形成具有减少的腐蚀的接触插塞的方法与流程

文档序号:15809844发布日期:2018-11-02 22:07阅读:152来源:国知局
形成具有减少的腐蚀的接触插塞的方法与流程

本发明实施例涉及形成具有减少的腐蚀的接触插塞的方法。

背景技术

在集成电路的制造中,接触插塞用于连接至晶体管的源极和漏极区域以及栅极。源极/漏极接触插塞通常连接至源极/漏极硅化物区域,它的形成包括形成接触开口以暴露源极/漏极区域,沉积金属层,实施退火以使金属层与源极/漏极区域反应,将钨填充至剩余的接触开口,并且实施化学机械抛光(cmp)以去除过量的钨。之后,实施清洗。在cmp和随后的清洗工艺中,接触插塞的顶面可能遭受凹陷和腐蚀。



技术实现要素:

根据本发明的一些实施例,提供了一种形成半导体器件的方法,包括:形成覆盖晶体管的栅极堆叠件的层间电介质(ild),其中,所述层间电介质和所述栅极堆叠件是晶圆的部分;蚀刻所述层间电介质以形成第一接触开口,其中,通过所述第一接触开口暴露所述晶体管的源极/漏极区域或所述栅极堆叠件中的栅电极;形成导电覆盖层,其中,所述导电覆盖层延伸至所述第一接触开口内;将含金属材料镀在所述导电覆盖层上,在镀液中使用电化学镀实施所述镀,其中,所述含金属材料包括填充所述第一接触开口的部分,并且所述镀液具有低于100百万分率(ppm)的硫含量;以及对所述晶圆实施平坦化以去除所述含金属材料的过量部分,其中,所述含金属材料的剩余部分和所述导电覆盖层的剩余部分组合形成第一接触插塞。

根据本发明的另一些实施例,还提供了一种形成半导体器件的方法,包括:形成层间电介质(ild);蚀刻所述层间电介质以形成第一接触开口和第二接触开口,其中,分别通过所述第一接触开口和所述第二接触开口暴露晶体管的源极/漏极区域和栅电极;沉积延伸至所述第一接触开口和所述第二接触开口内的金属层;沉积导电覆盖层,其中,所述导电覆盖层延伸至所述第一接触开口和所述第二接触开口内;在镀液中使用电化学镀将含金属材料镀在所述导电覆盖层上,其中,所述镀液不含硫;以及实施平坦化以去除所述含金属材料的过量部分,其中,所述含金属材料的剩余部分和所述导电覆盖层的剩余部分形成源极/漏极接触插塞和栅极接触插塞。

根据本发明的又一些实施例,还提供了一种形成半导体器件的方法,包括:形成层间电介质(ild);蚀刻所述层间电介质以形成接触开口,其中,通过所述接触开口暴露晶体管的源极/漏极区域或栅电极;沉积延伸至所述接触开口内的金属层;沉积导电覆盖层,所述导电覆盖层具有延伸至所述接触开口内的第一部分和位于所述层间电介质上面的第二部分;在镀液中使用电化学镀将含金属材料镀在所述导电覆盖层上,其中,所述镀液不含硫;实施平坦化以去除所述含金属材料的过量部分,其中,所述含金属材料的剩余部分和所述导电覆盖层的剩余部分组合形成接触插塞,并且所述接触插塞的顶面从邻近所述层间电介质的顶面凹进以形成凹槽;以及在所述凹槽中选择性地形成金属盖。

附图说明

当结合附图进行阅读时,从以下详细描述可最佳理解本发明的各个方面。应该指出,根据工业中的标准实践,各个部件未按比例绘制。实际上,为了清楚的讨论,各个部件的尺寸可以任意地增大或减小。

图1至图12示出了根据一些实施例的晶体管和接触插塞的形成中的中间阶段的截面图。

图13示出了根据一些实施例的晶体管和接触插塞的截面图。

图14示出了根据一些实施例的用于形成晶体管的工艺流程。

具体实施方式

以下公开内容提供了许多用于实现本发明的不同特征的不同实施例或实例。下面描述了组件和布置的具体实例以简化本发明。当然,这些仅仅是实例,而不旨在限制本发明。例如,以下描述中,在第二部件上方或者上形成第一部件可以包括第一部件和第二部件直接接触形成的实施例,并且也可以包括在第一部件和第二部件之间可以形成额外的部件,从而使得第一部件和第二部件可以不直接接触的实施例。此外,本发明可在各个实施例中重复参考标号和/或字符。该重复是为了简单和清楚的目的,并且其本身不指示所讨论的各个实施例和/或配置之间的关系。

而且,为便于描述,在此可以使用诸如“在…之下”、“在…下方”、“下部”、“在…之上”、“上部”等空间相对术语,以描述如图所示的一个元件或部件与另一个(或另一些)原件或部件的关系。除了图中所示的方位外,空间相对术语旨在包括器件在使用或操作中的不同方位。装置可以以其他方式定向(旋转90度或在其他方位上),而本文使用的空间相对描述符可以同样地作出相应的解释。

根据各个示例性实施例,提供了具有电连接至源极/漏极区域和栅电极的接触插塞的晶体管及其形成方法。示出了形成晶体管的中间阶段。讨论了改变的一些实施例。贯穿各个视图和示例性实施例,相同的参考标号用于指代相同的元件。

图1至图12示出了根据一些示例性实施例的晶体管和相应的接触插塞的形成的中间阶段的截面图。图1至图12所示的步骤也在如图14的工艺流程200中示意性地示出。参照图1,形成晶圆10上的初始结构。晶圆10包括衬底20,该衬底20可以由诸如硅、硅锗、硅碳、iii-v族化合物半导体材料等的半导体材料形成。衬底20可以是块状衬底或绝缘体上半导体(soi)衬底。

在衬底20上方形成栅极堆叠件26a和26b,栅极堆叠件26a和26b共同地称为栅极堆叠件26)。根据本发明的一些实施例,栅极堆叠件26a和26b形成为纵向方向彼此平行的栅极堆叠带(在晶圆10的俯视图中)。每个栅极堆叠件26a和26b均可以包括栅极电介质24、位于栅极电介质24上方的栅电极28以及位于栅电极28上方的硬掩模38。根据本发明的一些实施例,栅极堆叠件26是替换栅极堆叠件,通过形成伪栅极堆叠件(未示出),去除伪栅极堆叠件以形成凹槽,并且在凹槽中形成替换栅极来形成替换栅极堆叠件。因此,每个栅极电介质24均包括位于相应的栅电极28下面的底部,以及位于相应的栅电极28的侧壁上的侧壁部分。侧壁部分形成环绕相应的栅电极28的环。

根据本发明的一些实施例,源极和漏极区域22(在下文中称为源极/漏极区域22)形成为延伸至衬底20内,并且在接触蚀刻停止层(cesl)34、层间电介质(ild)36以及其中的接触开口的形成之前形成。根据可选实施例,在形成如图2所示的接触开口之后形成源极/漏极区域22。一个或多个源极/漏极区域22可以是由包括26a和26b的相邻的栅极堆叠件共用的共同的源极区域或共同的漏极区域。因此,栅极堆叠件26a可以与栅极堆叠件26a的相对侧上的源极/漏极区域22结合形成第一晶体管,并且栅极堆叠件26b可以与栅极堆叠件26b的相对侧上的源极/漏极区域22结合形成第二晶体管。第一晶体管和第二晶体管可以并联电连接以用作单个晶体管。

栅极电介质24可以是单层或包括多个层的复合层。例如,栅极电介质24可以包括界面氧化物层和位于氧化物层上方的高k介电层。氧化物层可以是通过热氧化或化学氧化形成的氧化硅层。高k介电层可以具有大于7或甚至大于20的k值。示例性高k介电材料包括氧化铪、氧化锆、氧化镧等。

根据本发明的一些实施例,每个栅电极28均具有由均质导电材料形成的单层结构。根据可选实施例,每个栅电极28均具有包括多个层的复合结构,多个层由tin、tasin、wn、tial、tialn、tac、tan、铝或它们的合金形成。栅电极28的形成可以包括物理汽相沉积(pvd)、金属有机化学汽相沉积(mocvd)和/或其他适当的方法。例如,硬掩模38可以由氮化硅或氮氧化硅形成。

根据本发明的可选实施例,通过沉积毯式栅极介电层和毯式栅电极层(诸如多晶硅层),并且之后图案化毯式栅极介电层和毯式栅电极层来形成栅极堆叠件26a和26b,而不是替换栅极堆叠件。

再次参照图1,蚀刻停止层(cesl)34形成为覆盖衬底20,并且可以在栅极间隔件30的侧壁上延伸。根据本发明的一些实施例,cesl34由氮化硅、碳化硅或其他介电材料形成。在cesl以及栅极堆叠件26a和26b上方形成层间电介质(ild)36(可选地称为ild036)。ild36可以由诸如磷硅酸盐玻璃(psg)、硼硅酸盐玻璃(bsg)、硼掺杂的磷硅酸盐玻璃(bpsg)、正硅酸乙酯(teos)氧化物等的氧化物形成。例如,该形成可以包括化学汽相沉积(cvd)、可流动cvd(fcvd)、旋涂等。ild36可以包括具有与栅极堆叠件26a和26b的顶面齐平的顶面的第一层,并且栅极堆叠件26a和26b是在第一层中形成的替换栅极。ild36还可以包括在第一层上方形成的第二层,并且在形成栅极堆叠件26a和26b之后形成第二层。第一层和第二层可以由相同的材料或不同的材料形成,并且它们之间可以具有或可以不具有可区分的界面。

参照图2,蚀刻ild36和cesl34以形成源极/漏极接触开口40。相应的步骤示出为图14所示的工艺流程中的步骤202。源极/漏极区域22(如果已经形成)暴露于接触开口40。该蚀刻是各向异性的,使得开口40的侧壁基本垂直。

根据此时还未形成源极/漏极区域22的一些实施例,可以实施预非晶化注入(pai)和源极/漏极注入以形成源极/漏极区域22,并且用于形成源极/漏极区域22的pai的物质和注入的杂质通过开口40注入至衬底20内。可以使用破坏注入的区域的晶格结构的锗、硅等实施pai,以控制随后的源极/漏极注入的深度。如果相应的晶体管是p型晶体管时,可以使用硼或铟实施源极/漏极注入,如果相应的晶体管是n型晶体管,可以使用磷、砷或锑实施源极/漏极注入。

根据一些实施例,ild36由均质介电材料形成。根据可选实施例,如图2所示,绘制虚线35以示出ild36可以包括层36a和位于层36a上方的层36b。层36a和层36b都是介电层。层36b可以由与层36a的材料不同的介电材料形成。例如,层36a和层36b的两个都可以由选自诸如psg、bsg、bpsg和teos的用于形成ild的候选介电材料的相同的组中的介电材料形成,但是选择不同的材料。在随后的形成中,层36b可以被去除,并且因此用作牺牲层。

图3示出了根据本发明的一些实施例的介电接触(插塞)间隔件44的形成。根据可选实施例,没有形成接触间隔件44。接触间隔件44的形成可以包括沉积一个或多个共形介电层。介电层延伸至接触开口40内,并且包括位于ild36的侧壁上的垂直部分和位于开口40的底部处以及ild36上方的水平部分。使用诸如原子层沉积(ald)、cvd等的共形沉积工艺实施沉积工艺,以使沉积层的水平部分和垂直部分具有类似的厚度。之后,实施各向异性蚀刻以去除介电层的水平部分,留下垂直部分作为接触间隔件44。可以使用氨(nh3)和nf3作为蚀刻气体实施各向异性蚀刻。应该注意,在晶圆10的俯视图中,相同开口40中的接触间隔件44是集成的间隔件环的部分。

根据本发明的一些实施例,间隔件44由相对于氧化物具有高蚀刻选择性的介电材料形成,使得在随后的清洗工艺中(其中,氧化物被去除),没有损坏间隔件44。例如,接触间隔件44可以由氮化硅、碳氧化硅、氮氧化硅等形成。

参照图4,在ild36上方形成诸如光刻胶43的光刻掩模。光刻胶43填充源极/漏极接触开口40(图3)。之后,图案化光刻胶43。使用光刻胶43作为蚀刻掩模实施蚀刻工艺以蚀刻ild36,从而形成栅极接触开口41。相应的步骤示出为图14所示的工艺流程中的步骤204。之后,蚀刻硬掩模38,并且开口41延伸至相对的栅极间隔件30之间的间隔中。因此,栅电极28(以及可能的栅极电介质24)暴露于栅极接触开口41。根据本发明的一些实施例,开口41的形成包括蚀刻穿ild36的各向异性蚀刻以及蚀刻硬掩模38的各向同性蚀刻(干蚀刻)或各向异性蚀刻(干蚀刻或湿蚀刻)。蚀刻之后,栅极间隔件30的侧壁可以或可以不暴露于开口41。

根据一些实施例,如图5所示,在开口41中形成接触间隔件45。根据可选实施例,省略接触间隔件45。接触间隔件45可以由选自用于形成接触间隔件44的候选材料的相同的组中的材料形成。接触间隔件44和45可以由相同的材料或不同的材料形成。根据一些实施例,以不同的工艺形成接触间隔件44和45,每个接触间隔件44和45均在形成相应的接触开口40和41之后形成。根据可选实施例,接触间隔件44和45均在形成两个接触开口40和41之后形成,并且在相同的形成工艺中形成,该形成工艺包括沉积毯式介电层,并且之后对毯式介电层实施各向异性蚀刻。也可以省略接触间隔件44和45的一个或者两个的形成,并且随后形成的接触插塞将与ild36接触。

下一步,参照图6,沉积金属层46。相应的步骤示出为图14所示的工艺流程中的步骤206。根据本发明的一些实施例,金属层46是可以使用物理汽相沉积(pvd)形成的钛(ti)层。金属层46包括位于开口40的底部处的底部以及ild36的侧壁表面上的侧壁部分。金属层46具有两个功能。第一个功能是金属层46的底部与下面的源极/漏极区域22反应以形成源极/漏极硅化物区域。第二个功能是金属层46用作用于随后形成的覆盖层的粘合层。

根据可选实施例,用不同的工艺填充开口40和41,并且金属层46填充至开口40内,但是没有填充至开口41内。然而,根据这些实施例,导电覆盖层48和金属材料54仍填充至两个开口40和41内。

参照图7,沉积导电覆盖层48。相应的步骤示出为图14所示的工艺流程中的步骤208。覆盖层48也用作扩散阻挡层。根据本发明的一些实施例,覆盖层48由诸如氮化钛的金属氮化物形成。可以使用cvd、pvd等形成覆盖层48。

图8示出了用于形成源极/漏极硅化物区域50的硅化工艺。根据本发明的一些实施例,通过由箭头52表示的退火实施硅化工艺。相应的步骤示出为图14所示的工艺流程中的步骤210。可以通过快速热退火(rta)、炉退火等实施退火。因此,金属层46的底部与源极/漏极区域22反应形成硅化物区域50。在硅化工艺之后,金属层46的侧壁部分保留。根据本发明的一些实施例,金属层46的底部完全地反应,并且硅化物区域50的顶面与覆盖层48的底面接触。

下一步,将金属材料54填充至剩余的接触开口40和41内,并且产生的晶圆10如图9所示。相应的步骤示出为图14所示的工艺流程中的步骤212。金属材料54可以由含钴材料或含钨材料形成,含钴材料或含钨材料可以由纯的或基本纯的钨或钴(例如,具有大于约95%的原子百分比)形成。

根据本发明的一些实施例,通过电化学镀(ecp)实施金属材料54的形成。在ecp期间,镀液(示意性地示出为55)与晶圆10接触,并且通过镀液55传导电流。例如,可以通过将晶圆10浸入镀液55来实施镀。根据一些实施例,镀液55包括诸如硼酸的含金属化学物质、h2so4中的coso4以及诸如具有c-h键和/或n-h键的有机化合物的额外的化学物质。

镀液55可以包括在其电解液中的硫(s)。因此,镀的金属材料54也包括硫。如随后的段落中讨论的,金属材料54中的硫将在随后的步骤中引起金属材料54的腐蚀。因此,在镀之前减少或消除电解液中的硫含量。根据本发明的一些实施例,镀液55不含任何含硫化学物质,从而不会将硫沉积至金属材料54内。根据可选实施例,调整镀液55,从而使得虽然镀液55中存在含硫化学物质(诸如包括硫并且具有c-h和/或n-h键的有机化合物),但是镀液55中的硫的量低于100百万分率(ppm)。镀液55也可以基本不含硫,例如,镀液55中硫的量低于约20ppm或低于约10ppm,使得金属材料54的腐蚀(如果存在的话)将不会影响产生的接触插塞的质量。如果镀液55已经购买(或提供)并且具有高于约100ppm的硫含量,则处理镀液55以去除硫,以将硫含量减小至低于100ppm,并且在用于镀之前,减小至诸如低于约20ppm或10ppm的期望的水平,并且使得用于镀的镀液55可以不含或基本不含硫。另外,镀液55可以具有少量的硫含量,例如,该硫含量可以多于约1ppm,并且因此该硫含量可以在约1ppm和约100ppm之间的范围内、约1ppm和约20ppm之间的范围内或约1ppm和约10ppm之间的范围内。产生的金属材料54可以包括痕量的硫,其中,由于镀液55中的硫的减少或消除,因此金属材料54中的硫的量显著的减少或完全地消除。

金属材料54的ecp可以是自底向上的,这意味着在接触开口40和41(图8)的底部处,沉积速率远高于上部区域中的沉积速率,上部区域诸如在ild36上方的覆盖层48的部分上。因此,金属材料54填充开口40和41,并且持续生长。

在沉积金属材料54之后,实施退火,根据本发明的一些实施例,使用快速热退火(rta)实施退火,并且退火的持续时间可以在约2分钟和约10分钟之间的范围内。退火的温度可以在约300℃和约500℃之间的范围内。如果在金属材料54中存在硫,则退火将引起硫的扩散,并且金属材料54和覆盖层48之间的界面处的硫含量由于扩散而增加。

下一步,实施诸如化学机械抛光(cmp)的平坦化工艺以去除位于ild36上方的金属材料54、覆盖层48和金属层46的过量部分。如图10a所示,因此形成源极/漏极接触插塞56a和栅极接触插塞56b。相应的步骤示出为图14所示的工艺流程中的步骤214。图10a示意性地示出了抛光垫57。在实际cmp工艺中,抛光垫57可以具有大于晶圆10的尺寸的尺寸/直径。在cmp工艺期间,抛光垫可以面朝上,而晶圆10可以面朝下并且按压在抛光垫57上。在cmp期间,旋转晶圆10。在cmp期间,将浆料(未示出)分配在抛光垫57上。

根据其中ild36包括层36a和层36b(图9)的一些实施例,可以实施平坦化工艺直至完全地去除层36b。因此,层36b用作保护下面的ild36a的牺牲层。

可以发现,如果金属材料54中存在硫,则在cmp期间,接触插塞56a和56b可能被腐蚀而形成如图10b所示的凹槽60。相反地,如果金属材料54中不存在硫,则在cmp期间,没有腐蚀产生,并且接触插塞56a和56b的顶面可以是平坦的,其中,没有形成凹槽。该腐蚀可能由硫与浆料反应形成硫酸引起的,该硫酸可以腐蚀接触插塞56a和56b。退火进一步导致靠近金属材料54和覆盖层48之间的界面处的区域中的硫的浓缩。因此,界面处浓缩的硫导致凹槽60在邻近界面处比在接触插塞56a和56b的其他部分中更深,并且形成如图10b所示的凹进的轮廓。凹槽60的边缘部分具有深度d1,并且凹槽60的中心部分具有小于d1的深度d2。根据一些实施例,比率d1/d2大于2.0。应该理解,深度d1和d2以及比率d1/d2与诸如金属材料54中的硫含量、退火条件和浆料的多个因素有关。硫也可以扩散至覆盖层48的浅部分。因此,凹槽60也可以延伸至导电覆盖层48。

当没有腐蚀产生或腐蚀非常轻时,可以在如图10a所示的晶圆10上直接形成介电层和导电部件。如果腐蚀仍然产生并且不可忽略,则可以形成金属盖62以填充如图10b所示的凹槽60,并且产生的晶圆10如图11a所示。因此,金属盖62延伸至凹槽60内。根据一些示例性实施例,金属盖62的顶面与ild36的顶面基本共面。可以使用cvd沉积金属盖62,并且选择前体使得该形成是选择性的,并且金属盖62可以形成在接触插塞56a和56b上方,而没有形成在ild36上。金属盖62可以由钴、钨、镍或它们的合金形成。此外,金属盖62和金属材料54可以由相同的材料或不同的材料形成。在图11a和随后的附图中,使用虚线示出金属盖62以表明它们可以响应于图10a所示的结构而不形成,或可响应于图10b所示的结构而形成。

图11b示出了根据一些实施例的晶圆10,并且实施cmp直至去除栅极间隔件30上方的全部ild36并且暴露栅极间隔件30。因此,每个栅极接触插塞56b均完全地位于相对的栅极间隔件30之间的间隔中。根据这些实施例,可以产生或可以不产生接触插塞56a和56b的腐蚀,并且因此,如用于示出金属盖62的虚线所表明的,可以形成或可以不形成金属盖62。

在图1至图11a/11b所示的步骤中,形成晶体管300。参照图12,形成蚀刻停止层68,随后形成介电层70。根据一些实施例,介电层70是层间电介质,并且因此可选地称为ild170。根据一些实施例,也可以省略蚀刻停止层68。因此,使用虚线示出蚀刻停止层68以表明其可以形成或可以不形成。蚀刻停止层68可以由碳化硅、氮氧化硅、碳氮化硅、它们的组合或它们的复合层形成。可以使用诸如cvd、等离子体增强化学汽相沉积(pecvd)、ald等沉积方法形成蚀刻停止层68。ild170可以包括选自psg、bsg、bpsg、氟掺杂的硅酸盐玻璃(fsg)或teos氧化物的材料。ild170也可以由可以是含碳介电材料的无孔低k介电材料形成。ild170可以使用旋涂、fcvd等形成,或可以使用诸如cvd、pecvd、低压化学汽相沉积(lpcvd)等的沉积方法形成。

图12进一步示出了导电部件72的形成,其可以是金属线、金属通孔、金属焊盘等。层68和70以及导电部件72的形成示出为图14所示的工艺流程中的步骤216。根据本发明的一些实施例,导电部件72是接触插塞,并且没有形成如图12所示的蚀刻停止层68。根据可选实施例,导电部件72是铜通孔或铜线,并且根据这些实施例,形成蚀刻停止层68。

导电部件72的形成可以包括在蚀刻停止层68和介电层70中形成暴露接触插塞56a和56b的开口,在开口中填充导电材料并且实施平坦化。导电部件72可以包括导电粘合/阻挡层74以及位于粘合/阻挡层74上方的金属材料76。粘合/阻挡层74可以由选自钛、氮化钛、钽、氮化钽、它们的组合或它们的多层的材料形成。金属材料76可以由钨、铜、铝、或它们的合金形成,或可以使用pvd、金属有机化学汽相沉积(mocvd)或镀形成。根据一些实施例,金属材料76使用ecp形成,相应的镀液可以具有与镀液55(图9)类似的硫含量,其具有低于约100ppm的硫含量或可以不含硫以减少腐蚀。

本发明的实施例具有一些有利特征。通过降低或去除用于形成接触插塞的镀液中的硫,减少或消除了cmp期间的接触插塞的腐蚀。此外,可以选择性地形成金属盖以填充由于腐蚀而形成的凹槽(如果存在的话)。栅极接触插塞也可以完全地形成在栅极间隔件之间以减少由栅极接触插塞上方的金属通孔/插塞的未对准引起的电短路或泄露。

根据本发明的一些实施例,方法包括形成ild以覆盖晶体管的栅极堆叠件。ild和栅极堆叠件是晶圆的一部分。蚀刻ild以形成接触开口,并且通过接触开口暴露晶体管的源极/漏极区域或栅极堆叠件中的栅电极。导电覆盖层形成为延伸至接触开口内。在镀溶液中使用电化学镀将含金属材料镀在导电覆盖层上。含金属材料具有填充接触开口的部分。镀液具有低于约100ppm的硫含量。对晶圆实施平坦化以去除含金属材料的过量部分。含金属材料的剩余部分和导电覆盖层的剩余部分结合形成接触插塞。

根据本发明的一些实施例,方法包括形成ild,蚀刻ild以形成第一接触开口和第二接触开口。分别通过第一接触开口和第二接触开口暴露晶体管的源极/漏极区域和栅电极。该方法还包括沉积延伸至第一接触开口和第二接触开口内的金属层,以及沉积导电覆盖层。导电覆盖层延伸至第一接触开口和第二接触开口内。在镀溶液中使用电化学镀将含金属材料镀在导电覆盖层上。镀液基本不含硫。对晶圆实施平坦化以去除含金属材料的过量部分。含金属材料的剩余部分和导电覆盖层的剩余部分形成源极/漏极接触插塞和栅极接触插塞。

根据本发明的一些实施例,方法包括形成ild,蚀刻ild以形成接触开口。通过接触开口暴露晶体管的源极/漏极区域或栅电极。该方法还包括沉积延伸至接触开口内的金属层,沉积具有延伸至接触开口内的第一部分和位于ild上面的第二部分的导电覆盖层,并且在镀溶液中使用电化学镀将含金属材料镀在导电覆盖层上。镀液基本不含硫。对晶圆实施平坦化以去除含金属材料的过量部分。含金属材料的剩余部分和导电覆盖层的剩余部分结合形成接触插塞。由于平坦化,接触插塞的顶面从邻近的ild的顶面凹进以形成凹槽。金属盖选择性地沉积在凹槽中。

根据本发明的一些实施例,提供了一种形成半导体器件的方法,包括:形成覆盖晶体管的栅极堆叠件的层间电介质(ild),其中,所述层间电介质和所述栅极堆叠件是晶圆的部分;蚀刻所述层间电介质以形成第一接触开口,其中,通过所述第一接触开口暴露所述晶体管的源极/漏极区域或所述栅极堆叠件中的栅电极;形成导电覆盖层,其中,所述导电覆盖层延伸至所述第一接触开口内;将含金属材料镀在所述导电覆盖层上,在镀液中使用电化学镀实施所述镀,其中,所述含金属材料包括填充所述第一接触开口的部分,并且所述镀液具有低于100百万分率(ppm)的硫含量;以及对所述晶圆实施平坦化以去除所述含金属材料的过量部分,其中,所述含金属材料的剩余部分和所述导电覆盖层的剩余部分组合形成第一接触插塞。

在上述方法中,还包括:提供具有所述硫含量的所述镀液;以及在所述镀之前,从所述镀液去除硫以减小所述镀液中的硫含量。

在上述方法中,所述镀液不含硫。

在上述方法中,还包括,在形成所述导电覆盖层之前,在所述第一接触开口中形成介电接触间隔件。

在上述方法中,还包括:在所述层间电介质上方形成附加介电层,其中,所述附加介电层和所述层间电介质由不同的材料形成,其中,所述第一接触开口穿透所述附加介电层和所述层间电介质,并且所述导电覆盖层包括覆盖所述附加介电层的部分。

在上述方法中,还包括:蚀刻层间电介质以形成第二接触开口,其中,通过所述第一接触开口暴露所述源极/漏极区域,并且通过所述第二接触开口暴露所述栅电极,并且同时在所述第一接触开口和所述第二接触开口中形成所述导电覆盖层和所述含金属材料。

在上述方法中,还包括:在所述平坦化之前,对所述含金属材料实施退火。

在上述方法中,所述平坦化在所述第一接触插塞中产生凹槽,并且所述方法还包括将金属盖选择性地沉积至所述凹槽内。

根据本发明的另一些实施例,还提供了一种形成半导体器件的方法,包括:形成层间电介质(ild);蚀刻所述层间电介质以形成第一接触开口和第二接触开口,其中,分别通过所述第一接触开口和所述第二接触开口暴露晶体管的源极/漏极区域和栅电极;沉积延伸至所述第一接触开口和所述第二接触开口内的金属层;沉积导电覆盖层,其中,所述导电覆盖层延伸至所述第一接触开口和所述第二接触开口内;在镀液中使用电化学镀将含金属材料镀在所述导电覆盖层上,其中,所述镀液不含硫;以及实施平坦化以去除所述含金属材料的过量部分,其中,所述含金属材料的剩余部分和所述导电覆盖层的剩余部分形成源极/漏极接触插塞和栅极接触插塞。

在上述方法中,在不同的蚀刻工艺中形成所述第一接触开口和所述第二接触开口。

在上述方法中,还包括,分别将第一介电接触间隔件和第二介电接触间隔件沉积至所述第一接触开口和所述第二接触开口内。

在上述方法中,还包括:提供包括硫的所述镀液;以及从所述镀液去除所述硫。

在上述方法中,所述镀液不含硫。

在上述方法中,还包括:在所述层间电介质上方形成附加介电层,其中,所述附加介电层和所述层间电介质由不同的材料形成,其中,所述第一接触开口穿透所述层间电介质和所述附加介电层,并且所述导电覆盖层包括覆盖所述附加介电层的部分。

在上述方法中,还包括,在所述平坦化之前,对所述含金属材料实施退火。

在上述方法中,所述平坦化在所述源极/漏极接触插塞中产生凹槽,并且所述方法还包括将金属盖选择性地沉积至所述凹槽内。

根据本发明的又一些实施例,还提供了一种形成半导体器件的方法,包括:形成层间电介质(ild);蚀刻所述层间电介质以形成接触开口,其中,通过所述接触开口暴露晶体管的源极/漏极区域或栅电极;沉积延伸至所述接触开口内的金属层;沉积导电覆盖层,所述导电覆盖层具有延伸至所述接触开口内的第一部分和位于所述层间电介质上面的第二部分;在镀液中使用电化学镀将含金属材料镀在所述导电覆盖层上,其中,所述镀液不含硫;实施平坦化以去除所述含金属材料的过量部分,其中,所述含金属材料的剩余部分和所述导电覆盖层的剩余部分组合形成接触插塞,并且所述接触插塞的顶面从邻近所述层间电介质的顶面凹进以形成凹槽;以及在所述凹槽中选择性地形成金属盖。

在上述方法中,所述凹槽在边缘部分较深,并且在中心部分较浅。

在上述方法中,还包括,在所述平坦化之前,对包括所述含金属材料的相应的晶圆实施退火。

在上述方法中,所述金属盖由与所述含金属材料相同的材料形成。

上面概述了若干实施例的特征,使得本领域人员可以更好地理解本发明的方面。本领域人员应该理解,他们可以容易地使用本发明作为基础来设计或修改用于实施与本人所介绍实施例相同的目的和/或实现相同优势的其他工艺和结构。本领域技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,本文中他们可以做出多种变化、替换以及改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1