一种磁力操动机构及使用该操动机构的断路器的制作方法

文档序号:11730714阅读:167来源:国知局

本发明涉及一种磁力操动机构及使用该操动机构的断路器。



背景技术:

高压断路器作为电网中最重要的开关设备,在电网出现短路故障时及时完成开断动作并切除故障,从而保证电网安全可靠的运行。操动机构作为高压断路器的核心动作部件,需满足可靠性、速动性要求。传统的操动机构有弹簧操动机构、永磁操动机构等。弹簧操动机构机械结构复杂,故障率高,可靠性较差且运动不可控;永磁操动机构是通过固定线圈对动铁心产生螺管电磁力进行驱动,永磁操动机构凭借其结构简单、运行免维护、操作可靠性高等优点被广泛应用于中压领域断路器。但由于存在退磁现象,出力不足,并且由于自身结构限制,无法实现长行程设计,因此永磁机构难以用于高压领域。而磁力操动机构从理论上讲可以满足任意的行程,并且具备永磁机构优点,在中高压领域有着良好的前景。

在授权公告号为cn201315272y的中国实用新型专利中公开了一种磁力操动机构,该机构则是采用带电线圈在强磁场中受力移动的原理来输出驱动力,包括由竖向排列的支柱和固定在支柱两端的固定板组成的机构框架,机构框架上沿上下方向滑动装配有轨道框架,轨道框架上固定有动力输出轴和电磁线圈,各立柱的相对侧壁上采用异极对置的方式设置板形永磁体,相邻支柱之间形成相互平行的磁场间隙,轨道框架上的各电磁线圈滑动设置于相邻的两磁场间隙中,并且,电磁线圈和永磁体之间留有间隙,这种磁力操动机构受限制较小,可提供大行程的动力输出,且其零部件数量少,故障率低。

对于高压真空断路器来讲,其电压等级高,出头行程大,需要很高的分断速度,触头闭合后,为降低弹跳和减小触头接触电阻需要较大的超程簧压力,这就要求提供很大的合闸保持力。传统的磁力操动机构中,通常在板形永磁体的上下两端分别布置反向磁极,这些反向磁极提供缓冲和固定分、合闸位置的保持力。安装电磁线圈的轨道框架包括缠绕线圈的线圈框架,线圈框架连同电磁线圈沿上下方向往复移动,为减小摩擦阻力,线圈框架与形成平行磁场间隙的板形永磁体之间留有位置间隙,该位置间隙带来了无法形成闭合磁场从而导致磁力线及磁场保持能量损失过多的问题,导致一般的磁力操动机构的保持力较小,一般在2000n以下,无法满足高压真空断路器的保持力需求。



技术实现要素:

本发明的目的在于提供一种磁力操动机构,以解决现有技术中的磁力保持机构中由于线圈框架与对应永磁体之间存在的位置间隙导致保持力较小的问题;同时,本发明还提供一种使用上述磁力操动机构的断路器。

为实现上述目的,本发明所提供的磁力操动机构的技术方案是:一种磁力操动机构,包括机构框架,机构框架上沿上下方向往复移动装配有至少一个线圈组件,线圈组件包括线圈框架和电磁线圈,各电磁线圈位于所述机构框架上对应该电磁线圈所设有的由相对布置的永磁体形成的平行磁场间隙中,线圈框架与对应的永磁体之间留有位置间隙,所述平行磁场间隙中于对应线圈组件的线圈框架的上侧和/或下侧固设有磁路闭合磁块,所述磁路闭合磁块具有用于与相应线圈组件的线圈框架顶推接触的接触面,所述磁路闭合磁块与相对布置的永磁体均接触。

所述永磁体为相对布置的两侧板形永磁体,两侧板形永磁体采用异极对置的方式布置以形成所述平行磁场间隙,位于对应线圈组件的线圈框架的上侧和/或下侧的所述磁路闭合磁块与两侧板形永磁体接触。

所述平行磁场间隙包括位于中间的用于向相应电磁线圈施加分合闸驱动力的主磁场间隙和位于主磁场间隙上下两侧的辅助磁场间隙,主磁场间隙和辅助磁场间隙的磁场方向相反,所述永磁体包括位于中间的主板形永磁体和位于端部的辅助永磁体,主板形永磁体采用异极对置的方式布置以形成所述主磁场间隙,辅助永磁体采用采用异极对置的方式布置以形成所述辅助磁场间隙,位于对应线圈组件的线圈框架的上侧和/或下侧的所述磁路闭合磁块与形成相应辅助磁场间隙的辅助永磁体接触。

所述线圈组件的往复移动行程上具有对应合闸的上极限位和对应分闸的下极限位,位于对应线圈组件的线圈框架的上侧和/或下侧的所述磁路闭合磁块对应相应线圈组件的上极限位和/或下极限位布置。

本发明所提供的使用上述磁力操动机构的断路器的技术方案是:一种断路器,包括灭弧室和相应的输出分合闸驱动力的磁力操动机构,磁力操动机构包括机构框架,机构框架上沿上下方向往复移动装配有至少一个线圈组件,线圈组件包括线圈框架和电磁线圈,各电磁线圈位于所述机构框架上对应该电磁线圈所设有的由相对布置的永磁体形成的平行磁场间隙中,线圈框架与对应的永磁体之间留有位置间隙,所述平行磁场间隙中于对应线圈组件的线圈框架的上侧和/或下侧固设有磁路闭合磁块,所述磁路闭合磁块具有用于与相应线圈组件的线圈框架顶推接触的接触面,所述磁路闭合磁块与相对布置的永磁体均接触。

所述永磁体为相对布置的两侧板形永磁体,两侧板形永磁体采用异极对置的方式布置以形成所述平行磁场间隙,位于对应线圈组件的线圈框架的上侧和/或下侧的所述磁路闭合磁块与两侧板形永磁体接触。

所述平行磁场间隙包括位于中间的用于向相应电磁线圈施加分合闸驱动力的主磁场间隙和位于主磁场间隙上下两侧的辅助磁场间隙,主磁场间隙和辅助磁场间隙的磁场方向相反,所述永磁体包括位于中间的主板形永磁体和位于端部的辅助永磁体,主板形永磁体采用异极对置的方式布置以形成所述主磁场间隙,辅助永磁体采用异极对置的方式布置以形成所述辅助磁场间隙,位于对应线圈组件的线圈框架的上侧和/或下侧的所述磁路闭合磁块与形成相应辅助磁场间隙的辅助永磁体接触。

所述线圈组件的往复移动行程上具有对应合闸的上极限位和对应分闸的下极限位,位于对应线圈组件的线圈框架的上侧和/或下侧的所述磁路闭合磁块对应相应线圈组件的上极限位和/或下极限位布置。

本发明的有益效果是:本发明所提供的磁力操动机构中,电磁线圈往复移动装配在平行磁场间隙中,由于线圈框架连同电磁线圈沿上下方向往复移动,为减小摩擦阻力,线圈框架与对应的永磁体间留有位置间隙,该位置间隙带来了无法形成闭合磁场从而导致磁力线及磁场保持能量损失过多的问题,所以,在平行磁场间隙中于对应线圈组件的线圈框架的上侧和/或下侧固设有磁路闭合磁块,磁路闭合磁块具有用于与相应线圈组件的线圈框架顶推接触的接触面,磁路闭合磁块与相对布置的永磁体均接触,当线圈框架与磁路闭合磁块接触时,磁路闭合磁块用于与永磁体形成磁场回路,以解决磁力线及磁场保持能量损失过多的问题,可有效增强合闸、合闸保持力,降低合闸弹跳及分闸反弹。

进一步地,位于对应线圈组件的线圈框架的上侧和/或下侧的磁路闭合磁块与形成相应辅助磁场间隙的辅助永磁体接触,磁力线可通过闭合回路回到磁力机构中。

进一步地,磁路闭合磁块具有与相应线圈框架顶推接触的接触面,在相应线圈组件移动到相应极限位时,磁路闭合磁块与相应线圈组件的线圈框架接触,提高磁炉闭合效果,有效增强保持力。

进一步地,磁力闭合磁块对应相应线圈组件的上极限位和/或下极限位布置,磁力闭合磁块位置布置较为合理,设计、安装均较为方便。

附图说明

图1为本发明所提供的磁力操动机构的一种实施例的结构示意图。

具体实施方式

下面结合附图对本发明的实施方式作进一步说明。

本发明所提供的磁力操动机构的具体实施例,如图1所示,该实施例中的磁力操动机构包括机构框架,机构框架包括沿上下方向延伸的多个间隔布置的立柱和固设于立柱两端的上盖板1、下底板5,还包括布置在立柱外侧的机构固定架2,机构框架上沿上下方向往复移动装配有一个线圈组件,该线圈组件包括线圈框架3,线圈框架3包括中心支撑板4和布置在中心支撑板4上下两端的两端挡板,中心支撑板4和两端挡板形成环槽,电磁线圈对应的缠绕在环槽中以固定在线圈框架3上,线圈框架全部或部分选用铁磁性材料,可起到相应的铁芯作用。

上述机构框架的各个立柱根据其与线圈组件的位置关系,可分为穿套在线圈组件中的中相立柱和位于线圈组件外侧并与中相立柱相对布置的边相立柱,中相立柱和边相立柱的相对侧分别固设有板形永磁体以在中相立柱和边相立柱之间形成平行磁场间隙10,设置在中相立柱上的板形永磁体为中相永磁体6,设在边相立柱上的板形永磁体为边相永磁体7,板形永磁体均沿上下方向延伸,使得平行磁场间隙10也沿上下方向延伸,套装在中相立柱上的相应线圈组件的电磁线圈位于该平行磁场间隙10中,使用时,电磁线圈8通电,电磁线圈作为位于平行磁场间隙中的通电导体受到安培力可在上下方向上往复移动,为保证平衡,绕线圈周向通常均布有两个以上的平行磁场间隙10,这主要是由电磁线圈的形状所决定的,如电磁线圈为三角形,则可设置三个相应的平行磁场间隙,如电磁线圈为四边形,则可对应设置四个相应的平行磁场间隙,如电磁线圈为圆环形或椭圆环形,则可根据电磁线圈的实际尺寸沿电磁线圈周向布置相应数目的平行磁场间隙,各平行磁场间隙中磁场方向由平行磁场间隙所处位置确定,保证线圈组件的正常往复移动即可。

需要说明的是,由于线圈框架3往复移动,为减小摩擦阻力,在各线圈框架3与对应的永磁体间留有位置间隙。

本实施例中,由于磁力操动机构用于驱动断路器灭弧室中的动触头往复移动以实现灭弧室的分合闸操作,因此,线圈组件的往复移动行程上具有对应合闸的上极限位和对应分闸的下极限位。

与现有技术不同之处主要在于:本实施例中,在各平行磁场间隙10中于对应线圈组件的线圈框架的上侧分别固设有上磁路闭合磁块9,该上磁路闭合磁块9实际上对应相应线圈组件的上极限位置布置,上磁路闭合磁块9具有用于与相应线圈组件的线圈框架顶推接触的接触面,上磁路闭合磁块与相对布置的永磁体均接触。使得,当线圈框架与上磁路闭合磁块接触时,可形成完成的闭合回路,磁力线通过闭合回路回到磁力机构中,有效增强上极限位置处的磁感应强度。

由于线圈组件沿上下方向往复移动,为减小摩擦阻力,线圈组件的线圈框架与形成平行磁场间隙的两侧板形永磁体之间留有设定大小的位置间隙,该位置间隙带来了无法形成闭合磁场从而导致磁力线及磁场保持能量损失过多的问题,而本实施例中,正是通过在平行磁场间隙中设置与两侧板形永磁体接触并与线圈框架接触的上磁路闭合磁块来形成闭合磁场回路,以解决磁力线及磁场保持能量损失过多的问题,可有效增强合闸保持力,降低弹跳。

本实施例中,仅针对磁力操动机构的合闸位布置有上磁路闭合磁块,上磁路闭合磁块位于相应线圈组件的线圈框架的上侧。在其他实施例中,也可仅针对分闸位布置相应的磁路闭合磁块,此时,磁路闭合磁块位于相应线圈组件的线圈框架的下侧。当然,也可针对分闸位和合闸位分别布置相应的磁路闭合磁块,在相应线圈组件的线圈框架的上侧和下侧分别设有磁路闭合磁块,由于整个平行磁场间隙的磁感应强度相同,可在分闸、合闸的后期分别通入反向电流以实现缓冲操作,可以进一步降低合闸弹跳及分闸反弹。

本实施例中,各平行磁场间隙均由两侧板形永磁体形成,每个平行磁场间隙的磁场方向一致。在其他实施例中,平行磁场间隙包括位于中间的用于向相应电磁线圈施加分合闸驱动力的主磁场间隙和位于主磁场间隙上下两侧的辅助磁场间隙,主磁场间隙和辅助磁场间隙的磁场方向相反,形成平行磁场间隙的永磁体包括位于中间的主板形永磁体和位于端部的辅助永磁体,主板形永磁体采用异极对置的方式布置以形成所述主磁场间隙,辅助永磁体采用异极对置的方式布置以形成辅助磁场间隙,位于电磁线圈上侧和/或下侧的磁路闭合磁块与形成相应辅助磁场间隙的辅助永磁体接触。这种情况下,由于分合闸后期电磁线圈靠近辅助磁场间隙。当然,也可仅针对合闸位或分闸位布置相应的磁路闭合磁块。需要说明的是,由于线圈框架的存在,可使得电磁线圈始终位于主磁场间隙中,并不进入辅助磁场间隙中,使得辅助永磁体主要起到锁定保持的作用。

本实施例中,形成平行磁场间隙的永磁体采用板形永磁体,在其他实施例中,也可采用其他可形成相应平行磁场间隙且保证电磁线圈正常往复移动的永磁体结构。

本实施例中,机构框架上设有一个线圈组件,在其他实施例中,也可根据实际需要设置两个以上的线圈组件,多个线圈组件沿在水平间隔分布,对应线圈组件配置相应的平行磁场间隙即可。

本实施例所提供的磁力操动机构可应用于包括但不限于126kv真空断路器等选相分合闸及投切电容器组领域。

本发明还提供一种断路器的实施例,该实施例中的断路器包括灭弧室和相应的输出分合闸驱动力的磁力操动机构,此处的灭弧室为真空灭弧室,磁力操动机构的结构与上述磁力操动机构实施例中的结构相同,在此不再赘述。

上述的磁力操动机构不仅可应用于真空灭弧室,也可应用于采用其他灭弧方式的断路器中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1