示出了在其中一个新装置的实例中的电流流动的分布;

图8比较新型和传统场截止rc-igbt装置的前向特性;

图9比较传统igbt、vdmost和新装置的前向导通i-v特性;

图10示出了使用双缓冲层的新igbt的进一步实现方式;

图11示出了使用具有分段配置的三缓冲层的新igbt的进一步实现方式;

图12和13示出了使用具有p++和n++纳米层的更先进igbt的进一步实现方式;

图14和15示出了使用肖特基接触集电极的进一步实现方式。

具体实施方式

本公开将特别参考当前较佳的具体实施例(通过举例而非限制)来说明本申请的许多创新教导。本申请说明若干应用,并且下面的陈述一般都不应被视为限制申请专利范围。

本申请公开了用以实现具有反向导通(rc)能力的igbt(和类似装置)的新方法,特别是在集电极(阳极)区上使用缓冲层的情况下。这些方法适用于场截止(fs)、或光穿通(lpt)、或软穿通(spt)技术,特别是当使用薄(或“透明”)集电极层时。

在本申请中,公开了新的制造装置的结构和程序以解决此挑战。利用新技术,可生产先进的fs-igbt,而不需要减薄基板和特殊的晶圆支撑系统或雷射退火。另外,装置结构使得前向电流电压降、饱和导通压t和由rc-igbt中的“短路阳极”结构引起的“负微分电阻”(ndr)问题之间的权衡的显著改进。

这些最终装置结构具有场截止层和留在沟槽底板处的透明p+阳极,其中保留厚n+基板以形成反向导通区或“阳极”层。此外,由于剩余的n+基板具有正常厚度,所以其自然变为对整个晶圆的机械支撑。此外,剩余的n+基板还使得最终装置与薄基板相比具有更高的热容量。结果,与传统薄晶圆fs-igbt相比,由于其较高的热容量,预期瞬态电热特性是优越的。

在给定的实例中,这些结构通常具有与图2a和2b的传统装置相同的前表面结构。然而,背表面结构是非常不同的。

在图1b中,二极管接触区被厚n++二极管接触区102覆盖,n++二极管接触区102是先前基板的残余物。集电极114和n型缓冲层112被图案化,以便不覆盖二极管接触区。集电极金属镀层101欧姆接触到二极管接触区102和集电极114。

图1a大体类似于图1b,除了集电极114'在其边缘处稍微延伸以部分地伸出二极管接触区。

图1c大体类似于图1a,除了集电极金属镀层101不是连续的。在此实例中,对集电极区和二极管接触区进行单独的连接,其他组件大体是相同的。

图1d大体类似于图1b,除了两个差异。第一,如图1c所示,集电极金属镀层101不是连续的;第二,也许更重要的是,缓冲层112'悬于集电极层114之上,并将其与n++区102分离。

图1e大体类似于图1a,除了集电极金属镀层101(其近似共形)已被平面化的金属镀层101'代替。在此实例中,对集电极区和二极管接触区进行单独的连接,其他组件大体是相同的。与二极管接触区中的较厚半导体材料102的刚性相结合的平面化的金属镀层101'的额外厚度提供了防止翘曲的额外保护。

图1f大体类似于图1e,除了与图1e中的层114'不同的图1f中的集电极层114不悬于n++区102之上。

图3-5示出了制造图1a-1f的结构的一些步骤。在新程序中,将基板研磨至在完成晶圆前表面程序之后可由标准制造设备处理的正常厚度,例如,晶圆厚度可研磨至200um,如图3所示。

然后,应用掩膜程序,并且硅经过深沟槽蚀刻程序被蚀刻,蚀刻程序应切穿n+基板层。应该适当地控制蚀刻的深度以避免移除太多的n-层。这反过来又避免了装置的截止击穿电压的退化,这在图4中示出。

在一实例中,在半导体材料已被研磨至200um的情况下,背表面沟槽可被蚀刻至130um深,这在集电极存在的区域中留下70um的厚度。然而,如本领域的普通的技术人员将理解的,主动装置区的厚度将基于额定电压、漂移层掺杂、和半导体材料的其它特性来调整。

接下来,用不同的能量注入n型掺杂剂(如p或as)和p型掺杂剂(如b)以形成如图5中给出的浅p+阳极(或集电极)和n缓冲层。

随后,移除掩膜层并进行背面退火,接着是标准背面金属镀层以产生图1a、图1b、图1c、图1d、图1e、和图1f所示的各种最终装置结构的任一者。这些最终装置结构具有场截止层和位于沟槽底板处的具有厚n+基板剩余部分以形成反向导通区或“阳极短路”层的透明p+阳极。此外,由于剩余的n+基板具有正常厚度,所以其自然变为对整个晶圆的机械支撑。此外,剩余的n+基板还使得最终装置与薄基板相比具有更高的热容量。结果,与传统薄晶圆fs-igbt相比,由于其较高的热容量,预期瞬态电热特性是优异的。

图6大体类似于图1b,除了集电极层114已被肖特基金属镀层101”代替,其与上覆的半导体材料的形成肖特基势垒接触,其他组件大体是相同的。

具有平面闸极的新装置内的前向电流通过二维程序和装置cad工具来仿真,结果如图7所示。可以看出,流过厚n++基板的电子电流导通p+集电极/n外延(epi)接面。结果,pn接面的部分被前向偏置,并且前向导通电流流过p+集电极区。

为了比较,在图8中模拟且给出了新igbt(根据本发明的一个样本具体实施例)和传统场截止rc-igbt两者的前向i-v特性。对于在p+区和n++区之间的给定面积比(45:1),新结构的电流比传统rc-igbt高得多,这是由于厚的n++基板,其在这里具有~225um的示范厚度。这是比在具有非常浅的n++区(~1um)的传统场截止rc-igbt中发现的更高的n++电阻。新装置中的p+集电极/n-epi接面更容易导通,这促使从p+区注入更高的空穴。此外,通过p+/n++面积比的适当设计,可在新装置中完全消除“负微分电阻”(ndr),如图8所示。

图9比较传统igbt、vdmost、和本发明的一个样本具体实施例的前向导通i-v特性。可以看出,与vdmost相比,新装置具有高得多的电流能力。通过n++基板(p+区域)的移除区域的适当设计,新装置的前向导通电流可接近没有反向导通能力的传统igbt。

此外,通过采用本申请的创新技术,可创建许多更先进的背面结构以进一步改善igbt特性。例如,图10的样本具体实施例展示了具有双缓冲层的新igbt。

图11示出了根据本发明的具有拥有分段配置的三缓冲层的新igbt,其被期望产生igbt的进一步优化的特性。

另外,如图12和图13的样本具体实施例中所示,新程序还可用于通过亚kev注入程序来创建具有p++和n++的纳米层的更先进的igbt。可以看出,这些igbt结构具有与阳极短路结合在一起的穿隧阳极结构。

进一步,可容易地形成具有拥有“短路阳极”的肖特基接触集电极的装置,这些结构的样本具体实施例被描绘于图14和图15中。

本申请的创新性教导还可应用于具有p++基板而不是n++基板的装置。

优点

在各种具体实施例中,所公开的创新提供至少以下优点的一个或多个,然而,并非所有这些优点都是由所公开的每个创新产生的,并且此优点列表不限制各种主张的应用。

骤回效应的较好控制;

改善的击穿电压;

减少的前向压降;

增加的热电容;

改善的瞬态电热特性;

改善前向电流压降、饱和导通压和“负微分电阻”(ndr)问题之间的权衡。

根据一些但不一定所有具体实施例,提供了:一种具有双极导通的反向导通闸控半导体装置,包括:射极结构,在第一型半导体晶粒的第一表面上,其包括第二型射极区、及可选择地将第一型源极端连接至晶粒的主体的控制端;集电极结构,在半导体晶粒的第二表面上,其包括由第一型缓冲层覆盖的薄第二型集电极区;及第二型反向导通二极管端,在第二表面上;其中晶粒穿过二极管端的总厚度超过晶粒穿过集电极结构的总厚度。

根据一些但不一定所有具体实施例,提供了:一种半导体装置,包括:射极结构,在第一型半导体晶粒的第一表面上,其包括第二型射极区;集电极结构,其仅占据半导体晶粒的第二表面的一部分,及二极管结构,其占据第二表面的其它部分;其中晶粒穿过二极管端的总厚度大于晶粒穿过集电极结构的总厚度的两倍;并且其中集电极结构包括对应于第一扩散长度的掺杂剂成分,第一扩散长度小于第二型射极区的掺杂剂成分的扩散长度。

根据一些但不一定所有具体实施例,提供了:一种反向导通igbt,包括:射极结构,在第一型半导体晶粒的第一侧上,其包括第二型射极区、及可选择地将第一型源极端连接至晶粒的主体的控制端;集电极结构,在半导体晶粒的第二侧上,其包括由第一型缓冲层覆盖的薄第二型集电极区;第二型反向导通二极管端,在第二侧上;其中晶粒穿过二极管端的总厚度超过穿过集电极结构的总厚度。

根据一些但不一定所有具体实施例,提供了:一种用于制造具有双极导通的反向导通闸控半导体装置的方法,包括:提供包括重掺杂第一型基板和较轻掺杂第一型漂移区两者的半导体晶粒,及在晶粒的第一表面上形成第二型射极区及可选择地将第一型源极端连接至晶粒的主体的控制端;将凹槽蚀刻至半导体晶粒的第二表面中,从而从凹槽位置移除基板并将其留在其它位置;及仅在凹槽中形成集电极结构;其中凹槽的深度大于晶粒的总厚度的三分之一;通过第二表面上的基板的剩余部分当作二极管端,而集电极与射极区一起操作以传导双极电流。

根据一些但不一定所有具体实施例,提供了:反向导通igbt,其中集电极侧包括二极管端区,并且半导体材料穿过二极管端区比穿过集电极区厚得多。这利用由二极管端区占据的面积分数来为晶圆提供增加的刚性,从而避免翘曲。

修改和变化

如本领域的普通技术人员将认知本申请中所述的创新概念可在巨大的应用范围内被修改和改变,并且因此专利主题的范围不受限于给出的任何具体示范教导。旨在包括落入在所附申请专利范围的精神和广泛范围内的所有这样替代、修改和变化。

虽然上述的主要实例是igbt,但是所公开的发明也可应用于严格来说不是igbt的类似装置。

更普遍地,所公开的本发明还可应用于具有双极导通和背表面载体注入(特别是若载体注入仅在部分背表面上发生)的任何其它装置。在这种装置中,使用低能量注入(或其它浅掺杂剂引入)和低dt来定制少数载体注入结构的能力与不是少数载体注入结构的一部分的增厚部分的额外刚度协同地结合,但是会使薄化结构更加稳定。

还应注意所公开的创新不限于硅,而是可在其它半导体材料的晶圆中实施。这样材料的实例包括sige、sic、sigec、其它iv-iv半导体合金、iii-v半导体(包括第三和第四和其它合金)、zns和其它ii-vi合金以及具有够长足以使双极导通实现的载体寿命的任何其它半导体合金。

各种图案可以用于二极管区102。例如,在一种预期的实施类型中,二极管区被布置为从晶圆的中心辐射的辐条,以增强晶圆抗翘曲的刚度。

对于另一实例,即使沟槽闸控结构用于本申请中的新技术的演示,但新技术也可用在平面闸控装置中。

在另一具体实施例中,可使用与上述类似的程序,除了在沉积顶表面金属之前研磨晶圆。在这种情况下,顶表面被诸如二氧化硅的电介质材料覆盖。执行类似的背表面程序,如图3、4和5所述,随后进行射极接触蚀刻、顶部金属和背部(集电极)金属沉积。

本申请中的描述都不应理解为暗示任何特定组件、步骤或功能是必须包括在申请专利范围内的必要组件:专利主题的范围仅由所允许的申请专利范围限定。此外,这些申请专利范围中没有一个旨在援引35usc第112节的第六段,除非确切的词“用于...的工具”之后是分词。

所提出的申请专利范围旨在尽可能全面,并且没有主题被有意地放弃、专用或丢弃。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1