半导体装置的制作方法

文档序号:14212079阅读:121来源:国知局
半导体装置的制作方法

本发明涉及半导体装置,特别涉及具有中空部的半导体装置。



背景技术:

通常,就半导体芯片而言,有时由于空气中的水分产生电极的腐蚀等而导致出现动作故障,因此有时将其封装以具有气密结构。另外,就进行高频动作的半导体芯片而言,为了防止由外部电波的影响导致的动作不稳定化及来自半导体本身的不必要的辐射的问题,需要使封装具有电磁屏蔽功能。关于这样的芯片的封装材料,通常对cuw等基材罩上金属罩,但价格高,成为成本增高的原因。与此相对,近年来,正在积极开发以芯片级对半导体芯片进行封装化(csp结构化),使封装化的成本得到削减的方法。如上所述,作为封装化后的中空器件的代表性结构,已知例如专利文献1、2、3。

在专利文献1中记载了对作为高频器件的基本晶体管之一的hemt结构进行封装化的情况。在专利文献1中提出了如下结构,即,如图4至图6所示,通过在器件基板的芯片外周设置封装框,进一步将罩粘贴至封装框之上,从而在中空部对半导体电路进行封装而将其封装化。而且,通过使罩及封装框具有导电性,从而实现电磁屏蔽功能。电磁屏蔽为高频半导体所使用的功能,其目的在于抑制由从半导体电路产生的电磁波的辐射造成的对周围器件的影响、以及由周围器件的电磁波造成的对半导体电路的影响。

在专利文献2、3中,没有使用封装框,通过在罩形成凹陷从而在器件基板和罩之间设置中空部。另外,在专利文献2中,通过在罩的凹陷形成导电性膜,从而实现电磁屏蔽功能。另外,在专利文献3中,在罩的相反面形成散热电极。

专利文献1:日本特开2005-57136号公报

专利文献2:日本特开2012-33615号公报

专利文献3:日本特开2012-244059号公报

专利文献4:国际公开第2007/049376号

专利文献5:国际公开第2010/013728号



技术实现要素:

但是,在上述现有技术中,由于如下理由而难以确保封装内的气密性。首先,在专利文献1至3的现有技术中,存在容易从通路(via)部产生气密破坏这一共同的问题。具体而言,在形成于基板处的通路孔的侧壁存在蚀刻时的生成物(沉淀物)等。因此,即使将导电金属以紧贴于侧壁的状态形成于侧壁,也容易降低密合性。而且,在通路孔内的导电金属与基板之间,存在热膨胀率及线膨胀率的差异。因此,如果在晶片工艺、芯片动作时对半导体装置施加了热过程,则存在如下问题,即,有时原本密合性低的通路孔内的导电金属剥离、或对与该导电金属接合的电极焊盘施加应力而导致电极焊盘剥离,其结果产生中空部的气密破坏。此外,作为上述热过程,举出:例如由焊料芯片键合安装、热烘、药品处理、以及晶体管动作等产生的50~300℃左右的温度变化。

另外,在专利文献3记载的现有技术中,在器件基板和罩(cap)基板之间,并存由导电金属形成的凸块结构以及罩本身与器件基板接合的接合部。在这些部位存在线膨胀率的差异。因此,如果施加了热过程,则存在如下问题,即,对器件基板和罩基板的接合部施加应力而导致罩基板、器件基板等产生龟裂,容易产生气密破坏。

本发明就是为了解决上述课题而提出的,其目的在于提供半导体装置,该半导体装置能够稳定地保持中空部的气密性,能够使成品率及耐久性提高。

本发明涉及的半导体装置具备:器件基板,其具有表面及背面;半导体电路,其设置于器件基板的表面侧;封装框,其与器件基板的表面接合,围绕半导体电路;罩基板,其由具有表面及背面的基板形成,并且在该罩基板的背面将半导体电路覆盖的状态下与封装框的整周接合,在该罩基板与器件基板之间形成有以气密状态收容半导体电路的中空部;多个通路部,其用于将半导体电路与外部连接,该多个通路部由导电性材料形成,将器件基板的表面和背面之间贯穿,并且与半导体电路连接;以及多个凸块部,它们在中空部的内部分别设置于全部通路部,将该通路部与罩基板连结。

发明的效果

根据本发明,在全部的通路部之上设置凸块部,能够通过该凸块部将通路部和罩基板连结。由此,通过支撑于罩基板的凸块部将通路部加固,能够抑制通路部的变形、剥离等。其结果,能够提高器件基板和罩基板的接合可靠性,稳定地保持中空部的气密性。因此,能够使半导体装置的成品率及耐久性提高。

附图说明

图1是以省略了一部分的状态示出本发明的实施方式1的半导体装置的俯视图。

图2是图1所示的半导体装置的i-i箭头线剖视图。

图3是图1所示的半导体装置的ii-ii箭头线剖视图。

图4是表示在本发明的实施方式1中,在器件基板之上形成半导体电路、凸块部等的工序的剖视图。

图5是表示在罩基板形成接合焊盘的工序的剖视图。

图6是表示将器件基板和罩基板接合的工序的剖视图。

图7是表示在接合后将器件基板及罩基板薄板化的工序的剖视图。

图8是表示在器件基板形成通路部及背面侧的电极的工序的剖视图。

图9是表示在晶片形成大量器件基板及该基板侧的结构要素的工序的说明图。

图10是表示在晶片形成大量罩基板及该基板侧的结构要素的工序的说明图。

图11是表示现有技术的半导体装置的一个例子的剖视图。

图12是表示在图11中产生气密破坏的部位的主要部分放大图。

图13是从器件基板侧观察本发明的实施方式2的半导体装置的罩基板的仰视图。

图14是将本发明的实施方式2的半导体装置在图13中的i-i箭头线位置剖断的剖视图。

图15是将本发明的实施方式2的半导体装置在图13中的ii-ii箭头线位置剖断的剖视图。

图16是从器件基板侧观察本发明的实施方式3的半导体装置的罩基板的仰视图。

图17是将本发明的实施方式3的半导体装置在图16中的i-i箭头线位置剖断的剖视图。

图18是将本发明的实施方式3的半导体装置在图16中的ii-ii箭头线位置剖断的剖视图。

图19是从与图2相同的位置观察本发明的实施方式4的半导体装置的剖视图。

图20是从与图2相同的位置观察本发明的实施方式5的半导体装置的剖视图。

图21是从与图2相同的位置观察本发明的实施方式6的半导体装置的剖视图。

图22是从与图2相同的位置观察本发明的实施方式7的半导体装置的剖视图。

图23是从与图3相同的位置观察本发明的实施方式7的半导体装置的剖视图。

图24是示意性地表示在本发明的实施方式7中,将半导体装置安装在基材后的状态的剖视图。

图25是表示现有技术中的半导体装置的安装状态的剖视图。

图26是从与图2相同的位置观察本发明的实施方式8的半导体装置的剖视图。

图27是从与图3相同的位置观察本发明的实施方式8的半导体装置的剖视图。

图28是从与图2相同的位置观察本发明的实施方式9的半导体装置的剖视图。

图29是从与图2相同的位置观察本发明的实施方式10的半导体装置的剖视图。

图30是对本发明的实施方式1至9的通路部的剖视图30(a)和现有技术的通路部的剖视图30(b)进行比较而表示的说明图。

图31是从与图2相同的位置观察本发明的实施方式11的半导体装置的剖视图。

图32是从与图3相同的位置观察本发明的实施方式11的半导体装置的剖视图。

图33是放大表示图31中的凸块部等的主要部分放大剖视图。

图34是图33中的iii-iii箭头线剖视图。

图35是在本发明的实施方式11中,表示变形例的凸块部横剖视图。

图36是表示对器件基板进行图案化的工序的剖视图。

图37是表示将器件基板薄板化而形成通路孔的工序的剖视图。

图38是表示在器件基板形成通路部及接地电极的工序的剖视图。

图39是表示形成凸块部及封装框的工序的剖视图。

图40是表示在罩基板形成接合焊盘的工序的剖视图。

图41是表示将器件基板和罩基板接合的工序的剖视图。

图42是在本发明的实施方式11中,表示其它变形例的剖视图。

图43是放大表示本发明的实施方式12的半导体装置的凸块部等的主要部分放大剖视图。

图44是从与图43相同的位置观察的在形成通路孔时产生过蚀刻的情况的主要部分放大剖视图。

具体实施方式

下面,参照附图,对本发明的实施方式进行说明。此外,在本说明书所使用的各图中,对共同的要素标注相同标号,省略重复的说明。另外,本发明不受以下的实施方式限定,能够在不脱离本发明的主旨的范围内进行各种变形。另外,本发明包含以下各实施方式所示的结构中的可以组合的结构的所有组合。并且,在本说明书中,具有电功能的构造物彼此的“连接”是指电连接及机械连接。

实施方式1.

首先,参照1至图12,对本发明的实施方式1进行说明。图1是以省略了一部分的状态示出本发明的实施方式1的半导体装置的俯视图。此外,在图1中,省略了罩基板8等的图示。另外,图2是图1所示的半导体装置的i-i箭头线剖视图,图3是半导体装置的ii-ii箭头线剖视图。如这些图所示,本实施方式的半导体装置1具备器件基板2、半导体电路3、电极焊盘4、5、6、封装框7、罩基板8、中空部9、通路部10、凸块部14、以及接合焊盘15、16、17等。此外,在本说明书中,有时将器件基板2和罩基板8一起记为“基板2、8”。另外,有时将接地电极焊盘4、输入电极焊盘5、以及输出电极焊盘6记为“电极焊盘4、5、6”,将接地电极11、输入电极12及输出电极13记为“电极11、12、13”。

器件基板2例如由单晶gaas基板、硅基板等形成为平板状,具有表面2a及背面2b。半导体电路3例如由hemt晶体管等构成,设置于器件基板2的表面2a侧(半导体动作面)。此外,本发明并不限于hemt晶体管,也可以适用于例如由其它场效应晶体管、hbt等双极晶体管、以及集成电路等构成的半导体电路。另外,在本发明中,将器件基板2的两面中的与罩基板8相对的相对面记为表面2a,将面向半导体装置1外部的外侧的面记为背面2b。

半导体电路3具备固接于器件基板2的表面2a处的源极电极3a、漏极电极3b以及栅极电极3c。漏极电极3b例如配置于器件基板2的中央部,源极电极3a分别配置于漏极电极3b的两侧。在漏极电极3b的两侧,栅极电极3c分别配置于漏极电极3b和各源极电极3a之间。

另外,在器件基板2的表面2a固接有接地电极焊盘4、输入电极焊盘5以及输出电极焊盘6。接地电极焊盘4例如配置有2个,逐个与各源极电极3a连接。在输入电极焊盘5连接有2个栅极电极3c。输出电极焊盘6连接于漏极电极3b。另外,上述电极3a、3b、3c及电极焊盘4、5、6例如由au等金属膜形成。

在如上所述构成的半导体电路3中,如果将输入信号从输入电极焊盘5输入至各栅极电极3c,则该输入信号在通过晶体管放大后,从漏极电极3b输出至输出电极焊盘6。此外,上述半导体电路3的结构为一个例子,并非是将本发明限定于此。另外,接地电极焊盘4、输入电极焊盘5及输出电极焊盘6构成在该电极焊盘4、5、6的位置形成的凸块部14的一部分。根据该结构,凸块部14与通路部10直接连结。另一方面,在本发明中,也可以认为接地电极焊盘4、输入电极焊盘5及输出电极焊盘6为与凸块部14不同的构造物。在该情况下,凸块部14经由电极焊盘4、5、6的任意者间接地与通路部10连结。本发明的特征在于将凸块部14连结于通路部10之上,包含凸块部14通过电极焊盘4~6与通路部10连接的结构和将凸块部14直接连接于通路部10的结构这两者。

封装框7例如由包含au、ag、cu、pt、pd、或它们的合金等的导电性材料构成,形成为四边形的框状。另外,封装框7在将半导体电路3整周围绕的位置与器件基板2的表面2a接合,从表面2a垂直地凸出。罩基板8形成为与器件基板2相对的平板状的芯片,在将半导体电路3等覆盖的状态下与封装框7的整周接合。由此,在器件基板2和罩基板8之间,在成为封装框7的内侧的位置形成有中空部9。在中空部9的内部,以气密状态收容有半导体电路3和包含电极焊盘4、5、6的凸块部14。此外,在本说明书中,将罩基板8的两面中的与器件基板2的表面2a相对的相对面记为表面8a,将面向半导体装置1外部的外侧的面记为背面8b。

作为罩基板8的材料,可以使用例如像半导体基板、玻璃、蓝宝石基板等那样平坦性高的基板。这是因为基板的平坦性越高,接合状态越均匀,会得到稳定的气密封装。另外,优选器件基板2和罩基板8由相同的材料形成,或由彼此线膨胀率接近的材料形成。由此,能够抑制由热过程产生的应力。此外,在使用了环氧树脂、聚酰亚胺膜的有机膜等材料的情况下,有气密性降低的倾向。

通路部10将半导体电路3与外部连接,将器件基板2贯穿而露出到表面2a及背面2b。通路部10是通过向在器件基板2形成的通路孔的内部填充金属材料形成的。另外,在器件基板2设置有多个通路部10。各通路部10中的位于器件基板2的表面2a侧的部位与电极焊盘4、5、6的任意者连接,进而经由该电极焊盘连接于半导体电路3。另外,各通路部10被使用金属材料等导电膜连接于在器件基板2的背面2b设置的接地电极11、输入电极12及输出电极13的任意者。由此,接地电极焊盘4、输入电极焊盘5、输出电极焊盘6经由各自的通路部10连接于接地电极11、输入电极12及输出电极13。此外,后面参照图29对通路部10的空腔10a进行叙述。

另一方面,凸块部14将各个通路部10和罩基板8连结。即,全部通路部10彼此经由不同的凸块部14连结于罩基板8。这些凸块部14配置于器件基板2和罩基板8之间(中空部9的内部),形成为在该各基板2、8相对的方向上延伸的柱状。更详细而言,凸块部14包含2种凸块部14a、14b。凸块部14a为没有经由通路部10接地的凸块部,凸块部14b为经由通路部10接地的凸块部。

如图2所示,一部分的凸块部14a由输入电极焊盘5、接合焊盘16以及柱状的凸块主体14a构成,该柱状的凸块主体14a例如由导电性材料形成。输入电极焊盘5分别与凸块主体14a的一端侧及通路部10接合。接合焊盘16分别与凸块主体14a的另一端侧及罩基板8的表面8a接合。另外,其余的凸块部14a由凸块主体14a、输出电极焊盘6及接合焊盘16构成。输出电极焊盘6与凸块主体14a的一端侧及通路部10接合。另一方面,如图3所示,凸块部14b由凸块主体14a、接地电极焊盘4及接合焊盘16构成。接地电极焊盘4分别与凸块主体14a的一端侧及通路部10接合。

凸块部14用于提高通路部10的强度。因此,优选凸块部14由硬质的材质形成。具体而言,通过使用例如金属材料、硅氧化膜等无机绝缘膜、以及聚酰亚胺等材料形成凸块部14,从而能够使通路部10的强度提高。另外,优选凸块部14由与封装框7相同的材料形成。由此,能够防止由于封装框7和凸块部14的线膨胀率的差异而使器件基板2及罩基板8产生变形、龟裂等,使半导体装置1的耐久性提高。另外,在由金属材料、无机绝缘膜等形成封装框7的情况下,能够使封装框7稳定地紧贴于基板2、8,提高中空部9的气密性。此外,后面对图2及图3中所示的接合焊盘15、16、17进行叙述。

下面,参照图4至图8,对本实施方式的半导体装置1的制造工序进行说明。这些附图是从与图2相同的位置观察的剖视图。首先,图4表示出在本发明的实施方式1中,在器件基板之上形成半导体电路、凸块部等的工序。在该工序中,在使用外延生长等手段在器件基板2的表面2a侧形成半导体动作层(未图示)后,使用光刻、蚀刻、金属成膜等手段形成包含晶体管结构的半导体电路3。另外,通过在器件基板2的表面2a侧对例如au等金属膜进行蒸镀、图案化,从而形成电极焊盘4、5、6。电极焊盘4、5、6在通过例如蚀刻从器件基板2的背面2b侧形成通路孔时,发挥作为阻止件的功能。

另外,在图4所示的工序中,分别在电极焊盘4、5、6之上形成凸块主体14a,然后,在围绕半导体电路3的位置形成封装框7。在该情况下,为了使相对于基板2、8的接合状态均匀化,优选各凸块主体14a和封装框7使用彼此相同的材料同时形成。举出具体例子来说,在使用抗蚀材料等进行了图案化而形成的器件基板2之上,填充焊料等金属膏。由此,能够以彼此相等的高度尺寸同时高效地形成具有规定的图案的凸块主体14a和封装框7。

此处,在器件基板2直接进行图案化而形成凸块主体14a及封装框7的情况下,有时得不到高的密合性。因此,优选在器件基板2,预先形成兼任凸块主体14a的接合部的电极焊盘4、5、6和成为封装框7的接合部的接合焊盘15。接合焊盘15是使用蒸镀等手段形成的,构成封装框7的一部分。此外,在本发明中,也可以如后述所示,没有形成电极焊盘4、5、6,而在通路部10之上直接形成凸块部14。另外,在本发明中,需要在全部通路部10的位置形成凸块部14,但除此之外,也可以在不存在通路部10的位置形成凸块部14。

另一方面,图5表示出在罩基板形成接合焊盘的工序。该工序与图4所示的工序分开进行。在图5所示的工序中,将成为凸块部14的接合部的接合焊盘16、成为封装框7的接合部的接合焊盘17形成在罩基板8的表面8a。接合焊盘16构成凸块部14的一部分。接合焊盘17与封装框7形成为一体,成为封装框7的一部分。此外,在图4及图5中例示出在器件基板2形成凸块主体14a及封装框7后,将上述凸块主体14a、封装框7与罩基板8接合的情况的工序。但是,本发明并不限于此,也可以在罩基板8形成凸块主体14a及封装框7后,将上述凸块主体14a、封装框7与器件基板2接合。

接下来,图6表示出将器件基板和罩基板接合的工序。该工序在图4及图5所示的工序后进行。在图6所示的工序中,使用例如像由sn、snag构成的焊料等那样熔点低的金属,将器件基板2侧的封装框7和罩基板8侧的接合焊盘17(或者,罩基板8)压接而接合。优选在该工序中,例如以大于或等于200℃的温度进行接合。此外,作为本工序中的接合方法也可以采用如下方法,即,使用例如像au等那样的相同的金属材料形成两者的接合面,通过超声波将该接合面粘接。另外,也可以通过将例如au、ag、cu、pd、pt等微小的金属颗粒混合于溶剂而得到的膏剂形成薄膜,在通过将该薄膜图案化而形成封装框7及各凸块主体14a后,在200℃~500℃的高温下通过压接进行接合。另外,为了使接合稳定,优先将封装框7及各凸块主体14a的接合面积缩小为所需的最小限度,提高对接合部施加的压力。举出具体例子来说,优选将封装框7的宽度设定为20μm左右,将凸块主体14a的直径设定为φ50μm左右。

封装框7及各凸块部14的高度(相对于器件基板2或罩基板8的凸出尺寸)为比半导体电路3大的尺寸即可。举出具体例子来说,在半导体电路3包含hemt及hbt等晶体管的情况下,虽然也取决于其输出电量,但基本上,优选将封装框7及各凸块部14的高度设定为3~20μm左右。另外,在gaas高输出半导体的情况下,gaas的热阻高,如果器件基板2厚则对通路孔的蚀刻不利。因此,优选将器件基板2的厚度设定为例如几十~几百μm左右。

另外,在器件基板2,有可能由于接合时的压力而产生龟裂等。因此,优选预先将器件基板2的厚度形成得比最终需要的尺寸大。在该情况下,在接合后将器件基板2薄板化后,进行通路孔的蚀刻及电极11、12、13的形成。另一方面,对于罩基板8,只要不进行通路孔等的加工,就没有薄板化的优点,因此难以产生龟裂。因此,罩基板8的厚度也可以是例如500μm左右。此外,在对罩基板8也进行通路孔等的加工的情况下,将罩基板8的厚度设定为与器件基板2相同的程度,优选在接合后进行薄板化。此外,图7表示出在接合后将器件基板及罩基板薄板化的工序。

接下来,图8表示出在器件基板形成通路部及背面侧的电极的工序。该工序在图6(及图7)所示的工序后进行。在图8所示的工序中,首先,在通过光刻形成抗蚀图案后,通过干蚀刻或湿蚀刻形成通路孔。之后,通过抗蚀剂溶解性的药品将抗蚀图案溶解而除去,或通过氧等离子体处理将其分解而除去。然后,通过例如溅射等手段将成为晶种层的导电膜形成于器件基板2的背面a侧及通路孔内,进而,通过电解镀法等将导电金属的厚膜形成于晶种层之上。虽然也取决于在半导体电路3流动的电流值,但基本上,优选将导电金属形成为大于或等于几μm的膜厚度(镀层厚度)。此外,导电金属是在通路孔内保形地形成的,或埋入于通路孔内而形成的。然后,通过将这样形成的导电金属图案化,从而形成各通路部10及背面侧的电极11、12、13。此时,电极11、12、13以彼此分离的状态形成。作为图案化的方法,举出例如在各通路部10及电极11、12、13之上形成抗蚀图案,通过湿药品进行蚀刻的方法等。此外,在导电金属为au镀膜的情况下,作为湿药品可以使用碘碘化钾水溶液。此外,关于在基板彼此的接合之后进行的工序,即,器件基板的薄板化、通孔的形成等工序,也可以在基板彼此的接合前进行。

通过以上工序,能够制造半导体装置1。另外,例如如图9及图10所示,这些工序可以通过在晶片18、19分别形成大量器件基板2及罩基板8,将晶片18、19彼此接合来进行。由此,能够高效地一起制造大量半导体装置1。此外,图9是表示在晶片形成大量器件基板及该基板侧的结构要素的工序的说明图。另外,图10是表示在晶片形成大量罩基板及该基板侧的结构要素的工序的说明图。在这些图中,标记20是用于在晶片18、19将各个器件基板2及罩基板8以能够彼此对接的位置形成的位置对准标记。

根据上述半导体装置1,能够取得如下作用效果。首先,参照图11及图12,对现有技术的课题进行说明。图11是表示现有技术的半导体装置的一个例子的剖视图,图12是表示在图11中产生气密破坏的部位的主要部分放大图。此外,在图11及图12中,针对与本实施方式的半导体装置1共通的结构要素,对相同的标号标注“′(撇号)”来进行标记。

通常,在形成于器件基板2′处的通路孔的侧壁存在蚀刻时生成的沉淀物等。因此,即使将导电金属以紧贴于侧壁的状态形成于侧壁,也容易降低密合性。而且,通路孔内的导电金属和器件基板2′的线膨胀率彼此不同。因此,如果对半导体装置施加了热过程,则例如在图12中的带■标记的部分存在如下问题,即,通路孔内的导电金属剥离、或对与该导电金属接合的电极焊盘5′、6′施加应力而导致电极焊盘剥离,其结果产生中空部9′的气密破坏。就专利文献1、2、3所记载的半导体装置而言,由于存在没有通过凸块部加固的通路部,因此难以保持中空部的气密性。

与此相对,在本实施方式中设为如下结构,即,在全部通路部10之上形成凸块部14,将该凸块部14与罩基板8接合。根据该结构,通过支撑于罩基板8的凸块部14能够将通路部10加固,能够抑制通路部10内的导电金属及电极焊盘4、5、6的变形、剥离等。由此,能够提高器件基板2和罩基板8的接合可靠性,稳定地保持中空部9的气密性。因此,根据本实施方式,能够使半导体装置1的成品率及耐久性提高。

另外,通过使封装框7和凸块部14由相同的材料形成,从而能够抑制由热过程引起的器件基板2及罩基板8的应力。举出一个例子来说,在将基板2、8接合的工序中,由于在例如大于或等于200℃的高温下进行接合,因此如果封装框7和凸块部14的线膨胀率不同,则在冷却至常温时在基板2、8之间容易产生残余应力。根据本实施方式,能够防止由这样的应力引起的基板2、8的龟裂、剥离、凸块部14及封装框7的变形等,稳定地确保中空部9的气密性。另外,就专利文献3记载的半导体装置而言,仅在一部分的通路部形成有凸块部,但并非是封装框,而是对罩基板进行蚀刻而形成中空部。因此,在施加了热过程的情况下,由于罩基板和凸块部的线膨胀率的不同,因此存在对基板和凸块部的接合部、罩基板和器件基板的接合部等施加应力,产生龟裂的风险。根据本实施方式,能够避免这样的不良情况。

并且,在本实施方式中,也可以由相同的材料形成器件基板2和罩基板8。在该情况下,能够将基板2、8的线膨胀率设为彼此相同的值,能够抑制在施加了热过程时基板2、8之间的封装框7及凸块部14所产生的应力。因此,能够使接合部的强度提高,稳定地确保中空部9的气密性。

另外,在本实施方式中,例如由包含au、ag、cu、pt、pd等金属材料、或它们的合金等导电性材料形成封装框7及凸块部14。由此,能够使用具有高导电性的凸块部14,将半导体电路3与接地电极11、输入电极12及输出电极13连接。因此,能够在通过凸块部14将通路部10加固的同时,将电极焊盘4、5、6的引出结构简化,容易地进行该电极的引出。另外,能够抑制输入输出信号及电力的损耗,实现省电型的半导体装置1。此外,在本发明中,只要由上述金属材料或其合金形成至少一部分的凸块部14即可,一部分的凸块部14也可以由其它金属材料或绝缘材料形成。

另外,在本实施方式中,以相同的尺寸形成封装框7和凸块部14的高度,器件基板2及罩基板8形成为不存在凹部等的平板状。根据该结构,即使不对器件基板2及罩基板8实施形成凹部等的加工,也能够在该基板2、8之间形成中空部9。由此,能够将基板2、8的加工工序简化,抑制工艺成本。

此外,在本实施方式中,作为从半导体电路3取出信号的电极,例示出接地电极11、输入电极12及输出电极13。但是,这些电极11、12、13只是一个例子,并非是将本发明限定于此。从半导体电路3引出的电极中的1个电极需要与电磁屏蔽金属连接,其以外的电极通过本实施方式中提出的结构被电分离。作为这样的电极,例如除了输入输出电极之外,举出用于确认电特性的测试用电极等。

实施方式2.

下面,参照图13至图15,对本发明的实施方式2进行说明。本实施方式的特征在于,在罩基板的背面形成有导电膜。图13是从器件基板侧观察本发明的实施方式2的半导体装置的罩基板的仰视图。另外,图14是将半导体装置在图13中的i-i箭头线位置剖断的剖视图,图15是将半导体装置在图13中的ii-ii箭头线位置剖断的剖视图。此外,本实施方式的半导体装置21的俯视图与图1相同。如图13至图15所示,半导体装置21构成为与实施方式1的半导体装置1大致相同,但具备在罩基板8的表面8a形成的导电膜22。

由于导电膜22构成半导体装置21的电磁屏蔽膜,因此由导电性材料(优选为与接合焊盘16相同的金属材料)形成。另外,如图13及图14所示,除了一部分的凸块部14a的周围之外,导电膜22覆盖了罩基板8的表面8a。即,导电膜22形成为将凸块部14a的接合焊盘16围绕,在该接合焊盘16和导电膜22之间,形成有围绕接合焊盘16的绝缘间隙23。由此,导电膜22被与凸块部14a及其接合焊盘16分离及绝缘。

另一方面,导电膜22如图15所示,与凸块部14b的接合焊盘16(参照图3)及封装框7的接合焊盘17形成为一体。由此,除了凸块部14a的周围之外,导电膜22将罩基板8的表面8a整体覆盖。而且,导电膜22在通过绝缘间隙23与输入电极焊盘5、输出电极焊盘6绝缘的状态下,经由凸块部14b、通路部10及接地电极11而接地。另外,由导电性材料形成的封装框7与导电膜22连接,因此该封装框7以与导电膜22相同的路径接地。由此,半导体电路3的周围大致整体通过导电膜22、封装框7及接地电极11被电磁屏蔽。

根据如上所述构成的本实施方式,能够得到比例如专利文献4、5所记载的现有技术高的电磁屏蔽性。即,在这些现有技术中,在器件的侧面存在没有形成电磁屏蔽膜的部分,电磁屏蔽膜没有将器件完全包围。因此,电磁屏蔽性不充分,存在产生电磁波的辐射及进入的风险。与此相对,在本实施方式中,使用导电膜22、封装框7及接地电极11,能够对半导体电路3大致整体与图15中的上方、下方及侧方(罩基板8侧、器件基板2侧及封装框7侧)进行电磁屏蔽。因此,相对于来自外部的电波及来自半导体电路3本身的不需要的辐射,能够将半导体电路3的动作稳定化。另外,还能够使在半导体装置21的周围配置的器件的动作稳定。

另外,优选绝缘间隙23的宽度形成为比通过半导体电路3处理的电磁波的波长小的尺寸。由此,能够抑制电磁波对输入电极焊盘5及输出电极焊盘6的影响,进一步使电磁屏蔽性提高。另外,在本实施方式中,能够利用凸块部14b将导电膜22与接地电极11侧连接。由此,除了与所述实施方式1相同的效果之外,还能够将电磁屏蔽的配线结构简化,能够容易地形成具有高可靠性的半导体装置21。

实施方式3.

下面,参照图16至图18,对本发明的实施方式3进行说明。本实施方式的特征在于,代替所述实施方式2的绝缘间隙,由绝缘材料形成凸块部的至少一部分。图16是从器件基板侧观察本发明的实施方式3的半导体装置的罩基板的仰视图。另外,图17是将半导体装置在图16中的i-i箭头线位置剖断的剖视图,图18是将半导体装置在图16中的ii-ii箭头线位置剖断的剖视图。此外,本实施方式的半导体装置31的俯视图与图1相同。

如图16至图18所示,半导体装置31构成为与实施方式2的半导体装置21大致相同。但是,凸块部14具备凸块部14b和代替凸块部14a而配置的凸块部14c。另外,半导体装置31具备:导电膜32,其为在罩基板8的表面8a形成的电磁屏蔽膜;以及绝缘膜33,其是使用绝缘材料在器件基板2的表面2a侧形成的。

绝缘膜33例如由sin膜形成,具有200nm左右的厚度。这样的绝缘膜33能够使用例如等离子体cvd装置形成。绝缘膜33将半导体电路3、电极焊盘5、6覆盖。另外,在封装框7及凸块部14b的位置,如图18所示,通过蚀刻等手段除去绝缘膜33。

凸块部14c的一部分由绝缘膜33构成。更具体而言,凸块部14c的凸块主体14a经由绝缘膜33而连结于输入电极焊盘5及输出电极焊盘6之上。由此,凸块部14c在将通路部10和罩基板8连结的同时,保持使导电膜32与输入电极焊盘5、输出电极焊盘6绝缘的状态。其结果,如图16至图18所示,导电膜32将罩基板8的表面8a整体覆盖。另外,导电膜32兼作在罩基板8形成的全部的接合焊盘16(参照图3)。

根据这样构成的本实施方式,在导电膜32不需要设置用于将该导电膜32与输入电极焊盘5、输出电极焊盘6绝缘的绝缘间隙。因此,能够通过导电膜32将罩基板8的表面8a完全覆盖。其结果,除了与所述实施方式2相同的效果之外,还能够进一步使半导体装置31的电磁屏蔽性提高。

实施方式4.

下面,参照图19,对本发明的实施方式4进行说明。本实施方式的特征在于,由绝缘材料形成凸块部中的与所述实施方式3不同的部位。图19是从与图2相同的位置观察本发明的实施方式4的半导体装置的剖视图。本实施方式的半导体装置41具备导电膜42及绝缘膜43。另外,半导体装置41的凸块部14具备凸块部14b和代替凸块部14a而配置的凸块部14d。

导电膜42由导电性材料形成于罩基板8的表面8a整体,构成电磁屏蔽膜。绝缘膜43在凸块部14d的位置形成于导电膜42之上。凸块部14d中的位于罩基板8侧的一部分由绝缘膜43构成。即,凸块主体14a经由绝缘膜43与导电膜42连结。由此,凸块部14d在将通路部10和罩基板8连结的同时,保持使导电膜42与输入电极焊盘5、输出电极焊盘6绝缘的状态。这样构成的本实施方式也能够得到与所述实施方式3相同的效果。

实施方式5.

下面,参照图20,对本发明的实施方式5进行说明。本实施方式的特征在于,由绝缘材料形成所有凸块部。图20是从与图2相同的位置观察本发明的实施方式5的半导体装置的剖视图。本实施方式的半导体装置51具备导电膜52,该导电膜52是与所述实施方式4相同地形成的电磁屏蔽膜。另外,半导体装置51的凸块部14具备凸块部14b和代替凸块部14a而配置的凸块部14e。

凸块部14e具有由绝缘材料形成的凸块主体14a′,凸块部14e与导电膜52连结。由此,凸块部14e在将通路部10和罩基板8连结的同时,保持使导电膜52与输入电极焊盘5、输出电极焊盘6绝缘的状态。这样构成的本实施方式也能够得到与所述实施方式3相同的效果。

实施方式6.

下面,参照图21,对本发明的实施方式6进行说明。本实施方式的特征在于,通过绝缘膜覆盖半导体电路,并且通过该绝缘膜形成凸块部的至少一部分。图21是从与图2相同的位置观察本发明的实施方式6的半导体装置的剖视图。本实施方式的半导体装置61具备导电膜62和绝缘膜63,该导电膜62是与所述实施方式4相同地形成的电磁屏蔽膜。另外,半导体装置61的凸块部14具备凸块部14b和代替凸块部14a而配置的凸块部14f。

与所述实施方式3相同地,绝缘膜63是例如由sin膜形成的,将半导体电路3、电极焊盘5、6覆盖。另外,在封装框7及凸块部14b的位置,通过蚀刻等手段除去绝缘膜63。另外,绝缘膜63从罩基板8侧将凸块部14f的凸块主体14a覆盖。即,凸块部14f中的位于罩基板8侧的一部分由绝缘膜63构成,凸块主体14a经由绝缘膜63与导电膜62连结。由此,凸块部14f在将通路部10和罩基板8连结的同时,保持使导电膜62与输入电极焊盘5、输出电极焊盘6绝缘的状态。这样构成的本实施方式也能够得到与所述实施方式3相同的效果。

此外,在所述实施方式3至6中,凸块部14c、14d、14e、14f的至少一部分由绝缘材料形成,但在本发明中,关于全部的凸块部14,也可以由绝缘材料构成至少一部分。

实施方式7.

下面,参照图22至图25,对本发明的实施方式7进行说明。本实施方式的特征在于在罩基板也形成有通路部。图22是从与图2相同的位置观察本发明的实施方式7的半导体装置的剖视图,图23是从与图3相同的位置观察该半导体装置的剖视图。另外,图24是示意性地表示在本发明的实施方式7中,将半导体装置安装在基材后的状态的剖视图。此外,本实施方式的半导体装置71的俯视图与图1相同。另外,图24出于表示安装状态的目的而对附图进行了简化,因此有时各部分的形状等与其它附图不同。

如图22及图23所示,半导体装置71是与所述实施方式1相同地构成的,但在器件基板2的背面2b仅形成接地电极72,输入电极73及输出电极74形成于罩基板8的背面8b。因此,如图23所示,由于在器件基板2的背面2b不存在输入电极及输出电极,因此接地电极72形成为将背面2b整体覆盖的平坦的单个导电膜,经由一部分通路部10与接地电极焊盘4连接。

另一方面,如图22所示,在罩基板8设置有与器件基板2的通路部10相同地形成的多个通路部75。这些通路部75是通过向在罩基板8形成的通路孔的内部填充金属材料形成的,将罩基板8贯穿而在表面8a及背面8b露出。输入电极73经由一部分通路部75及凸块部14a与输入电极焊盘5连接。另外,输出电极74经由其他通路部75及凸块部14a与输出电极焊盘6连接。

在该状态下,凸块部14a将罩基板8侧的通路部75和器件基板2连结,构成第2凸块部。另一方面,凸块部14b将器件基板2侧的通路部10和罩基板8连结,构成第1凸块部。在本实施方式中例示出如下情况,即,第2凸块部14a用于通路部75的加固及半导体电路3的外部连接,第1凸块部14b仅用于通路部10的加固而不用于半导体电路3的外部连接。

就这样构成的半导体装置71而言,能够将由单个导电膜形成的接地电极72设置于器件基板2的背面2b整体,能够使散热性提高。举出具体例子来说,如图24所示,半导体装置71被安装在例如由cu、cuw等平坦的金属板构成的基材76而使用。特别地,由于就高输出的半导体装置71而言,半导体电路3成为发热源,因此芯片键合至散热性良好的基材76而使用。在芯片键合中使用例如ausn等焊料。在将半导体装置71进行芯片键合时,能够在面接触的状态下将器件基板2的背面2b侧整体,即,接地电极72整体与基材76接合,使半导体装置71的散热性提高。此外,在基材76之上设置有匹配基板77,输入电极73及输出电极74通过导线键合78与匹配基板77连接。

此处,图25是表示现有技术中的半导体装置的安装状态的剖视图。该图示意地表示出例如专利文献1、2、3所记载的现有技术的结构。如图25所示,在现有技术中,将输入电极、输出电极及接地电极全部配置于器件基板的背面侧。因此,在将半导体装置安装于基材时,将输入电极及输出电极与匹配基板连接,仅将接地电极与基材接合。其结果,在现有技术中,由于从半导体装置向基材的散热路径仅限于器件基板中的接地电极,与器件基板的面积相比散热路径的面积小,因此存在散热性降低的问题。另外,由于在例如专利文献4所记载的现有技术中,搭载有芯片的基板的背面侧不是接地电极等单个的电极,因此也产生与图25所示的结构相同的问题。

与此相对,在本实施方式中,能够从器件基板2的背面2b整体向基材76散热,能够使半导体装置71的散热性提高。另外,在图25所示的现有技术中,将输入电极及输出电极与匹配基板连接的高度位置和将接地电极与基材连接的高度位置不同,差值为匹配基板的厚度。因此,需要在基材形成用于吸收连接位置的高度差异的凸部,存在基材的加工成本变高的问题。在本实施方式中,还能够解决该问题。因此,根据本实施方式,除了与所述实施方式1相同的效果之外,能够实现具有高散热性能的半导体装置71。

实施方式8.

下面,参照图26及图27,对本发明的实施方式8进行说明。本实施方式的特征在于,针对所述实施方式7的半导体装置,形成将罩基板的背面整体覆盖的导电膜。图26是从与图2相同的位置观察本发明的实施方式8的半导体装置的剖视图。图27是从与图3相同的位置观察本发明的实施方式8的半导体装置的剖视图。此外,本实施方式的半导体装置81的俯视图与图1相同。

如图26及图27所示,半导体装置81是与所述实施方式7相同地构成的,但具备导电膜82,该导电膜82是在罩基板8的表面8a形成的电磁屏蔽膜。与所述实施方式2相同地,除了一部分的凸块部14a的周围之外,导电膜82将罩基板8的表面8a覆盖,导电膜82与该凸块部14a及其接合焊盘16分离及绝缘。另外,凸块部14b经由接地电极焊盘4及接地电极72接地。

根据这样构成的本实施方式,能够得到将所述实施方式2及7合在一起的效果。因此,能够实现电磁屏蔽性及散热性高的半导体装置81。

实施方式9.

下面,参照图28,对本发明的实施方式9进行说明。本实施方式的特征在于在罩基板的表面侧设置有其它半导体电路。图28是从与图2相同的位置观察本发明的实施方式9的半导体装置的剖视图。如该图所示,本实施方式的半导体装置91是例如通过将2个半导体芯片92、93上下层叠而构成的。半导体芯片92、93例如是与实施方式1中说明的半导体装置1大致相同地构成的。

由于共同基板94是将半导体芯片92的罩基板和半导体芯片93的器件基板共同化的基板,因此具有表面94a及背面94b。在共同基板94的背面94b侧形成有半导体芯片93的半导体电路3。另外,在半导体芯片93的罩基板8的背面8b侧设置有该半导体芯片93的接地电极95、输入电极96及输出电极97。这些电极95、96、97经由凸块部14与半导体电路3连接。此外,在图28中例示出将2个半导体芯片92、93层叠后的情况,但本发明也可以适用于将大于或等于3个的任意个数的半导体芯片层叠的结构。另外,在本发明中,也可以是在共同基板94形成通路部,经由该通路部将半导体芯片92的半导体电路3和半导体芯片93的半导体电路3彼此连接的结构。由此,能够将芯片92、93彼此的连接距离缩短,使信号传送效率提高。

根据这样构成的本实施方式,能够实现将多个半导体芯片92、93堆叠后的结构。就高频器件而言,有时需要多个半导体芯片。在该情况下,如本实施方式所述,通过将各半导体芯片上下层叠,从而能够将信号的损耗等降低,使半导体装置91的性能提高。并且,通过对这样层叠后的半导体芯片组合如所述实施方式2例示的那样的电磁屏蔽结构,从而能够抑制各半导体芯片间所产生的彼此的干扰,实现具有高可靠性的半导体装置。

另外,由于高频电路所使用的晶体管需要匹配电路,因此大多会向半导体芯片连接匹配电路。在该情况下,在本实施方式中,如果将例如半导体芯片93设为匹配电路,则能够将半导体芯片和匹配电路上下层叠而形成。由此,能够将半导体装置91的安装面积减小,促进降低成本。

实施方式10.

下面,参照图29,对本发明的实施方式10进行说明。本实施方式的特征在于,设为凸块部不具有电极焊盘及接合焊盘的结构。图29是从与图2相同的位置观察本发明的实施方式10的半导体装置的剖视图。如该图所示,半导体装置1′的凸块部14g仅由凸块主体14a构成。因此,凸块主体14a的一端侧与通路部10直接接合。凸块主体14a的另一端侧与罩基板8的表面8a直接接合。这样构成的本实施方式也能够得到与所述实施方式1相同的效果。

(实施方式1至9中的通路部的结构)

下面,参照图30,对所述实施方式1至9中的通路部的结构进行说明。图30是对本发明的实施方式1至9的通路部的剖视图30(a)和现有技术的通路部的剖视图30(b)进行比较而表示的说明图。如图30(a)所示,通路部10是通过在器件基板2形成通路孔,在该通路孔内保形地形成导电层而构成的。

此处,“保形”是指不在通路孔完全填充导电层,而是以均匀的厚度对通路孔的侧壁(被镀覆面)形成导电层。但是,对通过通路部10传送信号方面没有影响的程度的厚度偏差没有问题。具体而言,优选导电层使用例如镀覆等手段形成为1~3μm左右的厚度。这样形成的通路部10的导电层例如具有在器件基板2的背面2b侧形成开口的空腔10a。另外,关于在罩基板8形成的通路部75,也与通路部10相同地形成,具有在罩基板8的背面8b侧形成开口的空腔。

接下来,对保形地形成了导电层的情况的效果进行说明。首先,在例如专利文献1至3所示的现有技术中,如图30(b)所示,变为将构成通路部的导电金属完全填充于通路孔内的状态。在该情况下,如果施加了热过程,则伴随着通路部的导电金属膨胀及收缩,在周围的基板产生应力。此外,在图30中,用箭形符号的大小表示应力的大小。在现有技术中,由于在通路部内不存在空腔,因此由导电金属的热变形产生的应力直接施加于周围的基板,基板侧的应力变大。

与此相对,就实施方式1至9的通路部10而言,例如,能够将热膨胀后的导电层释放到空腔10a。由此,能够将对器件基板2、罩基板8等基板施加的应力降低,抑制基板2、8的龟裂、电极焊盘4、5、6的剥离等。其结果,与现有技术相比,能够防止中空部9的气密破坏,能够使半导体装置的可靠性提高。

实施方式11.

下面,参照图31至图42,对本发明的实施方式11进行说明。在本实施方式中,将凸块部设为中空构造。图31、图32是从分别与图2、图3相同的位置观察本发明的实施方式11的半导体装置的剖视图。另外,图33是放大表示图31中的凸块部等的主要部分放大剖视图。图34是图33中的iii-iii箭头线剖视图,表示出凸块部的横剖视图。如这些图所示,半导体装置101与所述实施方式1相同地,具备基板2、8、半导体电路3、电极焊盘4、5、6、通路部102、以及凸块部103等。

器件基板2和罩基板8以表面2a、8a彼此相对的状态隔着封装框7对接。而且,在各表面2a、8a之间,形成有被封装框7围绕的中空部9。半导体电路3以气密状态收容于中空部9。在器件基板2的表面2a,形成有与半导体电路3连接的接地电极焊盘4、输入电极焊盘5及输出电极焊盘6。另外,在罩基板8的表面8a,与实施方式1相同地,形成有作为电极焊盘的接合焊盘16。

通路部102由通路孔102a和填充金属102b构成。通路孔102a形成为圆筒状的贯穿孔,在表面2a和背面2b之间将器件基板2贯穿。另外,通路孔102a在电极焊盘4、5、6的背面侧形成开口,其开口端形成为圆形状。填充金属102b填充于通路孔102a的内部,与电极焊盘4、5、6连接(接合),并且延伸至器件基板2的背面2b。如图33所示,在填充金属102b形成有与实施方式1相同的空腔102c。

凸块部103将器件基板2的电极焊盘4、5、6的任意者和罩基板8的接合焊盘16以1对1的方式彼此连结。通过例如au、ag、cu、pt、pd或其合金,将凸块部103形成为圆筒状的中空构造体。通过使用这样的材料,能够提高凸块部103的热传导性,使半导体装置101的散热性提高。因此,能够将半导体装置101的动作温度抑制得低,使动作稳定。

在凸块部103的内部形成有圆柱状的空腔104。空腔104的轴向的一端与电极焊盘4、5、6的任意者的表面相对,另一端与接合焊盘16的表面相对。此外,在本实施方式中,与所述实施方式1相同地,将凸块部103中的与输入电极焊盘5或输出电极焊盘6连接且没有经由接地电极焊盘4及通路部102接地的凸块部记为凸块部103a。另外,将经由接地电极焊盘4及通路部102接地的凸块部记为凸块部103b。

另外,凸块部103在与该凸块部103连结的电极焊盘4、5、6的背面侧开口的通路孔102a的整周,与通路孔102a的开口端相比配置在外侧。举出更具体的例子来说,在本实施方式中,如图34所示,与通路孔102a的孔径尺寸相比,凸块部103的内径尺寸形成得大。即,凸块部103在从轴向观察的俯视时,与通路孔102a相比配置在外周侧,在从外周侧将通路孔102a的整周围绕的位置配置为同心圆状。

此外,在图34中例示出将空腔104形成为圆柱状的情况,但本发明并不限于此,也可以在凸块部103的内部形成圆柱状以外的空腔。举出一个例子来说,图35是表示本发明的实施方式11的变形例的凸块部横剖视图。该图所示的凸块部103′形成为2重的筒状,在凸块部103′的内部形成有配置为同心圆状的2个空腔104′。

下面,参照图36至图42,对具有hemt晶体管构造的半导体装置101的制造流程的一个例子进行说明。这些附图是从与图3相同的位置观察的剖视图。首先,图36表示出将器件基板图案化的工序。在该工序中,首先,针对例如由si、sige、sic、inp、gaas等基板晶片制造的基板的表面,通过外延生长、离子注入等手段,形成具有载流子的半导体动作层(有源层)3d。在之后的处理中,通过光刻、蚀刻、金属成膜等手段,形成包含晶体管结构的半导体电路3。在hemt结构中,在半导体动作层3d之上形成由源极电极3a、漏极电极3b及栅极电极3c构成的3种电极。

如上所述,形成具有半导体动作层的器件基板2。此外,在本实施方式所示的一个例子中,由于通过通路部102在器件基板2的背面2b侧引出源极电极3a,因此在器件基板2的表面2a,预先形成与源极电极3a连接的接地电极焊盘4。接地电极焊盘4是例如通过将2个金属层连续地成膜而形成的。该2个金属层的一个含有例如ti、pt、w、ni等,为与器件基板2密合性高,并且扩散阻挡性良好的金属层。另外,另一个金属层是例如含有像au、ag、cu、pd、pt等那样导电性良好的金属的金属层。另外,在本工序中,还通过与接地电极焊盘4相同的材料形成接合焊盘15。

接下来,图37是表示将器件基板薄板化而形成通路孔的工序的剖视图。在该工序中,首先,为了将器件基板2的热阻、电感等降低,而将器件基板2薄板化。优选将器件基板2的厚度设为例如几十μm~几百μm左右。接着,将用于在器件基板2的背面2b侧引出电极焊盘4、5、6的通路孔102a,分别形成于器件基板2的规定位置。通路孔102a是例如通过从器件基板2的背面2b实施湿蚀刻、干蚀刻等形成的。在形成通路孔102a时,由于接地电极焊盘4还作为蚀刻的阻止件起作用,因此接地电极焊盘4的厚度是由通路孔加工条件中的电极的蚀刻速度等决定的。

接下来,图38是表示在器件基板形成通路部及接地电极的工序的剖视图。在该工序中,在例如通过溅射、无电解镀等手段形成晶种层后,进行抗蚀剂图案化,在此基础上,通过电解镀形成接地电极11及填充金属102b,完成通路部102。此时,优选晶种层是通过将与接地电极焊盘4的情况相同的2个金属层连续地成膜而形成的。在电解镀中,例如,将au、ag、cu、pd、pt等导电层形成为1~5μm左右的厚度。使用电解镀的理由是因为,与通过溅射等形成的膜相比,容易向通路孔102a的内部沉积。此外,在电极部外形成的晶种层是在除去抗蚀层后通过湿蚀刻或干蚀刻除去的。

此外,在本实施方式中也可以设为如下结构,即,例如如图42所示的其它变形例所示,没有形成接地电极焊盘4,而是形成延伸至器件基板2的表面2a的通路部102′。在该情况下,首先,在形成通路孔102a后,在器件基板2的表面2a及背面2b这两者对抗蚀层进行图案化。然后,形成电极焊盘5、6及接地电极11,从而能够得到图42所示的结构。

接下来,图39表示出形成凸块部及封装框的工序。在该工序中,在电极焊盘4、5、6之上形成凸块部103,并且在接合焊盘15之上形成封装框7。由于凸块部103具有将电极焊盘4、5、6加固的作用,因此优选通过硬质的材料形成。因此,作为凸块部103的材料,使用金属、硅氧化膜等无机绝缘膜、或聚酰亚胺等有机膜。此外,在全部的通路部102之上,必须形成凸块部103,但在不存在通路部102的部分也形成凸块部103同样没有问题。

另外,封装框7也可以通过其它工序形成,但例如在同时形成凸块部103和封装框7的情况下,能够将凸块部103和封装框7对齐为相同高度,能够在之后的工序中容易地进行罩基板8的接合。凸块部103的高度需要比hemt晶体管面的构造物(电极3a、3b、3c等)高,优选设定为例如3μm~20μm左右。在凸块部103及封装框7为金属的情况下,作为这些部位的形成方法,例如,也可以使用适于形成厚膜的镀覆法。在使用镀覆法的情况下,在利用光致抗蚀剂进行了图案化的基础上,通过电镀或无电解镀形成凸块部103及封装框7。此外,在进行电镀的情况下,在将光致抗蚀剂图案化前,需要预先形成晶种层。

此处,由于凸块部103为在中央部具有空腔104的结构,因此在利用光致抗蚀剂进行图案化的情况下,与器件基板2的表面2a平行的剖面的剖面形状为如环状(圆形状)等那样的固定形状。凸块部103是以比通路孔102a的外径更位于外侧的大的宽度形成的,以使得即使产生通路部102的变形等也不受影响。此外,作为封装框7的材料,优选为例如像金属、硅氧化膜等那样,可提高气密性的无机绝缘膜。聚酰亚胺等有机材料与无机绝缘膜相比气密性差。但是,在与罩基板2接合时,有机材料能够通过简易的工艺进行接合。因此,优选根据半导体装置101所要求的气密性的等级选择封装框7的材料。

接下来,图40表示出在罩基板形成接合焊盘的工序。在该工序中,在罩基板8的表面8a形成用于承载凸块部103及封装框7的接合焊盘16、17。为了实现凸块部103彼此的绝缘,对接合焊盘16、17通过蚀刻等而图案化。

接下来,图41是表示将器件基板和罩基板接合的工序的剖视图。如果示出该工序的一个例子,则是例如在通过如sn、snag焊料等那样的低熔点的金属形成凸块部103及封装框7的情况下,在加热至超过熔点的大于或等于200℃的温度的状态下,将凸块部103及封装框7压接于接合焊盘16、17。作为其它接合方法存在如下方法,例如,在通过au等相同金属形成彼此接合的接合面的基础上,施加超声波而将两者接合。另外,也可以在高真空下通过等离子体将接合面激活后,在高压下将两者接合。并且,也可以通过将au、ag、cu、pd、pt等微小的金属颗粒混合于溶剂而形成纳米膏,将该纳米膏图案化而形成凸块部103及封装框7,在此基础上,将它们在高温下压接于接合焊盘16、17。

无论使用上述哪种接合方法,都是接合时的载荷、超声波、温度等参数越高则接合状态越良好。凸块部103及封装框7的图案面积越小,超声波、载荷等越有效地作用于这些部位。但是,在图案过于细小的情况下,由于容易产生封装性的恶化、强度不足等不良情况,因此基于不产生这些不良情况的最小限度的尺寸来决定图案面积。举出一个例子来说,优选将呈圆筒状的凸块部103的径向厚度和封装框7的宽度分别设定为5μm~20μm。

作为罩基板8的材料,可以使用例如像半导体基板、玻璃、蓝宝石基板等那样平坦性高的基板。这是因为基板的平坦性越高,接合状态越均匀,会得到稳定的气密封装。另外,优选器件基板2和罩基板8由相同的材料形成,或由线膨胀率彼此接近的材料形成。由此,能够抑制由热过程产生的应力。此外,在使用了环氧树脂、聚酰亚胺膜的有机膜等材料的情况下,有降低气密性的倾向。

此外,在上述半导体装置101的制造流程中,将器件基板2薄板化而形成通路孔102a的工序(图37)、以及在器件基板2形成通路部102及接地电极11的工序(图38),也可以在形成凸块部103及封装框7的工序(图39)以及在罩基板8形成接合焊盘16、17的工序(图40)后进行。

另外,在上述制造流程的说明中,由于以图32的剖视图为基准,因此图示出在通路部102的表面侧连接了接地电极焊盘4,在通路部102的背面侧连接了接地电极11的状态。但是,本发明并不限于此,例如在图31中与通路部102的表面侧连接的输入电极焊盘5及输出电极焊盘6、与通路部102的背面侧连接的输入电极12及输出电极13,也分别以与接地电极焊盘4、接地电极11相同的流程形成。

并且,对于hemt以外的器件而言,经由通路部在背面侧引出在基板的表面侧形成的电极的结构,也可以通过与本实施方式相同的方法实现。另外,在实施方式11中例示出仅在器件基板2侧存在通路部102的情况。但是,本发明并不限于此,也能够适用于仅在罩基板8侧存在通路部102的结构、以及在基板2、8这两者存在通路部102的结构。

这样构成的本实施方式也能够得到与所述实施方式1相同的效果。而且,在本实施方式中,由于设为凸块部103具有空腔104的结构,因此与不具有空腔的实心凸块部相比,能够得到如下效果。此处,如果对实心的凸块部的问题进行说明,则在每个通路部形成有实心的凸块部的情况下存在如下问题,形成凸块部的金属等材料的使用量增大,引起成本增高。另外,在将凸块部及封装框与对方侧的基板接合时,凸块部的个数越多越需要高负载。但是,近年来,由于正在发展晶片的大口径化,因此如果增加实心的凸块部的个数,则存在由于接合装置的载荷能力的不足而容易产生接合不良的问题。

与此相对,根据本实施方式,由于使凸块部103为中空构造,因此能够在维持实施方式1中叙述的效果的同时,削减凸块部103所使用的材料的使用量。由此,能够抑制半导体装置101的成本,以低成本稳定地将中空部9封装。另外,在通路孔102a的整周,凸块部103与呈圆形状的通路孔102a的开口端相比配置在外侧。即,在本实施方式中,将凸块部103的内径形成为比通路孔102a的外径大。而且,设为如下结构,即,在通路孔102a的开口端的整周,凸块部103与电极焊盘4、5、6接触的接触面比该开口端位于外侧。

由此,凸块部103能够在比通路孔102a内的填充金属102b更外侧按压电极焊盘4、5、6。因此,能够抑制电极焊盘4、5、6由于变形等而从器件基板2剥离。另外,在基板2、8的接合时,由于将凸块部103压缩而块体化,因此对电极焊盘4、5、6及填充金属102b施加强大的力,容易产生这些部位的破损、剥离等。特别地,由于填充金属102b的上表面部(与电极焊盘4、5、6的接合部)为薄的金属层,强度低,因此如果在接合时从凸块部103施加力,则有可能会发生变形破坏而产生外观不良、接合异常、气密异常等。但是,在本实施方式中,如果从凸块部103对电极焊盘4、5、6施加力,则在通路孔102a的外侧,器件基板2受到该力。因此,能够将对电极焊盘4、5、6及填充金属102b施加的力降低,抑制它们的破损、剥离等。

另外,通过将凸块部103形成为筒状,能够使凸块部103和罩基板8侧的接合焊盘16、17的接触面积减少。由此,在基板2、8的接合时,即使是相同载荷也能够使对接合部施加的力增加。因此,在对接合装置的最大载荷有限制的情况下,也能够对基板2、8的接合部施加最大限度的载荷,能够稳定地将基板2、8接合,抑制接合不良。另外,凸块部103的中央部成为空腔104,从而能够针对由工艺及安装工序中的热过程等导致的基板2、8的变形、畸变改善凸块部103的随动性。

另外,在本实施方式中,向与基板2、8的表面2a、8a垂直的平面投影的凸块部103的形状形成为长方形。由此,在基板2、8的接合工序中,能够对凸块部103的整体均等地加压,垂直地对基板2、8施加力。因此,能够将接合时的力无散逸地有效施加于基板2、8,能够提高中空部9的气密性。

实施方式12.

下面,参照图43至图44,对本发明的实施方式12进行说明。在本实施方式中,仅将凸块部的一部分设为中空构造。图43是放大表示本发明的实施方式12的半导体装置的凸块部等的主要部分放大剖视图。另外,图44是从与图43相同的位置观察的在形成通路孔时产生过蚀刻的情况的主要部分放大剖视图。半导体装置111与所述实施方式12相同地,具备基板2、8、半导体电路3、电极焊盘4、5、6、通路部102、以及凸块部112等。

凸块部112具有2层结构,该2层结构由第1凸块层112a和第2凸块层112b构成。第1凸块层112a形成为在内部不存在空腔的圆柱状的实心构造体。另外,凸块层112a与输出电极焊盘6接合,并且远离罩基板8的接合焊盘16。另一方面,第2凸块层112b形成为在内部具有空腔113的圆筒状的中空构造体。另外,凸块层112b在与基板2、8的表面2a、8a垂直的方向上与第1凸块层112a层叠,接合于凸块层112a和接合焊盘16。

作为凸块部112的形成方法,例如,也可以在器件基板2侧将凸块层112a图案化,在罩基板8侧将凸块层112b图案化后,将凸块层112a、112b彼此接合。另外,也可以通过对基板2、8中的任意一个基板进行2次图案化,从而在将凸块层112a和凸块层112b层叠后,与另一个基板接合。另外,也可以考虑到凸块层112a、112b之间的校准的偏移,将凸块层112b的剖面面积形成得比凸块层112a小。

根据这样构成的本实施方式,除了与所述实施方式11相同的效果之外,还能够得到如下效果。首先,图44是从与图43相同的位置观察的在形成通路孔时产生过蚀刻的情况的主要部分放大剖视图。在作为通路孔102a的蚀刻方法使用干蚀刻的情况下,如图44所示,有时根据条件会对输出电极焊盘6也进行蚀刻,通过过蚀刻使通路孔穿透输出电极焊盘6。因此,作为通常的应对方案,想到将输出电极焊盘6增厚的方法。但是,在该方法中存在如下问题,即,产生将半导体电路3的电极3a、3b、3c、其它电极焊盘4、5、以及接合焊盘15等也全部增厚的需要,成本上升。

与此相对,根据本实施方式,在将输出电极焊盘6减薄的状态下,也能够通过凸块层112b来承受过蚀刻。因此,能够防止由于过蚀刻而使通路孔102a与中空部9连通,并且将输出电极焊盘6减薄而促进成本降低。而且,凸块部112能够通过局部的空腔113发挥与实施方式11相同的效果。

此外,在本实施方式中例示出将凸块部112与输出电极焊盘6接合的情况。但是,本发明并不限于此,凸块部112也适用于与其它电极焊盘4、5接合的凸块部。

标号的说明

1、1′、21、31、41、51、61、71、81、91、101、111半导体装置

2器件基板(基板)

2a、8a、94a表面(相对面)

2b、8b、94b背面

3半导体电路

3a源极电极

3b漏极电极

3c栅极电极

3d半导体动作层

4接地电极焊盘(电极焊盘)

5输入电极焊盘(电极焊盘)

6输出电极焊盘(电极焊盘)

7封装框

8罩基板(基板)

9中空部

10、75、102、102′通路部

10a、102c、104、104′、113空腔

11、72、95接地电极

12、73、96输入电极

13、74、97输出电极

14、14a、14b、14c、14d、14e、14f、14g、103、103′、103a、103b、112凸块部

14a、14a′凸块主体

15、17接合焊盘

16接合焊盘(电极焊盘)

18、19晶片

20标记

22、32、42、52、62、82导电膜

23绝缘间隙

33、43、63绝缘膜

76基材

77匹配基板

78导线键合

92、93半导体芯片

94共同基板

102a通路孔

102b填充金属

112a第1凸块层

112b第2凸块层

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1