光伏电池的制作方法

文档序号:17152064发布日期:2019-03-19 23:31阅读:224来源:国知局
光伏电池的制作方法

本发明涉及光伏电池。

更具体地,本发明涉及一种p-n多结光伏电池。



背景技术:

主要有两种类型的多结电池:一个电极在前表面而另一个电极在背面的两电极电池,以及具有三或四个电极的电池。

·第一种类型使用多个p-n结子电池的堆叠,并且通常被称为单体型。

·第二种类型使用彼此独立运行的子电池,其中在上表面和下表面上形成针对于每个子电池的接触电极。在单体型电池中,只有第一个和最后一个子电池设置有电极,第一个子电池在前表面,最后一个子电池在背面。由于相同的电流必须流过每个子电池,因此这需要仔细调整各个构成层的厚度。此外,在这种结构类型中必须具有子电池之间的隧道结以允许电流从一个子电池传输到下一个子电池。

文献“迈向高效四端子机械光伏堆(towardshighlyefficientfour-terminalmechanicalphotovoltaicstacks)”(g.flamand等人,iii-vsreview19(2006)24)描述了具有p-n结并且被绝缘层分开的多结光伏电池的例子,其中每个p-n结独立地运行,并且在其上表面和下表面上形成针对每个结的接触电极。这种电极的制造通常需要复杂的蚀刻工艺,以使得p-n结和绝缘层之间的界面可被到达,从而形成p-n结和绝缘层之间的埋入电极,该埋入电极位于上部p-n结的下表面并且朝向下部p-n结的上表面。此外,确保光生载流子的有效收集的格栅形式的接触电极必须完全对齐,以特别地避免增加格栅的金属部分对下部p-n结的遮挡。

本发明特别旨在克服这些缺点。

具体而言,具有相间错杂的触点的p-n结是已知的,如franklin等人的文献“24.4%效率的相间错杂的背接触太阳能电池的设计、制造和表征(design,manufactureandcharacterizationofa24.4%efficientinterdigitatedbackcontactsolarcell)”中所述。



技术实现要素:

本发明提出了一种具有多结共用的接触电极的p-n多结光伏电池结构。

为此,根据本发明,所讨论类型的光伏电池至少包括第一吸收体材料的第一层,第一层包括前表面和背面,背面上的第一接触电极具有第一极性并且与具有与第一极性相反的第二极性的第二接触电极相间错杂,其特征在于,电池还包括位于第一层的前表面上方的第二吸收体材料的第二层,第二层包括前表面和背面,其中第三接触电极具有所述第二极性并设置在第二层的前表面上,而第一和第二半导体材料一方面具有分别的电子亲和性,另一方面具有分别的带隙宽度,使得具有第一极性的载流子能够经由第一层和第二层之间的界面传输,并且由第一电极从第一层和第二层的集合中收集,而第二电极从第一层收集具有第二极性的载流子,并且第三电极从第二层收集第二极性的载流子。

借助于这些设置,光伏电池的各种接触电极是可用的,而不需要蚀刻并且不需要埋入接触栅格的对齐步骤。即使在非常高的产率,这些光伏电池的制造成本也非常低。

可选地,在本发明的优选实施例中,可以采用以下设置中的一种或两种,其中:

-具有第二极性的载流子由第三电极从第二层中收集,而不能够穿过第一层和第二层之间的界面;

-第一吸收体材料根据第一极性进行掺杂;

-第二层在第二层的前表面包括承载第三电极并根据第二电极进行掺杂的接触层;

-光伏电池还包括位于第一层和第二层之间的由第三半导体材料制成的中间层,使得由第二层中光生的第二极性载流子被中间层阻挡从而仅由第三电极收集,并允许由第二层中光生的第一极性载流子通过中间层从而由第一电极收集;

-位于第一和第二层之间的界面包括第一和第二材料之间的网状适配层;

-半导体材料中的至少一种是半导体合金的堆叠;

-吸收体材料的第一层由硅(si)制成;

-吸收体材料的第二层包括磷化镓铟合金(galnp);

-中间层包括氮化镓(gan)、氧化锌(zno)、氧化镍(nio)或氧化锰(mno)中的一种;

-吸收体材料的第二层是基于堆叠有硫化镉(cds)和/或氧硫化锌(znos)的黄铜矿(cigs);

-吸收体材料的第二层(2)是堆叠有硫化镉(cds)和/或氧硫化锌(znos)的硫铜锡锌矿(czts);

-中间层是氧化锌(zno)层;

-吸收体材料的第二层是基于堆叠在二氧化钛(tio2)上的钙钛矿基的材料,并且其中中间层为氟掺杂的二氧化锡(fto);

-吸收体材料的第二层是基于无定形硅或氢化微晶硅,或者无定形或微晶的硅-碳-氧化合物;

-表面设置有防反射涂层。

附图说明

通过以下对非限制性实施例的描述,并结合附图,本发明的其他特点和优势将变得明晰,其中:

图1a、1b、1c示出了第一层为n掺杂的p-n多结光伏电池的结构图、能带图和等效电路图;

图2a、2b、2c示出了第一层为p掺杂的p-n多结光伏电池的结构图、能带图和等效电路图;

图3a、3b示出了具有中间层的多结光伏电池的情况;

图4a、4b示出了当第二吸收体材料为基于iii-v合金堆叠的层时多结光伏电池的情况;

图5a、5b示出了当本征的氮化镓层用作中间层3时多结光伏电池的情况;

图6示出了当吸收体材料的第二层为磷化鎵銦合金层时多结光伏电池的情况;

图7示出了当吸收体材料的第二层为基于黄铜矿或硫铜锡锌矿的材料层与硫化镉或氧硫化锌层的堆叠时多结光伏电池的情况;

图8示出了当吸收体材料的第二层2为基于堆叠在二氧化钛上的钙钛矿时多结光伏电池的情况;

图9示出在电极上提取的作为电极之间产生的电压的函数的电流密度。

具体实施方式

在各个附图中,相同的附图标记指示相同或相似的元件。

在本发明的上下文中,极性是指的n型或p型。电极极性、载流子和掺杂被考虑在内。第一极性因此指示n型或p型,而第二极性指示另一种类型。n型载流子是电子,而p型载流子是空穴。

图1a示出了p-n多结光伏电池,其包括:

-第一极性的第一吸收体材料的第一层1,包括前表面11以及背面12,在第一层1的背面12上第一极性的第一接触电极101与具有与第一极性相反的第二极性的第二接触电极102相间错杂,

-位于第一层1的前表面上方的第二吸收体材料的第二层2,包括前表面21和背面22,其中第三接触电极203具有第二极性并设置在第二层2的前表面21上。

第一极性的第一接触电极101通过在第一极性的高度掺杂材料上沉积金属获得。第二极性的第二或第三接触电极通过在第二极性的重掺杂材料上沉积金属获得。

这种结构使得可以转换太阳光谱的不同部分(每个吸收体材料用于转换其中一个部分)以获得更好的产率。

图1a具体示出了第一极性为n型极性并且第二极性为p型极性的情况。在这种情况下,第一接触电极101具有n型极性,而第二接触电极102具有p型极性,并且第三接触电极203具有p型极性。

图1b示出了这种情况下各层的热力学平衡能带图,即在每层中以及在各层之间的界面处的价带和导带阈值,取决于观察电池的厚度。第一和第二吸收体材料,即半导体,一方面具有分别的电子亲和性,另一方面具有分别的带隙宽度(价带的顶部和导带底部之间的能量差),所述分别的电子亲和性和带隙宽度使得:

-在第一和第二吸收体材料之间实际上没有导带之间的不连续性,

-并且选择两个吸收体的禁带以使串叠型电池(tandemcell)具有最佳效率。

材料的禁带之间的差异在第一和第二吸收体的价带之间产生不连续性,使得在第一和第二吸收体之间的界面处,第一吸收体材料的价带的能量特别地明显大于第二吸收体材料的价带的能量。使得:

-n型载流子(电子)能够通过界面从第二层传输到第一层,并由第一电极101从所有第一层和第二层中收集,以及

-第二电极102从第一层1中收集p型载流子(空穴),

-第三电极203从第二层2中收集p型载流子(空穴),

或者,当不连续性非常大时,例如在价带之间的能量差大于0.350ev时,极性载流子p被第三电极203从第二层2中收集,而不能穿过第二层朝向第一层的界面。

在优选的实施例中,第一吸收体材料1优选地被n型掺杂。具体地,第一吸收体材料1可以是硅(si)。吸收体材料的第二层2例如是p掺杂或未掺杂的半导体合金的堆叠。第二吸收体2可为掺杂层和未掺杂层的堆叠。每个p-n结可以由其p侧构成阳极而n侧构成阴极的二极管来图解地表示。如图1c所示,在这种极性的情况下,电池的运行可由两个二极管的关联来示意,其中每个二极管与电流发生器并联。

图2a示出了相反极性的情况,即第一极性为p型极性,第二极性为n型极性的情况。在这种情况下,第一接触电极101具有p型极性,第二接触电极102具有n型极性,并且第三接触电极203具有n型极性。图2b是在这种情况下每层的热力学平衡的能带图。第一和第二吸收体材料,即半导体,一方面具有分别的电子亲和性,另一方面具有分别的带隙宽度,所述分别的电子亲和性和带隙宽度使得:

-在第一和第二吸收体材料之间的实际上没有价带之间的不连续性,

-并且选择两个吸收体的禁带以使得串叠型电池提供最佳效率。

材料的禁带之间的差异在第一和第二吸收体的导带之间产生不连续性,使得在第一和第二吸收体之间的界面处,第一吸收体材料的导带的能量明显低于第二吸收体材料的导带的能量。使得:

-p型载流子(空穴)能够通过界面从第二层传输到第一层,并且由第一电极101从所有第一层和第二层中收集,以及

-第二电极102从第一层1中收集n型载流子(电子),

-第三电极203从第二层2中收集n型载流子(电子)。

或者,当不连续性非常大时,例如在导带之间的能量差大于0.350ev时,极性载流子n被第三电极203从第二层2中收集,而不能够穿过第二层朝向第一层的界面。在优选实施例中,第一吸收体材料1优选被p型掺杂。具体地,第一吸收体材料1可以是硅(si)。第二吸收体2为n掺杂或未掺杂的半导体合金的堆叠。第二吸收体2可为掺杂层和未掺杂层的堆叠。

如图2c所示,在这种极性的情况下,电池的运行可由两个二极管的关联来示意,其中每个二极管与电流发生器并联。

在吸收体材料的第一层1具有1.12ev的禁带宽度的特定情况下,例如在硅的情况下,吸收体材料的第二层2例如是具有优选的介于1.7ev和1.8ev之间的禁带宽度的半导体。

如图3a所示,第二层2在其前表面中可包括接触窗口层(具有宽的禁带的层)4,接触窗口层4承载第三电极203,并且在第一极性为n型极性和第二极性是p型极性的情况下接触窗口层4根据极性p进行掺杂。接触窗口层4例如是p掺杂半导体合金的堆叠。

图3a还示出了光伏电池还包括在第一层1和第二层2之间的中间层3的情况,该中间层3由第三半导体材料制成,其中第一极性为n型极性并且第二极性为p型极性。如图3b所示,中间层3在两层吸收体材料的价带的高点之间产生能量距离,从而选择可能流过的载流子。因此,由第二层2中光生的p极性载流子被中间层3阻挡从而仅由第三电极203收集,而由第二层2中光生的n极性载流子被允许通过中间层3从而由第一电极101收集。中间层3例如是半导体或半导体合金的堆叠。

位于第一和第二层之间的界面20可具有第一和第二材料之间的网状适配层40。半导体堆叠的获取方式可以是,在作为沉积基础的层的上表面上直接生长,或者在合适的衬底上生长,随后在该层的上表面上进行化学或激光蚀刻以及接合。

在如图4a所示的本发明的第一示例性实施例中,第一吸收体材料为n掺杂的硅,并且第二吸收体材料为基于iii-v合金堆叠的层,例如磷化镓铟合金gainp。第一吸收体材料例如具有250μm的厚度以及2*1015cm-3的掺杂密度。第二吸收体材料例如是本征的ga0.35in0.65p。ga0.35in0.65p层例如可具有1μm的厚度以及1014cm-3的掺杂密度。可选地,ga0.35in0.65p层可被厚度为50nm以及掺杂密度为1014cm-3的gaxin1-xp的适配层52覆盖。gaxin1-xp层例如可以是带隙渐变层。如图4b所示,该层的优势在于其确保了能带的连续性,这给出了电池的价带和导带的能量作为深度的函数。在接触窗口层4由第二层的前表面承载的情况下,该接触窗口层4可以是p掺杂的磷化镓gap层,例如具有20nm的厚度以及2*1018cm-3的掺杂密度。例如,第一接触电极101在材料的整个深度上具有25μm的宽度,并且例如第一接触电极101与第二接触电极102之间分隔开的距离是50μm。它们例如是由硅的局部掺杂形成的。第二接触电极102例如在材料的整个深度上具有75μm的宽度并且具有150nm的厚度。防反射涂层可沉积在电池表面以提高其效率。反射层61例如可以设置在第一及第二电极和硅的局部掺杂部(n+及p+)之间。

如图4b所示,一方面分别的电子亲合性和另一方面分别的带隙宽度使得第一和第二吸收体材料实际上没有导带之间的不连续性,然而存在价带之间的不连续性,使得在第一和第二吸收体之间的界面处,第一吸收体材料的价带的能量明显大于第二吸收体材料的价带的能量。

因此,n型载流子能够经由界面从第二层传输到第一层,并且由第一电极101从第一层和第二层的集合中收集,而第一电极101从第一层1收集p型载流子,第三电极203从第二层2收集p型载流子,并且第二电极102从第一层1收集p型载流子。

图5a示出了与图4所示相同的光伏电池,但其情况是氮化镓gan层用作在吸收体材料的第一层1和吸收体材料的第二层2之间的中间层3。在这种情况下,如图5b的热力学平衡能带图所示,氮化镓gan层相比较于硅si层具有几乎为零的导带不连续性,但具有约2.3ev的价带不连续性。例如,氮化镓gan层具有150nm的厚度。n型载流子能够经由界面从第二层传输到第一层,并且由第一电极101从所有第一和第二层收集,其中第二电极102从第一层1中收集p型载流子,并且其中第三电极203从第二层2中收集p型载流子,而且第二层2中的p型载流子不能够穿过第一层和第二层之间的界面。具体地,第二层2中光生的p极性载流子被中间层阻挡从而仅由第三电极203收集,而不能被第二电极102收集。

在如图6所示的第二实施例中,吸收体材料的第一层为p掺杂的硅层,而吸收体材料的第二层为磷化镓铟合金ga0.35in0.65p层(或该层的堆叠)。砷化镓铟ga0.8in0.2as和本征的磷砷化镓铟gaxin1-xasyp1-y的堆叠层在所述第二层的背面上形成适配层53。本征的磷化镓铟合金gaxin1-xp层形成另一适配层52。中间层3为氧化镍nio或氧化锰mno层。接触窗口层4为n掺杂的磷化镓gap层。

在图7所示的第三示例性实施例中,吸收体材料的第一层为n掺杂的硅层,而吸收体材料的第二层为例如是p掺杂的基于黄铜矿cu(in,ga)(se,s)2的材料层(cigs)或硫铜锡锌矿cu2znsn(se,s)4的材料层(czts)与硫化镉cds层或氧化锌或氧硫化锌znos层的堆叠层。中间层3为氧化锌(zno)层,该层例如是200nm厚,并且具有适配于两个吸收体层的电子亲和性和带隙。其光伏性能几乎相同。

在如图8所示的第四示例性实施例中,吸收体材料的第一层是n掺杂的硅层,而吸收体材料的第二层2是基于堆叠在二氧化钛tio2上的钙钛矿。中间层3由氟掺杂的二氧化锡材料fto构成。接触窗口层4为空穴传输材料(htm)层。

或者,半导体层的至少一层可以是无定形或微晶的薄层。具体地,它可以是基于氢化无定形硅或者氢化无定形的选自硅、碳和/或氧的元素的化合物的无定形半导体薄层。此半导体的使用允许通过等离子增强化学气相沉积(pecvd)型“低温”(通常<250℃)沉积工艺来实施,并且因此而降低了成本(与高温方法相比)。

使用这些材料的优势之一是能够生产出价带和导带之间的能量差异明显大于采用晶体硅所获得的能量差的半导体,因此,特别提供了将此半导体材料用于上部p-n结的有利用途。

无定形层或微晶层的适宜的沉积过程可以直接在低温下在晶体硅上完成。实际上认识到的是,氢化无定形硅能够获得对晶体硅表面的优良钝化,而低温沉积工艺能够避免晶体硅的电子性能劣化,这都不同于高温下的外延生长。

它可以例如是具有氢化无定形硅、或氢化的碳化硅的无定型合金、或氢化无定形氧化硅沉积在晶体硅p-n结的表面上而形成的上部p-n结并且在背面具有触点的结构。

图9示出:

-从电极203提取的作为电极203和101之间产生的电压的函数的电流密度曲线(p-gap/n-si曲线),

-从电极102提取的作为电极102和101之间产生的电压的函数的电流密度曲线(p-si/n-si曲线),

在本发明所述的光伏电池(p-gap/n-si曲线)的表面覆盖有防反射涂层的情况下,以及在常规硅型光伏电池(p-si/n-si)的表面覆盖有防反射涂层的情况下,防反射层例如是聚甲基丙烯酸甲酯ppma层。

所获得的产率例如在不存在中间层3的情况下为27.20%,而在存在中间层3的情况下为约31.68%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1