具有导电颗粒的电线的制作方法

文档序号:11519585阅读:219来源:国知局
具有导电颗粒的电线的制造方法与工艺

本文所描述和/或示出的主题总体上涉及电线,所述电线中具有多个电导体的线束。电端子通常用于端接电线的端部。这些电端子通常包括电触头和压接筒。压接筒包括开口,所述开口在其中接收电线的端部。压接筒压接在电线的端部周围,以在电线的电导体与端子之间建立电连接,以及将电端子机械地保持在电线端部上。当压接在电线端部上时,压接筒在电线的导体与电触头之间建立电气连接和机械连接。



背景技术:

电线的导体通常由铜、铜合金、铜包钢等制造。然而,随着铜的成本升高,铝代表了成本较低的替代导体材料。铝的重量也比铜轻,因此铝也代表了重量较轻的替代导体材料。但是,使用铝作为导体材料也具有缺点。例如,使用铝作为导体材料的一个缺点是,当导体暴露于大气时,在导体的外表面上形成紧密粘附的、导电性差的氧化物层。此外,来自加工步骤的表面污染物的积聚可能进一步抑制表面电导率。这样的氧化物和/或其他表面污染物可能形成在其它导体材料上,但是对于铝而言尤其难以处理。

相应地,必须穿透这样的外部导体表面氧化物层以接触铝材料,从而在电线与电气端子之间建立可靠的电连接,和/或在电线的不同的导体之间建立可靠的电连接。例如,随着导体在压接期间擦拭另一导体和/或电气端子,(多个)导体的氧化物层的至少一部分可能移位,以暴露(多个)导体的铝材料。但是,在压接操作期间可能难以移位足够的氧化物层以实现充分的电气结合和机械结合,从而建立可靠的电连接,特别是对于包括较大量的电导体的较大直径的导线。仍然需要增强多个电导体之间和/或电导体与端子之间的电连接,以改善电线以及包括电线的任何端子组件的导电性能。



技术实现要素:

上述问题通过本文公开的电线来解决,其包括多个电导体的线束,所述电导体的线束具有延伸到所述线束端部的端部段。所述线束中的每个电导体接合至少一个其他电导体。所述电线还包括导电颗粒,其沿着所述端部段设置在所述线束中的至少一些电导体之间并接合所述至少一些电导体。所述导电颗粒配置为在由所述导电颗粒接合的对应的电导体之间提供电连接。

附图说明

下面将参考附图通过示例的方式来描述本发明,在附图中:

图1是根据实施例的电线的一部分的透视图。

图2是压接装置的实施例的透视图。

图3是根据实施例的用于形成端子组件的电线处理系统的透视图。

图4是根据实施例的电线处理系统的颗粒施加器装置的截面图。

图5是根据实施例的用于生产电线的方法的流程图。

图6是根据实施例的用于生产端子组件的方法的流程图。

图7是根据另一实施例的图4所示的颗粒施加器装置的一部分的截面图。

图8是根据另一实施例的图4所示的颗粒施加器装置的截面图。

具体实施方式

本文所公开的一个或多个实施例提供了一种电线,其具有设置在电线的绝缘护套的电线内部的电导体之间的导电颗粒。导电颗粒配置为增强导体之间的线间结合和电连接,例如在压接操作期间,其中电线端接到电端子以形成端子组件。另外,导电颗粒可以在构造电线之后施加到电线的端部,不久之后将电线压接到端子。此外,导体不需要扭曲或彼此螺旋缠绕以便将导电颗粒固定到导体。因此,本文所述的实施例中的电线可以比将导电颗粒施加到导体构造起来更简单(包括导电颗粒的施加),例如,在将施加电线的护套之前和/或当导体彼此缠绕时。如本文所公开的,通过将导电颗粒在轴向方向上施加到电线的端部,至少一些导电颗粒被接收在不接合护套的内导体之间,并且一些导电颗粒被接收在接合护套的外部导体上和之间。本文所述的实施例可以改善内部导体与外部导体与端子的压接筒之间的结合和电导率,然而,例如,在压接操作之前将导电颗粒直接施加到端子的压接筒仅支持外部导体与端子之间的结合和导电性。

图1是根据实施例的电线100的一部分的透视图。电线100包括在电绝缘护套104内聚集的一起的多个电导体102的线束。如本文所使用的,电导体102的“线束”意味着电导体102通常沿着导体102的长度的至少一部分保持在绝缘护套104内。电绝缘护套或绝缘层104(在本文中称为护套104)围绕电导体102的线束。电导体102配置为传递用于电力和/或信号传输的电流。护套104使电导体102的线束与外部环境电绝缘,且还可以为电导体102提供机械保护。电线100还包括设置在至少一些电导体102之间的导电颗粒106。导电颗粒106接合导体102的表面,并且在由导电颗粒106接合的导体102之间提供电连接。

图1所示的电线100的部分包括电线100的端部108。电线100的端部108由电导体102部分地限定或整体地限定。在示出的实施例中,电导体102的线束的暴露的部分轴向地凸出超出护套104至端部108,且不被护套104围绕。因此,导体102沿着线束的暴露的部分暴露于环境。导电颗粒106可以沿着电线100从端部108位于各种距离处。至少一些导电颗粒106可以沿着线束的不被护套104围绕的未暴露的部分设置。

在实施例中,如本文更详细地描述的,实施例中的导电颗粒106施加到延伸到端部108的电线100的端部段110。可以在构造电线100的电导体102和护套104之后,将导电颗粒106施加到端部段110。可选地,端部段110可以是电线100的一部分,其中电导体102不被护套104围绕。例如,可以通过从(之前)整体覆盖有护套104的电线100的长度移除护套104的一部分来形成端部段100。在另一实施例中,端部段110可以包括围绕电导体102的护套104的至少一部分。导电颗粒106可以通过电线100的端部108在轴向方向上引入电线100。可以在移除护套104的一部分以暴露电导体102从而端接到电线100之前或之后,将导电颗粒106引入电线100。导电颗粒106可以通过相邻的导体102之间的空隙112穿透端部108并通过端部108被接收。例如,导电颗粒106可以轴向地喷射到电线100的端部108中。替代地,可以通过将端部段110浸入到包括导电颗粒106和载体剂的组分中,来引入导电颗粒106。在另一替代实施例中,可以通过将具有或不具有载体剂的颗粒106刷在端部段100上,来施加导电颗粒106。在又一实施例中,颗粒106可以在径向方向上喷射到端部段110中。

与一些已知的电线不同,实施例中的导体102不在护套104内扭曲或围绕彼此螺旋缠绕。由于导体102不扭曲,导体102之间的一些空隙112可以不间断地延伸至少等于端部段110长度的长度。因此,施加到电线100的端部108的导电颗粒106沿着端部段110从端部108(或甚至超出端部段110)在各种距离处接合导体102。

电线100可以配置为压接到电端子202(在图2中示出),以形成端子组件204(图2)。例如,一旦导电颗粒106施加到线100的导体102,电线100的端部段110可以被提供给压接装置200(在图2中示出)并装载到电端子202的压接筒206(图2)中,如参考图2进一步详细描述的。

图2是压接装置200的实施例的透视图。压接装置200将电端子202压接到电线100。电端子202和电线100形成端子组件204。端子202包括压接筒206,其接收电线100的端部段110(在图1中示出)。在压接操作期间,压接筒206压接在导体102周围,在端子202与电线100之间形成机械和电连接。电端子202可以由任何材料制造,例如但不限于,铜、铜合金、铜包钢、铝、镍、金、银、金属合金、和/或诸如此类。例如,电端子202可以由镀覆有镍的铜基制造。

压接装置200包括砧座214和压接工具构件216。砧座214具有在其上接收端子202的顶表面208。沿着电线100的端部段110(在图1中示出)的导体102接收在砧座214上的端子202的压接筒206中。压接工具构件216包括成形轮廓210,当成形轮廓210接合端子202时,其选择性地成型以在导体102周围形成或压接筒206。端子202压接到压接工具构件216与砧座214之间的电线100。压接工具构件216可沿着压接行程朝向和远离砧座214移动。压接行程具有远离砧座214的向上分量和朝向砧座214的向下分量。压接工具构件216沿着压接轴线212朝向和远离砧座214双向地移动。在压接行程的向下分量期间,随着压接工具构件216朝向砧座214移动,压接工具构件216在电导体102周围形成端子202的压接筒206。尽管未在图2中示出,压接工具构件216可以连接到机械致动器,其沿着压接行程推进压接工具构件216的移动。例如,压接工具构件216可以联接到施加器或引线制作机的可移动的冲头。此外,施加器或引线制作机也可以包括或联接到砧座214。

成形轮廓210可以包括两个侧壁222,其均从压接工具构件216的底侧218延伸,以及顶部形成表面224,其在两个侧壁222之间延伸。图2中的顶部形成表面224具有双拱或“m”形状。在实施例中,压接筒206至少部分地由端子202的两个凸部226部分地限定。在压接操作期间,随着压接工具构件216朝向砧座214移动,成形轮廓210在压接筒206上方下降并接合凸部226,以在电导体102周围弯曲或形成凸部226。更具体地,随着压接工具构件216向下移动,成形轮廓210的侧壁222和顶部成形表面224逐渐地使凸部226弯曲越过电导体102的顶部。在压接工具构件216的底部死位置,其为压接工具构件216在压接行程期间的最低点,成形轮廓210的一部分可以延伸超出砧座214的顶表面208。端子202在成形轮廓210和砧座214之间被压缩,且高压缩力导致端子202的凸部226机械接合且电连接到电线100的电导体102,形成端子组件204。高压缩力在压接筒206与导体102之间、以及两个或更多个相邻的导体102之间产生金属-金属键合。

在压接操作期间,经由压接筒206从压接装置200施加到导体102的力可以导致导体102之间的导电颗粒106(在图1中示出)嵌入导体102中。例如,导电颗粒106可以通过形成在导体102的外周边上的氧化物层延伸,如本文更详细地描述的。导电颗粒106可以穿透或分裂氧化物层,增强导体102之间的横向电连接的导电性(例如,相对于不存在导电颗粒106的情况下的压接操作之后的导体102之间的横向电连接的导电性)。例如,导电颗粒106可以有效地形成导电桥,其在相邻的导体102之间提供横向电路路径。另外,由于穿透氧化物层和/或由于导体102和导电颗粒106之间的分子间力,导电颗粒106可以改善在压接操作期间在导体102之间形成的结合的强度。

现在回来参考图1,电线100可以包括任何数量的电导体102。在实施例中,导体102的截面为至少10mm2。例如,导体102的截面积可以高达或超过60mm2。电导体102可以由任何材料制造,例如但不限于,铝、铝合金、铜、铜合金、铜包钢、镍、金、银、金属合金、和/或诸如此类。在示出的实施例中,电导体102由铝制造。例如,作为铜的替代,铝提供低重量和低成本。可选地,一些电导体102可以由除了铝之外的其他金属形成。

然而,使用铝作为电导体材料的一个缺点在于,氧化物和/或其他表面污染物(例如但不限于残余电线挤出增强材料和/或诸如此类)层可能积聚在电导体102的金属(即,铝)表面上。例如,当导体102暴露于空气和/或在电导体102的加工(例如,挤出过程和/或诸如此类别)期间,可能形成氧化物和/或其他表面材料层。这样的氧化物和/或其他表面材料层可能在铝之外的其他导体材料上形成,但是对于铝来说可能尤其难以处理。应当理解,本文描述和/或示出的实施例可应用于并且可以与由铝以外的材料制造的一个或多个电导体102一起使用。此外,下面将相对于氧化物层来对描述和/或示出的实施例进行描述,但是应当理解,本文所述和/或示出的方法和压接工具可以相对于作为氧化物层的附加或替代的其他表面材料层使用。

电线100的电导体102包括一组外部电导体102a,其形成该组电导体102的周边。电导体102包括一组内部电导体102b,其被外部电导体102a围绕。在实施例中,导电颗粒106固定到外部电导体102a和内部电导体102b的表面。例如,一些颗粒106可以在外部导体102a和内部导体102b之间的空隙112中接合一个外部导体102a的内表面部分。其他颗粒106可以接合相同的外部导体102a的外表面部分。这些颗粒106可以在外部导体102a与端子202(图2)的压接筒206(在图2中示出)之间提供横向导电连接。在压接之前,颗粒106可以经由分子间力(例如共价键)固定到导体102的表面。替代地或附加地,颗粒106可以经由限定在导体102之间的空隙112内的过盈配合固定到导体102。例如,在施加过程期间,颗粒106可以通过电线100的端部108喷射到空隙112中,且颗粒106可以沿着电线100轴向地行进,直到对应的空隙112的尺寸减小到这样的程度:相应的颗粒106接合周围的导体102,并通过摩擦或过盈配合保持在位。可选地,颗粒106可以延伸进入电线100一定长度,所述长度超出端部段110,这意味着一些颗粒106延伸进入电线100的被图1中的护套104围绕的部分中。

每个电导体102包括金属表面162,其限定电导体102的铝材料的外表面。电导体102也可以包括形成在电导体102的金属表面162上的氧化物层164,例如当电导体102暴露于空气时。氧化物层164具有相对差的导电性。相应地,为了在一个电导体102与另一电导体102和/或端子202(图2)的压接筒206(在图2中示出)之间建立可靠的电连接,氧化物层164彼此被移位和/或穿透,以暴露电导体102的金属表面162,例如作为压接过程的一部分。因此,在铝导体102的情况下,可以有利的改善相邻的导体102之间的横向方向上的导电性。尽管在图1中仅在一个导体102上示出了氧化物层164,但应当认识到,所有或至少一些导体102可以包括不利于导电性的氧化物层164。在图1中可能夸大了氧化物层164的厚度,以更好地示出氧化物层164。

导电颗粒106可以由金属材料形成,例如铜或铜合金。例如,实施例中的导电颗粒106由黄铜形成(至少含有铜和锌的合金)。可选地,导电颗粒106可以包括处了铜和锌以外的至少一种其他金属,例如锡、铝、铁、镍、金、钛、镁或铬。

导电颗粒106可以是细分的金属粉末。颗粒106可以通过将金属块或片机械地破碎、研磨或碎裂成粉末(例如黄铜粉末)来生产。替代地,颗粒106可以作为化学反应产生的沉淀剂而化学生产。因此,颗粒106可以具有尖锐或锯齿状边缘,这允许颗粒106嵌入导体102的表面中并穿透氧化物层164,以提供横向导电连接。一旦在两个或更多个导体102之间建立横向连接,导电连接不会因为沿着导体102的表面的后续氧化而中断或劣化。取决于导体102之间的空隙112的尺寸,导电颗粒106可以具有在1μm和100μm之间的范围中的尺寸。例如,颗粒106可以具有在10μm和60μm之间的范围中的尺寸。在将颗粒106施加到电线100的端部段110期间,颗粒106具有的尺寸使得其适配在空隙112内,但颗粒106足够大,以穿透和/或分裂导体102的氧化物层164。

图3是根据实施例的用于形成端子组件的电线处理系统300的透视图。电线处理系统300包括压接装置302、颗粒施加器装置304和传送臂306。压接装置302可以是图2所示的压接装置200。颗粒施加器装置304(在本文称为颗粒施加器304)配置为将导电颗粒(例如图1所示的颗粒106)施加到电线100的端部108,一次一个电线100。参考图4更详细地示出和描述了颗粒施加器304。在电线处理系统300中,压接装置302靠近颗粒施加器304。因此,每个100可以被装载到用于接收导电颗粒的施加装置304中,然后每个电线100可以立即传送到压接装置302以端接到端子202(在图2中示出),从而形成端子组件204(图2)。颗粒施加器304和压接装置302之间的接近和快速过渡可以减少在压接操作之前从电线100的导体102掉落的颗粒的量。

在示出的实施例中,将电线100的组308装载在托盘310上。传送臂306配置为一次夹持一个电线100。传送臂306可以在多个方向上并沿着不同的轴线可移动。传送臂306在夹具312中夹持电线100。传送臂306首先将电线100提供给颗粒施加器304。每个电线100的端部108装载到颗粒施加器304的端口314中。在颗粒施加器304内,沿着电线100的端部108将导电颗粒施加到导体102,例如通过喷射、浸渍、刷涂,等等。颗粒被施加在导体102之间,而不是仅在导体102的线束的周边周围。一旦施加了颗粒,传送臂306将电线100从端口314中退回,并将电线100横向地移动到压接装置302。传送臂306将电线100的端部段110装载到位于压接装置302的砧座214上的端子202(图2)的压接筒206(在图2中示出)中。压接工具构件216随后朝向砧座214沿着压接行程推进以形成压接筒206,并与电线100的导体102接合,从而生产端子组件204(在图2中示出)。在形成端子组件204之后,传送臂306可以将端子组件204携带到存储箱或另一处理装置。在传送臂204释放端子组件204之后,传送臂306可以配置为返回托盘310,以拾取另一电线100来重复上述处理步骤。在替代实施例中,操作者可以协助将电线100放置在传送臂306上的夹具312中。

图4是根据实施例的图3所示的颗粒施加器装置304的截面图。颗粒施加器304配置为将导电颗粒(例如,图1所示的导电颗粒106)提供给电线100。颗粒施加器304包括引导块402、颗粒存储装置404、以及加压空气供给器(未示出)。引导块402在后部406和前部408之间横向地延伸。如本文所使用的,相对的或空间术语,例如“顶”、“底”、“前”、“后”、“左”和“右”仅用于区分所引用的元件,而不必要求颗粒施加器304中、电线处理系统300(在图3中示出)中、或周围环境中的特定位置或取向。引导块402限定通道410,其在后部处406的第一开口412和前部408处的第二开口414之间通过引导块402延伸。通道410为导电颗粒提供流动路径。通道410配置为通过第二开口414接收电线100的端部段110,使得电线100从引导块402的前部408延伸。例如,第二开口414的尺寸可以设定为沿着端部段110容纳导体102,而不是围绕导体部分102的超出端部段110的部分的护套104。替代地,护套104的至少一部分可以接收在第二开口414内。在实施例中,引导块402还限定轴向地位于引导块402的前部408和后部406之间的孔口416,其提供导电颗粒进入通道410的入口路径。在示出的实施例中,孔口416与引导块402中的凹陷417同心。凹陷417限定在引导块402的外壁418中。孔口416向凹陷417敞开,且孔口416和凹陷417一起限定外壁418和通道410之间的路径。在替代实施例中,导电颗粒可以通过第一开口412或另一开口装载到通道410中。

颗粒存储装置404可以联接到引导块402。颗粒存储装置404配置为容纳导电颗粒的大量供给,并向通道410提供指定量的导电颗粒,以将颗粒每次施加到对应的电线100中。例如,颗粒存储装置404限定容器421,其可以在其中容纳导电颗粒的大量供给。容器421与腔体420间隔开,腔体420是通道410的辅助空气入口。例如,空气流可以通过开口412或腔体420进入通道410。腔体420与引导块402的孔口416对准。

颗粒存储装置404通过孔口416选择性地将指定量或部分的导电颗粒从容器421提供给引导块402的通道410。例如,颗粒存储装置404包括计量板426,所述计量板相对于引导块402可移动。计量板426在容器421和腔体420之间横向地延伸。计量板426在装载位置和卸载位置之间可滑动。在装载位置中,计量板426中的孔径424与容器421对准,且至少部分地填充有导电颗粒的供给。在卸载位置中,孔径424与孔口416对准,且导电颗粒通过孔口416卸载(经由重力)到通道410中。在装载位置中,计量板426可以包括密封孔口416的固体表面,防止通道410中的导电颗粒被吹回腔体420中。孔径424的尺寸和/或形状可以设定为,对于每次施加,向通道410提供规定或测量的量的导电颗粒,以控制施加到每个电线100的颗粒的量。

加压空气供给器802(在图8中示出)配置为通过空气入口(其可以是引导块402的后部406处的第一开口412)或者通过腔体420向通道410提供空气流428。空气供给器802可以是联接到软管的喷嘴,所述软管引导来自压缩空气罐的加压或压缩空气通过喷嘴。空气流428朝向第二开口414流经通道410(以及装载到第二开口414中的任何电线100)。例如,空气流428轴向地流入装载到通道410中的电线100的端部108中。设置在通道410内的任何导电颗粒可以被空气流428迫使和/或拾取为轴线地传送到电线100的端部108的喷雾430。喷雾430中的颗粒可以接收在相邻的导体102之间的空隙112(在图1中示出)中。至少一些颗粒也可以固定到外部导体102a(在图1中示出)的外表面。空气流428的力可以将颗粒在电线100内推进到不同的距离,使得一些颗粒可以位于护套104处或超出护套104。在实施例中,空气流428通过第二开口414从通道410排出。例如,空气可以通过导体102与通道410的壁之间的间隙432在电线100周围流动(在将颗粒供给到导体102之后),以减少通道410中的压力。

图4所示的颗粒施加器304示出了用于将导电颗粒轴向地施加到电线的端部的机构,使得颗粒接收在导体的线束的内部内的相邻的导体之间。在其他实施例中,导电颗粒可以通过其他工艺施加在电线的导体之间,例如浸渍、刷涂等,参考图5来进一步描述。

图5是根据实施例的用于生产或形成电线的方法500的流程图。电线可以是图1所示的电线100。方法500包括,在502,在多个电导体的线束周围施加电绝缘护套。电导体的线束可以不扭曲或螺旋缠绕,或可以仅具有有限的扭曲。护套可以由导电或电介质材料组成,例如塑料或橡胶状聚合物。可选地,护套不施加在延伸到电线的端部的导体的线束的端部段周围。替代地,护套沿着电线的整个长度施加,包括端部段,都是随后将护套至少部分地从端部段移除。在另一替代实施例中,护套延伸电线的整个长度且不被移除,至少直到将导电颗粒引入电线的端部之后,如下面在步骤504中所描述的。

在504,导电颗粒被引入电导体的线束的端部段,使得导电颗粒接合线束中的至少一些电导体并设置在所述至少一些电导体之间。在构造电线之后,将导电颗粒引入端部段中,这意味着电线包括导体的线束和施加在线束周围的护套。导电颗粒可以通过导体的线束的端部引入端部段中。颗粒可以经由相邻的电导体之间的空隙或间隙进入端部段。如图4所示,可以通过将导电颗粒在轴向方向上喷射到导体的线束的端部,而将导电颗粒引入端部段中。一些颗粒可以从端部段的外围侧在径向向内的方向上进入端部段,而不是通过线束的端部进入。在未示出的替代实施例中,颗粒从径向方向上喷射到电导体的线束的端部段中,而不是轴向地喷射到端部段中,或者作为其附加。

在替代实施例中,可以通过将端部段浸入包括导电颗粒和载体剂的组分或物质中,而将导电颗粒引入线束的端部段中。例如,例如,导电颗粒可以与载体剂混合,载体剂提供将颗粒施加到导体的载体。例如,载体剂可以是或包括有机溶剂(例如丙酮和醇)、油、脂肪、以及诸如此类。导电颗粒可以与载体剂混合,以形成液体溶液或糊剂。电线的端部段可以浸渍在液体溶液或糊剂中。替代地,液体溶液或糊剂可以刷涂到电线的端部段上,以允许导电颗粒穿透内部导体之间的区域。

图6是根据实施例的用于生产端子组件的方法600的流程图。端子组件可以是图2所示的端子组件204,其包括图1所示的电线100。方法600可以由图3所示的电线处理系统300执行。在602,导电颗粒施加在电线(例如,电线100)的端部上,使得至少一些导电颗粒接收在电线内的至少一些电导体之间。将导电颗粒施加在电线的端部上可以包括将电线的端部装载到颗粒施加器装置的通道中,并使用加压的空气流将指定量的导电颗粒通过通道轴向地吹送到电线的端部上。替代地,导电颗粒可以径向地喷射到线束的端部段上。在替代实施例中,可以通过将端部段浸入包括导电颗粒和载体剂的组分或物质,或通过将这样的组分刷涂到导线的端部段上,而将导电颗粒施加在端部段上。可选地,机械传送臂夹持电线,将电线的端部装载到颗粒施加器的通道中。机械传送臂还可以配置为在将导电颗粒施加到导线上之后,随后从颗粒施加器移除电线,以将电线移动到压接装置。

在604,电线的端部段被装载到位于压接装置的砧座上的端子的压接筒中。可以在接收到颗粒的喷雾时,立即将导线装载到端子的压接筒中。例如,在被装载到压接筒中之前,导线可以直接从颗粒施加器移动到压接装置,而不移动到中间位置,例如存储箱。传送臂可以用于将电线的端部段装载到砧座上的端子的压接筒中。在606,端子的压接筒被压接在电线的端部段上,以将端子机械和电气地连接到电线的电导体。将压接筒压接到电线可以包括朝向压接装置的砧座向下驱动压接工具构件。压接工具构件可以限定接合压接筒的成形轮廓,例如压接筒的凸部,并将压接筒的凸部弯曲在电导体的顶部上,以与导体接合。施加在压接工具构件和砧座之间的压接筒上的力机械和电气地将端子连接到电线,以形成端子组件。

在实施例中,导电颗粒是黄铜粉末,且电线的电导体由铝组成。黄铜颗粒比铝硬,并且在铝导体的表面上充当研磨料,类似于粗砂。黄铜颗粒可以穿透和/或分裂围绕铝导体的氧化物层,尤其是当导体在压接操作期间被端子的压接筒压缩时。黄铜颗粒可以嵌入导体的铝内部区域中。嵌入两个相邻的导体中的颗粒可以在相邻的导体(更具体地,在导体的铝内部区域之间,其比沿着导体的周边的氧化物层导电性更好)之间提供横向导电连接或电流路径。因此,黄铜颗粒通过分裂氧化物层并在导体的导电性更好的铝内部区域之间提供横向连接而改善了导体的线束内的导体之间的导电性。另外,实施例中的黄铜颗粒与导体的铝和端子的铜都兼容。在压接操作期间,黄铜颗粒可以在相邻的导体之间和/或外部导体与端子之间形成金属间层。相比黄铜颗粒不存在于沿着电线的端部段或在电线的端部段内的情况,金属间层可以在导体之间和/或导体与端子之间提供机械上更强的且更导电的结合。应当认识到,本文所述的创造性主题的其他实施例不限于黄铜粉末的导电颗粒和包括铝的电线的电导体。

图7是根据另一实施例的图4所示的颗粒施加器装置304的一部分的截面图。颗粒施加器装置304的所示部分示出了引导块402的前部408。引导块402的通道410经由延长管702流体连接到电线100。延长管702具有中空芯部703,其配置为增加通道410的长度。延长管702在第一端704和第二端706之间延伸。第一端704接收在引导块402的第二(或前部)开口414中,且延长管702的剩余部分远离引导块402的前部408延伸。第一端704可以与开口414形成气密密封。电线100的端部段110通过管702的第二端706接收在中空芯部703中。可选地,端部段110可以与第二端706形成气密密封。在颗粒施加装置304的操作期间,导电颗粒106(在图1中示出)配置为通过引导块402的通道410被喷射,然后通过延长管702的中空芯部703到电线100。在替代实施例中,延长管702可以与引导块402形成整体部件,而不是联接到引导块402的分立部件。

在实施例中,电线100可以包括绝缘层和/或护套104的绝缘套管段710,其在将导电颗粒引入电导体102期间围绕电线100的端部段110的至少一部分。套管段710通过暴露区域712与护套104的剩余部分间隔开。电导体102不沿着暴露区域712被绝缘层围绕。套管段710可以通过切割(例如,切片、剥离,等等)护套104的周边的周围的护套104来形成,以隔离套管段710,而不会切割或以其他方式损坏沿着暴露区域712形成的电导体102。套管段710可以延伸到电线100的端部108。套管段710配置为装载到延长管702(如图所示)的中空芯部703中,和/或直接装载到引导块402的开口414中。套管段710可以密封管702和/或引导块402的内表面或臂,形成气密密封。在颗粒施加装置304的操作期间,导电颗粒可以在套管段710的内部径向地引入到电导体102中。至少一些空气可以通过暴露区域712从通道410通风并排出。因此,空气可以流经套管段710,并在套管段710和护套104之间的区域712中流出电线100。可选地,一个或多个通风槽(未示出)可以设置在引导块402和/或管702中。在实施例中,在将导电颗粒施加到导体102之后,可以在压接操作或另一端接操作之前,将套管段710从电线100的端部段110移除。

图8是根据另一实施例的图4所示的颗粒施加器装置304的截面图。在示出的实施例中,通道410不在引导块402的前部408和后部406之间线性地延伸。而是,通道410沿着引导块402的顶部806从第二(或前部)开口414延伸到空气入口804。在示出的实施例中,通道410是非线性的。空气入口804流体连接到颗粒存储装置404的腔体808。颗粒存储装置404联接到加压空气供给器802,其通过腔体808供给空气流,空气流朝向开口414继续通过通道410。腔体808沿着一轴线延伸,所述轴线横向于(例如,垂直于)通向开口414的通道410的轴线。

在示出的实施例中,计量板426被示出为沿着一长度延伸,所述长度平行于引导块402在前部408和后部406之间的长度。计量板426配置为沿着平行于计量板426的长度的滑动轴线且沿着引导块402的顶部806相对于引导块402滑动。例如,计量板426配置为在通道410的空气入口804处将指定的颗粒供给从容器421传输到通道410。

可选地,引导块402可以配置为接收光学传感器(未示出)。光学传感器监测通道410以提供诊断信息,例如通过通道410的空气流的流率、由空气流拾取的颗粒量,等等。诊断信息可以提供关于将颗粒施加到电线的反馈,包括“注入成功”、“无粉末(或颗粒)”、“无电线”和/或“不良剪切”。引导块402可以包括在光学传感器和通道410之间的透明体812,以便为传感器提供光路。透明体可以限定通道410的一部分。透明体812可以由透明或至少半透明的材料形成,例如玻璃、石英或蓝宝石。

应当理解的是,上述描述意在为说明性的,而不是限制性的。例如,上文所描述的实施例(和/或其方面)可以彼此结合使用。此外,在不背离本发明的范围的情况下,可以做出许多修改以使特定的情况或材料适应于本发明的教导。本文描述的尺寸、材料的类型、各种部件的取向、以及各种部件的数量和位置意在限定某些实施例的参数,而绝非限制性的,且仅为示范性实施例。在阅读上述描述的情况下,在权利要求的精神和范围内的许多其他实施例和修改将对于本领域技术人员显而易见。因此,本发明的精神应当参考随附的权利要求、以及这些权利要求所赋予的等价物的全部范围来确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1