LDMOS的隔离结构的制造方法与流程

文档序号:16638734发布日期:2019-01-16 07:17阅读:346来源:国知局
LDMOS的隔离结构的制造方法与流程

本发明涉及半导体制造领域,特别是涉及一种ldmos(横向双扩散金属氧化物半导体场效应管)的隔离结构的制造方法。



背景技术:

在ldmos(横向双扩散金属氧化物半导体场效应管)器件的漂移区中引入浅沟槽隔离(shallow-trench-isolation,sti)工艺,向衬底纵向延伸漂移区长度同时,可缩小器件长度进而减小面积,同时sti减小了器件栅极/漏极的电场、降低了寄生电容,显著改善了器件耐压bvdss和导通电阻ron,sp的优化窗口。

一般的浅沟槽隔离结构的两侧壁平行且竖直分布,会造成电场集中在浅沟槽隔离结构的底部靠近源区的拐角处,使得在源区和漏区之间的电场分布不均匀,并且会造成在浅沟槽隔离结构的底部中间位置和远离源区的拐角处产生新的密集电场,在该新的密集电场处容易发生横向电压击穿。



技术实现要素:

基于此,有必要提供一种ldmos的隔离结构的制造方法。

一种ldmos的隔离结构的制造方法,包括:在晶圆表面形成上宽下窄的第一沟槽;通过淀积向所述第一沟槽内填充氧化硅;通过刻蚀去除掉第一沟槽内的氧化硅表面的一部分;通过热氧化在第一沟槽顶部的拐角处形成氧化硅拐角结构,所述氧化硅拐角结构为从拐角处往下、位于第一沟槽内部的氧化硅逐渐变厚的结构;在晶圆表面淀积含氮化合物,覆盖所述第一沟槽内的氧化硅表面及所述氧化硅拐角结构表面;干法刻蚀所述含氮化合物,将第一沟槽内的氧化硅表面的含氮化合物去除,所述氧化硅拐角结构表面形成向沟槽内延伸的含氮化合物侧壁残留;以所述含氮化合物侧壁残留为掩膜,继续向下刻蚀氧化硅和晶圆形成第二沟槽;在所述第二沟槽的侧壁和底部形成氧化硅层;去除所述含氮化合物侧壁残留;向所述第一沟槽和第二沟槽内填充氧化硅。

在其中一个实施例中,所述第一沟槽的深度为1微米~2微米。

在其中一个实施例中,所述在所述第二沟槽的侧壁和底部形成氧化硅层的步骤是采用热氧化工艺,形成的氧化硅层厚度为1000埃以上。

在其中一个实施例中,所述在晶圆表面形成上宽下窄的第一沟槽的步骤中,形成的第一沟槽的斜面的倾角为60~70度。

在其中一个实施例中,所述通过淀积向所述第一沟槽内填充氧化硅的步骤之前还包括对所述第一沟槽进行侧壁氧化的步骤。

在其中一个实施例中,所述在晶圆表面形成上宽下窄的第一沟槽的步骤之前还包括在晶圆表面形成氮化硅层的步骤,所述在晶圆表面形成上宽下窄的第一沟槽的步骤是将所述氮化硅层刻穿形成所述第一沟槽。

在其中一个实施例中,所述在晶圆表面形成上宽下窄的第一沟槽的步骤,和所述干法刻蚀所述含氮化合物的步骤,是采用chcl3和/或ch2cl2作为刻蚀剂。

在其中一个实施例中,所述在晶圆表面形成上宽下窄的第一沟槽的步骤,是使用含氟气体刻蚀出所述第一沟槽。

在其中一个实施例中,所述通过热氧化在第一沟槽顶部的拐角处形成氧化硅拐角结构的步骤中,氧化温度为800~950摄氏度。

在其中一个实施例中,所述含氮化合物是氮化硅。

上述ldmos的隔离结构的制造方法,采用第一沟槽+第二沟槽的双层结构,上层浅沟槽隔离结构的存在,可以扩宽下层浅沟槽隔离结构的底部拐角处的耗尽区域,避免产生新的密集电场,在源区和漏区之间的电场分布趋于平坦,从而提高击穿电压。采用含氮化合物侧壁残留作为刻蚀第二沟槽的硬掩膜,节省了光刻版。

附图说明

图1是一实施例中ldmos的隔离结构的制造方法的流程图;

图2至图6是一实施例中采用ldmos的隔离结构的制造方法制造的器件在制造过程中的剖视图。

具体实施方式

为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。

本文所使用的半导体领域词汇为本领域技术人员常用的技术词汇,例如对于p型和n型杂质,为区分掺杂浓度,简易的将p+型代表重掺杂浓度的p型,p型代表中掺杂浓度的p型,p-型代表轻掺杂浓度的p型,n+型代表重掺杂浓度的n型,n型代表中掺杂浓度的n型,n-型代表轻掺杂浓度的n型。

图1是一实施例中ldmos的隔离结构的制造方法的流程图,包括下列步骤:

s110,在晶圆表面形成上宽下窄的第一沟槽。

可以采用本领域习知的工艺在晶圆(本实施例中为硅片)表面刻蚀出上宽下窄的第一沟槽(浅槽)。在本实施例中,刻蚀形成第一沟槽之前可以先在晶圆表面形成一层氮化硅膜,再于氮化硅膜上通过光刻胶图案化出刻蚀窗口,再通过刻蚀窗口刻穿氮化硅膜形成第一沟槽,刻蚀完成后第一沟槽顶部的周围形成有氮化硅层。在本实施例中,刻蚀氮化硅膜是采用chcl3和/或ch2cl2作为刻蚀剂进行干法刻蚀,在其他实施例中也可以采用其他本领域习知的沟槽刻蚀工艺进行刻蚀。刻蚀穿氮化硅膜后往刻蚀气体中添加含氟气体,例如sf6,以刻蚀硅片形成第一沟槽。在本实施例中,刻蚀出的第一沟槽的斜面的倾角为60~70度。

第一沟槽的上部的宽度较宽,这样最终形成的沟槽隔离结构相对于窄沟槽能够降低沟槽隔离结构上方的高压走线导致的漏电可能性。在一个实施例中,第一沟槽的深度为1微米~2微米。

在一个实施例中,通过外延工艺在高掺杂浓度的衬底上外延出低掺杂浓度的外延层,步骤s110刻蚀得到的沟槽是形成于外延层中。

s120,通过淀积向第一沟槽内填充氧化硅。

通过淀积工艺形成氧化硅(siox)层的速度远大于传统的通过热氧化生长氧化硅层的速度。在本实施例中,步骤s120是采用高密度等离子化学气相淀积(hdpcvd)工艺进行氧化硅的淀积,可以获得较好的形貌。在其他实施例中也可以根据实际需求采用其他本领域习知的淀积工艺淀积氧化硅层。

淀积完后可以通过化学机械研磨(cmp)将多余的氧化硅层去除,即将露出于沟槽外面的氧化硅层去除。对于步骤s110采用氮化硅作为硬掩膜刻蚀出第一沟槽的实施例,cmp是将氧化硅层研磨至该氮化硅层。

在一个实施例中,步骤s120之前还包括对第一沟槽进行侧壁氧化,形成侧壁氧化层204的步骤。侧壁氧化可以起到修复步骤s110的沟槽刻蚀在第一沟槽内壁和底部的硅表面产生的缺陷(例如因反应离子刻蚀的高能粒子撞击产生的缺陷)的作用,消除该缺陷对栅氧产生的负面影响。

s130,通过刻蚀去除掉第一沟槽内的氧化硅表面的一部分。

可以采用干法刻蚀,利用其各向异性获得合适的形貌。图2是本实施例中步骤s130完成后器件的剖视图。在其中一个实施例中,步骤s130选用高密度等离子刻蚀的工艺进行刻蚀。

s140,通过氧化在第一沟槽顶部的拐角处形成氧化硅拐角结构。

为了后续步骤中得到的含氮化合物侧壁残留能形成本方案所需的形貌,在刻蚀后通过氧化形成特殊的拐角形貌,即在沟槽内的氧化硅表面形成类似于半球形的凹面。从拐角处往下、位于沟槽内部的氧化硅逐渐变厚,从而形成圆滑的拐角,如图3所示。图3中在硅片的表面形成有第一沟槽,第一沟槽内填充有氧化硅202,第一沟槽顶部的周围形成有氮化硅层302。在本实施例中通过800~950摄氏度的低温氧化来得到该氧化硅拐角结构。采用低温氧化是因为发明人发现若采用较高的温度(例如1000摄氏度的牺牲氧化),则晶圆的高浓度衬底中的掺杂离子容易反扩至低浓度的外延层102中,对器件性能产生负面影响。

s150,在晶圆表面淀积氮化硅,覆盖第一沟槽内的氧化硅表面及氧化硅拐角结构表面。

在本实施例中是通过化学气相淀积形成一层薄的含氮化合物,后续作为刻蚀的硬掩膜。该含氮化合物可以是氮化硅、氮氧化硅、氮化硼、氮化钛等,考虑到普适性,可以采用本领域常用的氮化硅。

s160,干法刻蚀含氮化合物,氧化硅拐角结构表面形成向第一沟槽内延伸的含氮化合物侧壁残留。

参见图3,利用干法刻蚀的各向异性,将沟槽内的氧化硅202表面的含氮化合物去除,同时在氧化硅拐角结构表面形成向沟槽内延伸的含氮化合物侧壁残留304。含氮化合物侧壁残留304与沟槽内的一部分氧化硅202共同作为沟槽的侧壁结构。

s170,以含氮化合物侧壁残留为掩膜,继续向下刻蚀氧化硅和晶圆形成第二沟槽。

参见图4,含氮化合物侧壁残留304只会覆盖第一沟槽的一部分,因此没被含氮化合物侧壁残留304覆盖的区域就会被向下刻蚀掉(即部分氧化硅202、侧壁氧化层204及外延层102被刻蚀去除)形成第二沟槽201(深槽)。第二沟槽201的宽度受含氮化合物侧壁残留304限制,显然地,第二沟槽201的宽度小于第一沟槽的上部的宽度,第二沟槽201的深度也大于第一沟槽的深度。采用含氮化合物侧壁残留304作为第二沟槽刻蚀的硬掩膜,可以不需要光刻版,能够节省成本。

在一个实施例中,第二沟槽201的深度为5微米~10微米,在其他实施例中甚至可以更深。

s180,在第二沟槽的侧壁和底部形成氧化硅层。

在本实施例中,是通过热氧化的工艺形成氧化硅层206,被含氮化合物侧壁残留304覆盖的位置不会形成氧化硅层206,参见图5。

s190,去除含氮化合物侧壁残留。

为了将含氮化合物去除干净,可以采用湿法刻蚀,例如以浓磷酸为刻蚀剂进行刻蚀。本实施例中通过浓磷酸将氮化硅层302和含氮化合物侧壁残留304一并去除。

s200,向第一沟槽和第二沟槽内填充氧化硅。

在本实施例中,是采用高密度等离子化学气相淀积(hdpcvd)工艺进行氧化硅的淀积。步骤s210完成后可以通过化学机械研磨对露出第一沟槽的氧化硅进行平坦化处理,参加图6。

上述ldmos的隔离结构的制造方法采用第一沟槽+第二沟槽的双层结构,上层浅沟槽隔离结构的存在,可以扩宽下层浅沟槽隔离结构的底部拐角处的耗尽区域,避免产生新的密集电场,在源区和漏区之间的电场分布趋于平坦,从而提高击穿电压。采用含氮化合物侧壁残留作为刻蚀第二沟槽的硬掩膜,节省了光刻版。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1