密封用丙烯酸类组合物、片材、层叠片、固化物、半导体装置及半导体装置的制造方法与流程

文档序号:17288236发布日期:2019-04-03 03:44阅读:115来源:国知局
密封用丙烯酸类组合物、片材、层叠片、固化物、半导体装置及半导体装置的制造方法与流程

本发明涉及密封用丙烯酸类组合物、片材、层叠片、固化物、半导体装置及半导体装置的制造方法,详细而言涉及对于通过使用了片材的先供给方式的底部填充(underfilling)将基材与半导体芯片之间的间隙密封而言适合的密封用丙烯酸类组合物、片材、及层叠片、该密封用丙烯酸类组合物的固化物、具备包含该固化物的密封材料的半导体装置、以及具备该密封材料的半导体装置的制造方法。



背景技术:

将倒装芯片型的半导体芯片以倒装的方式安装在基材上的情况下,广泛采用了底部填充技术。作为底部填充技术,有将半导体芯片安装于基材后,在基材与半导体芯片之间的间隙填充树脂组合物,由此将该间隙密封的方法。

随着凸块电极的窄间距化,作为底部填充技术,先供给方式引起了关注。在该先供给方式中,准备例如具备导体布线的基材、具备凸块电极的半导体芯片、和在常温下为液态的热固化性的密封用丙烯酸类组合物。在基材上配置密封用丙烯酸类组合物,在基材上的配置有密封用丙烯酸类组合物的位置配置半导体芯片,并且在导体布线上配置凸块电极。在该状态下,对密封用丙烯酸类组合物及凸块电极进行加热,由此使密封用丙烯酸类组合物固化而形成密封材料,并且将凸块电极和导体布线电连接(参照专利文献1)。

这样的先供给方式中,能够同时进行半导体芯片向基材的安装、和半导体芯片与基材之间的间隙的密封。而且,即使凸块电极间的间距狭窄,也不易在半导体芯片与基材之间的间隙发生密封材料的未填充。

另外,对于先供给方式的底部填充技术,已知不仅有直接使用在常温下为液态的组合物的技术(称为非导电性浆料工艺(non-conductivepasteprocess),也称为ncpprocess),还有使用使组合物干燥或半固化而得到的片材的技术(称为非导电性膜工艺(non-conductivefilmprocess),也称为ncfprocess)(参照专利文献2)。

现有技术文献

专利文献

专利文献1:国际公开第2013/035871号

专利文献2:日本特开2011-140617号公报



技术实现要素:

本发明的一个方式的密封用丙烯酸类组合物含有:丙烯酸类化合物、末端含有具有自由基聚合性的取代基的聚苯醚树脂、无机填充材料、热自由基聚合引发剂、和热塑性树脂。密封用丙烯酸类组合物优选还含有氮氧化合物(二ト口キシド化合物)。取代基优选具有碳-碳双键。取代基(b1)优选具有下述式(1)所示的结构。式(1)中,r为氢或烷基。

热塑性树脂优选具有100℃以下的玻璃化转变温度。对于无机填充材料(c)的比例,相对于密封用丙烯酸类组合物的固体成分量,优选为45质量%以上且90质量%以下的范围内。

本发明的一个方式的片材为上述密封用丙烯酸类组合物的干燥物或半固化物。片材优选具有25mpa以上且1800mpa以下的范围内的25℃的拉伸模量。

本发明的一个方式的层叠片具备上述片材、和支撑上述片材的支撑片。

本发明的一个方式的固化物是使上述密封用丙烯酸类组合物或上述片材热固化而得到的。

本发明的一个方式的半导体装置具备:基材、以倒装的方式安装于基材的半导体芯片、和将基材与半导体芯片之间的间隙密封的密封材料,密封材料包含上述固化物。

本发明的一个方式的半导体装置的制造方法包括以下的步骤。在具备凸块电极的半导体晶片的具有上述凸块电极的面重叠上述片材。将半导体晶片连同片材一起切断,由此制作具备从半导体晶片切出的半导体芯片、和从片材切出的单片的部件。在具备导体布线的基材的具有导体布线的面重叠单片,由此依次层叠基材、单片及半导体芯片。对单片进行加热,由此使单片熔融,然后使其固化来制作密封材料,并且将凸块电极和导体布线电连接。

根据本发明的上述方式,可得到容易成形为片状、并且所制作的片材及固化物能够具有良好的柔软性、而且固化物能够具有良好的耐热性的密封用丙烯酸类组合物。

另外,根据本发明的上述方式,可得到由该密封用丙烯酸类组合物制作的片材及层叠片、该密封用丙烯酸类组合物的固化物、具备包含该固化物的密封材料的半导体装置、以及具备该密封材料的半导体装置的制造方法。

附图说明

图1为示出本发明的一个实施方式的半导体装置的截面示意图。

图2为示出本发明的一个实施方式的层叠片的截面示意图。

图3a为示出本发明的一个实施方式的由半导体晶片及片材制作芯片部件的工序的截面示意图。

图3b为示出本发明的一个实施方式的由半导体晶片及片材制作芯片部件的工序的截面示意图。

图3c为示出本发明的一个实施方式的由半导体晶片及片材制作芯片部件的工序的截面示意图。

图4a为示出本发明的一个实施方式的将半导体芯片安装于基材的工序的截面示意图。

图4b为示出本发明的一个实施方式的将半导体芯片安装于基材的工序的截面示意图。

图4c为示出本发明的一个实施方式的将半导体芯片安装于基材的工序的截面示意图。

图4d为示出本发明的一个实施方式的将半导体芯片安装于基材的工序的截面示意图。

具体实施方式

在本发明的实施方式的说明之前,简单地说明现有技术中的问题。发明人对使用了由密封用丙烯酸类组合物制作的片材的ncfprocess的实用化进行了研究。

但是,发明人进行了研究的结果为可知:不容易将密封用丙烯酸类组合物成形为片状,另外,由密封用丙烯酸类组合物制作的片材及密封材料容易变脆。特别是若为了减小密封材料的热膨胀系数、或提高热传导性而在密封用丙烯酸类组合物中高填充无机填充材料,则该问题显著。进而,近年来,对半导体装置的密封材料要求高的耐热性。

本发明提供容易成形为片状、并且所制作的片材及固化物能够具有良好的柔软性、而且固化物能够具有良好的耐热性的密封用丙烯酸类组合物、由该密封用丙烯酸类组合物制作的片材及层叠片、该密封用丙烯酸类组合物的固化物、具备包含该固化物的密封材料的半导体装置、以及具备该密封材料的半导体装置的制造方法。

以下,对本发明的一个实施方式进行说明。需要说明的是,本说明书中,“(甲基)丙烯-”是指“丙烯-”和“甲基丙烯-”的总称。例如(甲基)丙烯酰基是指丙烯酰基和甲基丙烯酰基的总称。另外,密封用丙烯酸类组合物的固体成分量是指从密封用丙烯酸类组合物中去除了溶剂等挥发性成分的部分的量。

本实施方式的密封用丙烯酸类组合物含有:丙烯酸类化合物(a)、末端具有自由基聚合反应性的取代基(b1)的聚苯醚树脂(b)、无机填充材料(c)、热自由基聚合引发剂(d)、及热塑性树脂(e)。

密封用丙烯酸类组合物含有聚苯醚树脂(b)及热塑性树脂(e),因此容易成形为片状。另外,由密封用丙烯酸类组合物制作的片材41能够具有良好的适度的柔软性,容易将片材41切断。

另外,通过这样地同时含有聚苯醚树脂(b)及热塑性树脂(e),从而即使在密封用丙烯酸类组合物中的无机填充材料(c)的比例高的情况下,密封用丙烯酸类组合物也容易成形为片状,并且片材41能够具有良好的适度的柔软性。

进而,由于聚苯醚树脂(b)末端具有自由基聚合反应性的取代基(b1),因此使密封用丙烯酸类组合物热固化时,聚苯醚树脂(b)与丙烯酸类化合物(a)聚合,由此形成巨大分子。即,聚苯醚树脂(b)被引入至巨大分子的骨架中。其结果,密封用丙烯酸类组合物的固化物能够具有高的耐热性及耐湿性。

可以由该密封用丙烯酸类组合物制作片材41(参照图2)。片材41包含密封用丙烯酸类组合物的干燥物或半固化物。密封用丙烯酸类组合物及片材41适于制作半导体装置1中的密封材料4(参照图1)。

图1示出半导体装置1的例子。该半导体装置1具备:基材2、以倒装的方式安装于基材2的半导体芯片3、和将基材2与半导体芯片3之间的间隙密封的密封材料4。密封材料4包含密封用丙烯酸类组合物或片材41的固化物。半导体芯片3在面对基材2的面具备凸块电极31,并且基材2在面对半导体芯片3的面具备导体布线21。凸块电极31与导体布线21对准位置,并借助焊料凸块6连接。该凸块电极31和导体布线21被埋于密封材料4内。

更详细地对本实施方式进行说明。首先,更详细地对密封用丙烯酸类组合物的组成进行说明。

如上所述,密封用丙烯酸类组合物含有:丙烯酸类化合物(a)、聚苯醚树脂(b)、无机填充材料(c)、热自由基聚合引发剂(d)、及热塑性树脂(e)。

本实施方式中,丙烯酸类化合物(a)为具有(甲基)丙烯酰基的化合物。即,丙烯酸类化合物(a)为具有丙烯酰基和甲基丙烯酰基中的至少一者的化合物。丙烯酸类化合物(a)可以含有例如单体和低聚物中的至少一者。

若密封用丙烯酸类组合物含有丙烯酸类化合物(a),则不易在由密封用丙烯酸类组合物制作的密封材料4中产生空隙。可认为这是因为:在丙烯酸类化合物(a)通过自由基聚合反应进行固化时的初期阶段,密封用丙烯酸类组合物发生增稠。

对于丙烯酸类化合物(a),为了确保密封材料4的耐热性,优选包含每1分子具有2个以上(甲基)丙烯酰基的化合物、更优选包含每1分子具有2~6个(甲基)丙烯酰基的化合物、进一步优选包含每1分子具有2个(甲基)丙烯酰基的化合物。

每1分子具有2个(甲基)丙烯酰基的化合物的例子包含:乙二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、二聚二醇二(甲基)丙烯酸酯、二羟甲基三环癸烷二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、三羟甲基丙烷二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、二(甲基)丙烯酸锌、环己二醇二(甲基)丙烯酸酯、环己烷二甲醇二(甲基)丙烯酸酯、环己烷二乙醇二(甲基)丙烯酸酯、环己烷二烷基醇二(甲基)丙烯酸酯、及二甲醇三环癸烷二(甲基)丙烯酸酯。

每1分子具有2个(甲基)丙烯酰基的化合物的例子也包含:双酚a、双酚f或双酚ad1摩尔与丙烯酸缩水甘油酯2摩尔的反应物、以及双酚a、双酚f或双酚ad1摩尔与甲基丙烯酸缩水甘油酯2摩尔的反应物。

每1分子具有2个以上(甲基)丙烯酰基的化合物的例子包含具有交联多环结构的(甲基)丙烯酸酯。具体而言,每1分子具有2个以上(甲基)丙烯酰基的化合物的例子包含下述式(i)所示的化合物及下述式(ii)所示的化合物。若密封用丙烯酸类组合物含有下述式(i)所示的化合物及下述式(ii)所示的化合物中的至少一者,则密封材料4的耐热性尤其会提高。

式(i)中,r1及r2各自独立地为氢原子或甲基,a为1或2,b为0或1。

式(ii)中,r3及r4各自独立地为氢原子或甲基,x为氢原子、甲基、羟甲基、氨基、或(甲基)丙烯酰氧基甲基,c为0或1。

具有交联多环结构的(甲基)丙烯酸酯的更具体的例子包含:具有式(i)中的a为1、b为0的二环戊二烯骨架的(甲基)丙烯酸酯;具有式(ii)中的c为1的全氢-1,4:5,8-二甲桥萘骨架的(甲基)丙烯酸酯;具有式(ii)中的c为0的降冰片烷骨架的(甲基)丙烯酸酯;式(i)中的r1及r2为氢原子、a=1、b=0的二环戊二烯基二丙烯酸酯(三环癸烷二甲醇二丙烯酸酯);式(ii)中的x为丙烯酰氧基甲基、r3及r4为氢原子、c为1的全氢-1,4:5,8-二甲桥萘-2,3,7-三羟甲基三丙烯酸酯;式(ii)中的x、r3及r4为氢原子、c为0的降冰片烷二羟甲基二丙烯酸酯;以及式(ii)中的x、r3及r4为氢原子、c为1的全氢-1,4:5,8-二甲桥萘-2,3-二羟甲基二丙烯酸酯。特别优选具有交联多环结构的(甲基)丙烯酸酯包含二环戊二烯基二丙烯酸酯及降冰片烷二羟甲基二丙烯酸酯中的至少一者。

具有2个以上(甲基)丙烯酰基的化合物的例子包含具有在双酚骨架上加成烯化氧而成的结构的二(甲基)丙烯酸酯。具有2个以上(甲基)丙烯酰基的化合物的更具体的例子包含式(iii)所示的化合物及式(iv)所示的化合物。若丙烯酸类化合物(a)含有式(iii)所示的化合物和式(iv)所示的化合物中的至少一者,则密封材料4与半导体芯片3及基材2的密合性提高。

式(iii)中,r5表示氢、甲基、或乙基,r6表示2价的有机基团,m及n各自表示1~20的整数。

式(iv)中,r5表示氢、甲基、或乙基,r6表示2价的有机基团,m及n各自表示1~20的整数。

具有在双酚骨架上加成烯化氧而成的结构的二(甲基)丙烯酸酯的更具体的例子包含aronixm-210、m-211b(东亚合成制)、nkesterabe-300、a-bpe-4、a-bpe-6、a-bpe-10、a-bpe-20、a-bpe-30、bpe-100、bpe-200、bpe-500、bpe-900、bpe-1300n(新中村化学制)之类的eo改性双酚a型二(甲基)丙烯酸酯(n=2~20);aronixm-208(东亚合成制)等eo改性双酚f型二(甲基)丙烯酸酯(n=2~20);denacolacrylateda-250(ナガセ化成制)、viscoat540(大阪有机化学工业制)之类的po改性双酚a型二(甲基)丙烯酸酯(n=2~20);以及denacolacrylateda-721(ナガセ化成制)之类的po改性邻苯二甲酸二丙烯酸酯。

具有2个以上(甲基)丙烯酰基的化合物优选含有环氧(甲基)丙烯酸酯。即,丙烯酸类化合物(a)优选含有环氧(甲基)丙烯酸酯。该情况下,特别是密封用丙烯酸类组合物含有环氧树脂时,密封用丙烯酸类组合物的反应性提高,并且密封材料4的耐热性及密合性提高。

环氧(甲基)丙烯酸酯例如为作为环氧树脂与丙烯酸、甲基丙烯酸等不饱和一元酸的加成反应物的低聚物。

作为环氧(甲基)丙烯酸酯的原料的环氧树脂包含:例如通过以双酚a、双酚f之类的双酚为代表的双酚类与环氧卤丙烷的缩合得到的二缩水甘油基化合物(双酚型环氧树脂)。环氧树脂可以包含具有酚骨架的环氧树脂。作为具有酚骨架的环氧树脂,可列举出通过苯酚或甲酚与以福尔马林为代表的醛的缩合物即苯酚酚醛类与环氧卤丙烷的缩合得到的多元缩水甘油醚(苯酚酚醛型环氧树脂、甲酚酚醛型环氧树脂)。环氧树脂可以包含具有环己基环的环氧树脂。

环氧(甲基)丙烯酸酯优选包含例如在25℃下为固体或粘度为10pa·s以上的液体的双酚a型环氧丙烯酸酯。双酚a型环氧丙烯酸酯例如由下述式(v)表示。

式(v)中,n表示正整数。

双酚a型环氧丙烯酸酯的市售品的例子包含denacolacrylateda-250(ナガセ化成、在25℃下为60pa·s)、denacolacrylateda-721(ナガセ化成、在25℃下为100pa·s)、ripoxyvr-60(昭和高分子、常温下为固体)、及ripoxyvr-77(昭和高分子、在25℃下为100pa·s)。

丙烯酸类化合物(a)包含具有3个以上(甲基)丙烯酰基的化合物的情况下,具有3个以上(甲基)丙烯酰基的化合物的例子包含季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、季戊四醇五丙烯酸酯、乙氧基化(3)三羟甲基丙烷三丙烯酸酯、乙氧基化(6)三羟甲基丙烷三丙烯酸酯、乙氧基化(9)三羟甲基丙烷三丙烯酸酯、丙氧基化(6)三羟甲基丙烷三丙烯酸酯、丙氧基化(3)甘油基三丙烯酸酯、高丙氧基化(55)甘油基三丙烯酸酯、乙氧基化(15)三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、四乙二醇二丙烯酸酯、二羟甲基丙烷四丙烯酸酯、三丙二醇二丙烯酸酯、五丙烯酸酯、1,3-金刚烷二醇二甲基丙烯酸酯、1,3-金刚烷二醇二丙烯酸酯、1,3-金刚烷二甲醇二甲基丙烯酸酯、及1,3-金刚烷二甲醇二丙烯酸酯。

丙烯酸类化合物(a)例如以相对于丙烯酸类化合物(a)整体为10质量%以上且50质量%以下的范围内的比例含有具有交联多环结构的(甲基)丙烯酸酯。另外,丙烯酸类化合物(a)可以以相对于丙烯酸类化合物(a)整体为3质量%以上且20质量%以下的范围内的比例含有具有在双酚骨架上加成烯化氧而成的结构的二(甲基)丙烯酸酯、以相对于丙烯酸类化合物(a)整体为5质量%以上且30质量%以下的范围内的比例含有环氧(甲基)丙烯酸酯。

丙烯酸类化合物(a)可以含有除上述成分以外的各种乙烯基单体、例如单官能乙烯基单体。

丙烯酸类化合物(a)相对于丙烯酸类化合物(a)、聚苯醚树脂(b)及热塑性树脂(e)的合计量的比例例如为30质量%以上且70质量%以下的范围内。

对聚苯醚树脂(b)进行说明。如上所述,聚苯醚树脂(b)在末端含有具有自由基聚合性的取代基(b1)。聚苯醚树脂(b)具有例如聚苯醚链(b2)和键合于聚苯醚链(b2)的末端的取代基(b1)。

取代基(b1)的结构只要具有自由基聚合性,就没有特别限制。取代基(b1)的例子包含具有碳-碳双键的基团。

取代基(b1)优选为具有碳-碳双键的基团。该情况下,取代基(b1)与丙烯酸类化合物(a)反应,由此聚苯醚树脂(b)被引入至巨大分子的骨架,其结果,密封用丙烯酸类组合物的固化物能够具有高的耐热性及耐湿性。

取代基(b1)具有例如下述式(1)所示的结构或下述式(2)所示的结构。

式(1)中,r为氢或烷基。r为烷基的情况下,该烷基优选为甲基。

式(2)中,n为0~10的整数,例如n=1。式(2)中,z为亚芳基,r1~r3各自独立地为氢或烷基。需要说明的是,式(2)中的n为0的情况下,z直接键合于聚苯醚树脂(c)中的聚苯醚链(c1)的末端。

取代基(b1)特别优选具有式(1)所示的结构。

聚苯醚树脂(b)含有例如具有下述式(3)所示的结构的化合物。

式(3)中,y为碳数1~3的亚烷基或直接键合。y例如为二甲基亚甲基。式(3)中,x为取代基(b1),例如为具有式(1)所示的结构的基团或具有式(2)所示的结构的基团。x为具有式(1)所示的结构的基团时,特别优选。另外,式(3)中,s为0以上的数,t为0以上的数,s与t的合计为1以上的数。s优选为0以上且20以下的范围内的数,t优选为0以上且20以下的范围内的数,s与t的合计值优选为1以上且30以下的范围内的数。

相对于丙烯酸类化合物(a)、聚苯醚树脂(b)及热塑性树脂(e)的合计量,聚苯醚树脂(b)比例优选为20质量%以上且80质量%以下的范围内。若该比例为20质量%以上,则固化物可具有更高的耐热性。另外,若该比例为80质量%以下,则固化物可具有更高的柔软性。该比例更优选为25质量%以上且50质量%以下的范围内。

密封用丙烯酸类组合物可以还含有除丙烯酸类化合物(a)及聚苯醚树脂(b)以外的热固化性化合物。作为这样的热固化性化合物,可列举出与丙烯酸类化合物(a)发生热固化反应的化合物。作为这样的热固化性化合物的具体例,可列举出双马来酰亚胺树脂。

密封用丙烯酸类组合物可以含有弹性体。作为弹性体,例如可列举出异戊二烯聚合物的马来酸酐加成物。

对无机填充材料(c)进行说明。无机填充材料(c)能够调整密封材料4的热膨胀系数。另外,无机填充材料(c)能够提高密封材料4的热传导性,由此能够通过密封材料4效率良好地使由半导体芯片3发出的热放出。

无机填充材料(c)例如可以含有选自由熔融二氧化硅、合成二氧化硅、结晶二氧化硅之类的二氧化硅;氧化铝、氧化钛之类的氧化物;滑石、烧成粘土、未烧成粘土、云母、玻璃之类的硅酸盐;碳酸钙、碳酸镁、水滑石之类的碳酸盐;氢氧化铝、氢氧化镁、氢氧化钙之类的氢氧化物;硫酸钡、硫酸钙、亚硫酸钙之类的硫酸盐或亚硫酸盐;硼酸锌、偏硼酸钡、硼酸铝、硼酸钙、硼酸钠之类的硼酸盐;以及氮化铝、氮化硼、氮化硅之类的氮化物所组成的组中的一种以上的材料。熔融二氧化硅可以为熔融球状二氧化硅和熔融破碎二氧化硅中的任意者。

特别优选无机填充材料(c)含有二氧化硅和氧化铝中的至少一者。该情况下,密封材料4能够具有特别高的热传导性。

无机填充材料(c)的形状可以为破碎状、针状、鳞片状、球状等,没有特别限定。为了提高无机填充材料(c)在密封用丙烯酸类组合物中的分散性、以及控制密封用丙烯酸类组合物的粘度,无机填充材料(c)优选为球状。

无机填充材料(c)优选具有比基材2与安装于其上的半导体芯片3之间的尺寸更小的平均粒径。

为了提高密封用丙烯酸类组合物及密封材料4中的无机填充材料(c)的填充密度、以及调整密封用丙烯酸类组合物的粘度,无机填充材料(c)的平均粒径优选为5μm以下,为1μm以下时更优选,为0.5μm以下时进一步优选,为0.1μm以上且0.3μm以下的范围内时特别优选。

需要说明的是,本实施方式的平均粒径为根据基于激光衍射法的粒度分布测定的结果算出的中值粒径。

为了调整密封用丙烯酸类组合物的粘度或调整密封材料4的物性,无机填充材料(c)可以含有具有彼此不同的平均粒径的2种以上的成分。

对于无机填充材料(c)的比例,相对于密封用丙烯酸类组合物的固体成分量,优选为45质量%以上且90质量%以下的范围内。无机填充材料(c)的比例为45质量%以上时,尤其能够减小固化物及密封材料4的热膨胀系数,并且尤其能够提高固化物及密封材料4的热传导性。另外,无机填充材料的比例为90质量%以下时,能够良好地保持密封用丙烯酸类组合物的成形容易度,并且良好地保持片材41及密封材料4的柔软性。无机填充材料(c)的比例为70质量%以上且85质量%以下的范围内时,特别优选。

本实施方式中,即使无机填充材料(c)相对于密封用丙烯酸类组合物的固体成分量的比例如上所述地提高,通过使密封用丙烯酸类组合物含有聚苯醚树脂(b)和热塑性树脂(e),也容易将密封用丙烯酸类组合物成形为片状,并且片材41及固化物能够具有良好的柔软性。

另外,特别是无机填充材料(c)为二氧化硅的情况下,二氧化硅的比例相对于密封用丙烯酸类组合物的固体成分量优选为45质量%以上且80质量%以下的范围内,为65质量%以上且75质量%以下的范围内时更优选。另外,特别是无机填充材料(c)为氧化铝的情况下,氧化铝的比例相对于密封用丙烯酸类组合物的总量优选为60质量%以上且90质量%以下的范围内。

热自由基聚合引发剂(d)例如含有有机过氧化物。有机过氧化物的1分钟半衰期温度优选为120℃以上且195℃以下的范围内,为150℃以上且190℃以下的范围内时进一步优选。该情况下,在将密封用丙烯酸类组合物加热固化的工序中的初期阶段,密封用丙烯酸类组合物以不阻碍凸块电极31与导体布线21的润湿性的程度迅速地增稠,由此抑制空隙的生成。另外,密封用丙烯酸类组合物的固化反应充分迅速地进行,由此能够抑制半导体芯片3与密封材料4之间的剥离。

有机过氧化物的具体例包含叔丁基过氧化-2-乙基己基单碳酸酯(1分钟半衰期温度161.4℃)、叔丁基过氧化苯甲酸酯(1分钟半衰期温度166.8℃)、过氧化叔丁基异丙苯(1分钟半衰期温度173.3℃)、过氧化二异丙苯(1分钟半衰期温度175.2℃)、α,α’-二(叔丁基过氧化)二异丙苯(1分钟半衰期温度175.4℃)、2,5-二甲基-2,5-二(叔丁基过氧化)己烷(1分钟半衰期温度179.8℃)、二叔丁基过氧化物(1分钟半衰期温度185.9℃)、及2,5-二甲基-2,5-双(叔丁基过氧化)己炔(1分钟半衰期温度194.3℃)。

对于热自由基聚合引发剂(d)的比例,相对于丙烯酸类化合物(a)及聚苯醚树脂(b)的合计量100质量份,优选为0.25质量份以上且2.0质量份以下的范围内。该情况下,固化物能够得到良好的物性。该热自由基聚合引发剂(d)的比例为0.5质量份以上且1.5质量份以下的范围内时,进一步优选。

热塑性树脂(e)例如可以含有选自由丙烯酸类聚合物、苯氧基树脂、聚酯树脂、聚醚树脂、聚酰胺树脂、聚酰胺酰亚胺树脂、聚酰亚胺树脂、聚乙烯醇缩丁醛树脂、聚乙烯醇缩甲醛树脂、聚羟基聚醚树脂、聚苯乙烯树脂、丁二烯树脂、丙烯腈-丁二烯共聚物、丙烯腈-丁二烯-苯乙烯树脂、及苯乙烯-丁二烯共聚物所组成的组中的至少一种成分。热塑性树脂(e)特别优选含有丙烯酸类聚合物。热塑性树脂(e)的比例相对于密封用丙烯酸类组合物的固体成分量优选为3质量%以上。

热塑性树脂(e)优选具有100℃以下的玻璃化转变温度。该情况下,片材41、固化物及密封材料4能够具有特别良好的柔软性。该玻璃化转变温度为80℃以下时特别优选。另外,该玻璃化转变温度优选为40℃以上,为60℃以上时进一步优选。

密封用丙烯酸类组合物优选含有自由基捕捉剂。若密封用丙烯酸类组合物含有自由基捕捉剂,则即使因对密封用丙烯酸类组合物加热而在密封用丙烯酸类组合物中产生自由基,自由基捕捉剂也能够捕捉自由基。由此,能够抑制密封用丙烯酸类组合物中的热自由基反应的进行。因此,在将密封用丙烯酸类组合物加热熔融的情况下,热自由基反应得以抑制。由此,能够长期保持密封用丙烯酸类组合物的粘度低的状态。因此,在使用由密封用丙烯酸类组合物制作的片材41来制作密封材料4时,在将片材41加热熔融的情况下,能够长期保持熔融的片材41的粘度低的状态。其结果,更不易产生未填充、空隙之类的不良情况。另外,由于即使将片材41加热也不会立即固化,因此即使在片材41被配置于半导体元件与基材2之间之前将片材41加热,也不易产生不良情况。因此,片材41的处理性变高。另外,在不由密封用丙烯酸类组合物制作片材41、而是由密封用丙烯酸类组合物制作密封材料4时,在将密封用丙烯酸类组合物加热的情况下也能够长期保持密封用丙烯酸类组合物的粘度低的状态,因此能够抑制不良情况。

密封用丙烯酸类树脂组合物含有自由基捕捉剂的情况下,若对密封用丙烯酸类组合物及片材41加热,则如上所述,初期热自由基反应的进行被抑制,因此不会立即固化,但不久后热自由基反应容易急剧地进行。但是,若如本实施方式那样地使密封用丙烯酸类树脂组合物含有聚苯醚树脂(b)及热塑性树脂(e),则即使密封用丙烯酸类组合物及片材41的固化急剧地进行,也能够使得不易在固化物及密封材料4产生裂纹。

自由基捕捉剂的例子包含氮氧化合物(f)及羰基硫代化合物。特别优选自由基捕捉剂含有氮氧化合物(f)、即密封用丙烯酸类组合物含有氮氧化合物(f)。若密封用丙烯酸类组合物含有氮氧化合物(f),则通过对密封用丙烯酸类组合物进行加热使其熔融的情况下,会适度地抑制初期的热自由基反应的进行,其结果,上述不良情况抑制及处理性提高的效果变得特别显著。

氮氧化合物(f)例如可以含有选自由2,2,6,6-四甲基-1-哌啶氧自由基(tempo)、4-乙酰胺-2,2,6,6-四乙基哌啶-1-氧自由基、4-氨基-2,2,6,6-四甲基哌啶-1-氧自由基、4-羧基-2,2,6,6-四甲基哌啶-1-氧自由基、4-氧代-2,2,6,6-四甲基哌啶-1-氧自由基、4-甲基丙烯酰氧基-2,2,6,6-四甲基哌啶-1-氧自由基、及[[n,n’-[金刚烷-2-亚基双(1,4-亚苯基)]双(叔丁基胺)]-n,n’-二基双氧]自由基所组成的组中的至少一种成分。

氮氧化合物(f)的比例相对于热自由基聚合引发剂(d)优选为2.5质量%以上且20质量%以下的范围内。该氮氧化合物(f)的比例为2.5质量%以上时,将片材41或密封用丙烯酸类组合物加热的情况下,能够足够长期保持粘度低的状态。另外,该氮氧化合物(f)的比例为20质量%以下时,可抑制密封材料4变脆。该氮氧化合物(f)的比例为5质量%以上且10质量%以下的范围内时,特别优选。

密封用丙烯酸类组合物可以含有助熔剂。助熔剂的例子包含有机酸。密封用丙烯酸类组合物含有有机酸的情况下,通过有机酸的作用,在回流焊时除去凸块电极31的表面的氧化膜,确保半导体芯片3与基材2之间的良好的连接可靠性。有机酸例如可以含有选自由癸二酸、松香酸、戊二酸、琥珀酸、丙二酸、草酸、己二酸、庚二酸、辛二酸、壬二酸、二甘醇酸、亚硫基二乙酸、邻苯二甲酸、间苯二甲酸、对苯二甲酸、丙烷三羧酸、柠檬酸、苯甲酸及酒石酸所组成的组中的一种以上的化合物。有机酸的比例相对于密封用丙烯酸类组合物的固体成分量优选为0.1质量%以上且20质量%以下的范围内,为0.1质量%以上且10质量%以下的范围内时更优选。

密封用丙烯酸类组合物可以含有溶剂。溶剂例如含有选自由甲醇、乙醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、甲乙酮、丙酮、异丙基丙酮、甲苯、及二甲苯所组成的组中的至少一种成分。适宜设定溶剂的量以使密封用丙烯酸类组合物具有适度的粘度。

密封用丙烯酸类组合物在不损害本实施方式的效果的范围内可以含有除上述成分以外的添加剂。添加剂的例子包含硅烷偶联剂、消泡剂、流平剂、低应力剂、及颜料。

密封用丙烯酸类组合物可以含有马来酸改性聚丁二烯。若密封用丙烯酸类组合物含有马来酸改性聚丁二烯,则能够尤其提高密封材料4与基材2的密合性。马来酸改性聚丁二烯的比例相对于丙烯酸类化合物(a)优选为10质量%以上且30质量%以下的范围内。

密封用丙烯酸类组合物通过例如如下的方法来制备。

首先,同时或依次配合密封用丙烯酸类组合物的除无机填充材料(c)以外的成分,由此得到混合物。一边对该混合物根据需要进行加热处理、冷却处理一边搅拌混合。接下来,向该混合物中加入无机填充材料(c)。接下来,一边对该混合物根据需要进行加热处理、冷却处理一边再次搅拌混合。由此,可以得到密封用丙烯酸类组合物。为了搅拌混合物,可以根据需要组合使用例如分散机、行星混合机、球磨机、三辊磨、珠磨机等。

可以由密封用丙烯酸类组合物制作片材41。参照图2详细地对片材41及具备其的层叠片9进行说明。

片材41为密封用丙烯酸类组合物的干燥物或半固化物。需要说明的是,密封用丙烯酸类组合物的干燥物为通过从密封用丙烯酸类组合物中除去溶剂等挥发成分而得到的物质,处于未完全固化的状态。密封用丙烯酸类组合物的半固化物为通过使密封用丙烯酸类组合物基于固化反应而发生一定程度固化而得到的物质,处于未完全固化的状态。

制作片材41时,例如首先准备密封用丙烯酸类组合物和支撑片8。支撑片8例如为聚对苯二甲酸乙二醇酯之类的适宜的塑料片81。

支撑片8可以具备塑料片81和与该塑料片81重叠的粘合层82。粘合层82为具有适度的粘合力的层,可以用于将支撑片8固定于适宜的平台10(参照图3a)。粘合层82可以具有反应固化性。该情况下,将支撑片8配置于适宜的平台10上后使粘合层82固化,由此能够将支撑片8牢固地固定于平台10。粘合层82例如可以由丙烯酸系树脂、合成橡胶、天然橡胶、聚酰亚胺树脂等制作。

在支撑片8的一面上涂布密封用丙烯酸类组合物。支撑片8具备塑料片81和粘合层82的情况下,在塑料片81的与粘合层82相反侧的面上涂布密封用丙烯酸类组合物。本实施方式中,通过涂布密封用丙烯酸类组合物,从而能够容易地成形为片状。接下来,通过在支撑片8上对密封用丙烯酸类组合物进行加热来使其干燥或半固化。此时的密封用丙烯酸类组合物的加热条件例如优选为加热温度80℃以上且120℃以下的范围内、加热时间5分钟以上且30分钟以下的范围内。由此,能够在支撑片8上制作片材41,并且得到具备片材41和支撑其的支撑片8的层叠片9。本实施方式中,由于密封用丙烯酸类组合物含有聚苯醚树脂(b),因此容易将密封用丙烯酸类组合物成形为片状,因此,能够容易地制作片材41。

片材41的厚度例如为10μm以上且50μm以下的范围内,但不限制于此,为与半导体装置1中的密封材料4的厚度相符合的适宜的值即可。

片材41在25℃的拉伸模量优选为25mpa以上且1800mpa以下的范围内。换言之,对于密封用丙烯酸类组合物,其干燥物或半固化物优选具有25mpa以上且1800mpa以下的范围内的25℃的拉伸模量。该情况下,片材41具有适度的柔软性,特别是切断情况下的加工性良好。拉伸模量为1800mpa以下时,将片材41切断时,不易产生破片。另外,拉伸模量为25mpa以上时,因片材41的切断而产生的截面的变形得以抑制。片材41的拉伸模量为100mpa以上且1000mpa以下的范围内时更优选,为200mpa以上且500mpa以下的范围内时进一步优选。对于这样的片材41的拉伸模量,如本实施方式那样地在密封用丙烯酸类组合物中含有聚苯醚树脂(b)及热塑性树脂(e)时,可以通过适宜调整密封用丙烯酸类组合物的组成而容易地达成。需要说明的是,对于片材41的拉伸模量,使用seikoinstrumentsinc.制的型号dms6100,在拉伸力98mn、频率10hz、温度程序25℃~150℃、5℃/分钟的条件下进行测定。

如图2所示,层叠片9可以还具备覆盖片材41的保护膜83。保护膜83的材质没有特别限制。另外,支撑片8具备粘合层82的情况下,如图2所示,层叠片9可以还具备覆盖粘合层82的覆盖片84。覆盖片84的材质也没有特别限制。

通过使密封用丙烯酸类组合物或片材41热固化,从而得到固化物。固化物如上所述能够具有高的耐热性及耐湿性。

本实施方式中,固化物优选具有150℃以上的玻璃化转变温度。该情况下,固化物能够具有特别高的耐热性,因此,具备包含固化物的密封材料4的半导体装置1能够具有高的耐热可靠性。固化物具有170℃以上的玻璃化转变温度时更优选。对于这样的玻璃化转变温度,如本实施方式那样地在密封用丙烯酸类组合物中含有聚苯醚树脂(b)时,可以通过适宜调整密封用丙烯酸类组合物的组成而容易地达成。

密封用丙烯酸类组合物及片材41适合作为底部填充。通过使用了密封用丙烯酸类组合物或片材41的先供给方式的底部填充将基材2与半导体芯片3之间的间隙密封,由此能够制作半导体装置1。

参照图3a~图3c以及图4a~图4d对半导体装置1的制造方法的例子进行说明。

首先,准备层叠片9、基材2、及半导体晶片32。

基材2例如为母基板、封装基板或内插基板。例如基材2具备玻璃环氧制、聚酰亚胺制、聚酯制、陶瓷制等的绝缘基板、和形成于其表面上的铜等导电性的导体布线21。

半导体晶片32例如为硅晶片。在半导体晶片32通过光刻法之类的适宜的方法形成电路。在半导体晶片32的一个面上设置有连接于电路的凸块电极31。

本实施方式中,半导体晶片32的凸块电极31具备焊料凸块6。需要说明的是,也可以不是凸块电极31具备焊料凸块6,而是基材2的导体布线21具备焊料凸块6,还可以凸块电极31和导体布线21各自具备焊料凸块6。即,半导体晶片32的凸块电极31和基材2的导体布线21中的至少一者具备焊料凸块6即可。焊料凸块6优选为sn-3.5ag(熔点221℃)、sn-2.5ag-0.5cu-1bi(熔点214℃)、sn-0.7cu(熔点227℃)、sn-3ag-0.5cu(熔点217℃)等熔点210℃以上的无铅焊料制。

接下来,在半导体晶片32的具有凸块电极31的面重叠层叠片9的片材41。此时,从层叠片9的片材41将保护膜83剥离,然后将与支撑片8重叠的状态的片材41重叠在半导体晶片32的具有凸块电极31的面。

接下来,将半导体晶片32连同片材41一起切断,由此进行切割。此时,例如从支撑片8的粘合层82将覆盖片84剥离,然后将粘合层82配置在平台10上,进而根据需要使粘合层82固化。由此,如图3a所示,在片材41与支撑片8重叠的状态下将支撑片8固定于平台10。

在该状态下,如图3b所示,将半导体晶片32连同片材41一起切断。由此,制作具备从半导体晶片32切出的半导体芯片3、和从片材41切出的单片42的部件(以下,称为芯片部件7)。将该芯片部件7从支撑片8取下。如图3c所示,芯片部件7的半导体芯片3具备凸块电极31,在半导体芯片3的具有凸块电极31的面重叠有单片42。

接下来,将半导体芯片3以倒装的方式安装于基材2。本实施方式中,使用具备接合头51和载物台52的倒装芯片接合机50,如下地进行安装。

如图4a所示,基材2支撑于载物台52上,并且使芯片部件7的半导体芯片3保持在接合头51。在该状态下,如图4b所示,使接合头51向载物台52移动。由此,在基材2上配置半导体芯片3。此时,以使半导体芯片3的凸块电极31与基材2的导体布线21重叠的方式,将半导体芯片3和基材2对准位置。

在该状态下,通过接合头51和载物台52,对半导体芯片3及基材2进行加热,由此对焊料凸块6及单片42进行加热。加热温度根据焊料凸块6的组成及密封用丙烯酸类组合物的组成来适宜设定,例如最高加热温度为180℃以上且300℃以下的范围内。如此地,若对焊料凸块6及单片42进行加热,则焊料凸块6会熔解,由此凸块电极31与导体布线21电连接。另外,单片42熔融后进行热固化,由此如图4c所示,形成密封材料4,由此,半导体芯片3与基材2之间被密封材料4密封。此时,本实施方式中,片材41具有低的最低熔融粘度,因此已熔融的单片42具有高的流动性。进而,密封用丙烯酸类组合物含有自由基捕捉剂、特别是氮氧化合物(f)的情况下,能够长期保持已熔融的单片42的粘度低的状态。因此,本实施方式中,密封材料4不易产生未填充、空隙产生之类的不良情况。

接着,如图4d所示,使接合头51向上方移动而与半导体芯片3分离。

如以上那样地将半导体芯片3安装于基材2,由此得到图1所示的半导体装置1。

如此制造半导体装置1后,也可以使用相同的倒装芯片接合机50,继续制造其他的半导体装置1。该情况下,若在接合头51的温度高的状态下使用于其他的半导体装置1的芯片部件7的半导体芯片3支撑于接合头51,则有在将单片42配置于半导体芯片3与基材2之间之前单片42被加热而固化的担心。因此,优选将接合头51冷却后使芯片部件7的半导体芯片3支撑于接合头51。此时,若接合头51的冷却耗费时间,则半导体装置1的制造效率会降低。但是,本实施方式中,密封用丙烯酸类组合物含有自由基捕捉剂、特别是氮氧化合物(f)的情况下,即使对单片42加热也不会立即固化,因此即使接合头51的温度在一定程度上较高,也能够在单片42不固化的状态下将单片42配置于半导体芯片3与基材2之间。因此,能够削减接合头51的冷却所需的时间,提高半导体装置1的制造效率。

如以上那样得到的半导体装置1抑制了密封材料4的未填充、空隙之类的不良情况。另外,由于密封材料4具有适度的柔软性,因此可抑制密封材料4的裂纹等不良情况。另外,由于密封材料4能够具有良好的耐热性及耐湿性,因此半导体装置1能够具有在高温高湿下的良好的可靠性。

实施例

1.实施例1~8及比较例1~4的制备

如下地制备作为密封用丙烯酸类组合物的实施例1~8及比较例1~4。

首先,准备表1的组成的栏所示的成分。这些成分之中,首先称量丙烯酸类化合物,然后将它们用分散机搅拌混合,接下来,向该丙烯酸类化合物的混合物中加入除改性ppe及无机填充材料以外的成分进行混合,由此制备第一混合液。另外,使改性ppe溶解于甲乙酮,由此制备第二混合液。向第二混合液中加入第一混合液和无机填充材料,然后将它们用分散机搅拌,接下来用珠磨机进行混合,由此使无机填充材料分散。由此,制备密封用丙烯酸类组合物。对于密封用丙烯酸类组合物中的甲乙酮的浓度,使其成为30质量%以上且50质量%以下的范围内。

需要说明的是,表中的组成的栏所示的成分的详细情况如下。

·丙烯酸类化合物1:乙氧基化双酚a二甲基丙烯酸酯、新中村化学工业公司制、产品编号bpe-100。

·丙烯酸类化合物2:三环癸烷二甲醇二丙烯酸酯、新中村化学工业公司制、产品编号a-dcp。

·丙烯酸类化合物3:三羟甲基丙烷三丙烯酸酯、新中村化学工业公司制、产品编号a-tmpt。

·丙烯酸类化合物4:双酚a型环氧丙烯酸酯、昭和高分子公司制、产品编号vr-77。

·改性聚丁二烯:马来酸改性聚丁二烯、crayvalleycompany制、品名ricobond1756。

·改性ppe1:具有上述式(3)所示的结构且式(3)中的x为具有上述式(1)所示的结构的基团(r为甲基)的改性聚苯醚树脂、sabic公司制、产品编号sa9000。

·改性ppe2:通过以下的方法合成的具有上述式(3)所示的结构且式(3)中的x为具有上述式(2)所示的结构的基团的改性聚苯醚树脂。

(改性ppe2的合成方法)

在安装有温度调节器、搅拌装置、冷却设备、及滴液漏斗的容量1升的三口烧瓶内放入聚苯醚(sabicinnovativeplastics公司制、产品编号sa90、特性粘度0.083dl/g、末端的羟基数平均1.9个、数均分子量2000)200g、对氯甲基苯乙烯与间氯甲基苯乙烯的质量比为50∶50的混合物(东京化成工业公司制、品名氯甲基苯乙烯:cms)30g、相转移催化剂(四正丁基溴化铵)1.227g、及甲苯400g,一边对它们进行搅拌一边逐渐加热至75℃。接下来,向三口烧瓶内用20分钟滴加碱金属氢氧化物水溶液(氢氧化钠20g与水20g的混合物)。接下来,将三口烧瓶的内容物在75℃下搅拌4小时。接下来,对三口烧瓶的内容物用10质量%的盐酸进行中和,然后向三口烧瓶内放入大量甲醇,由此使沉淀物析出。对三口烧瓶的内容物进行过滤,由此将沉淀物分离,对其用甲醇与水的质量比为80:20的混合液进行3次清洗,然后在减压下、在80℃下干燥3小时,由此得到改性聚苯醚树脂。通过1h-nmr(400mhz、cdc13、tms)对生成物进行分析,结果在5~7ppm确认了源自乙烯基苄基的峰。由此,确认了生成物为末端含有具有碳-碳双键的取代基的改性聚苯醚树脂。具体而言,能够确认生成物为进行了乙烯基苄基化的聚苯醚。通过凝胶渗透色谱法测定聚苯醚树脂的分子量分布,根据其结果算出的数均分子量为2300。

·丙烯酸类聚合物1:甲基丙烯酸甲酯/甲基丙烯酸正丁酯共聚物、evonik公司制、品名dynacollac2740、玻璃化转变温度80℃。

·丙烯酸类聚合物2:甲基丙烯酸甲酯/甲基丙烯酸正丁酯共聚物、evonik公司制、品名degalanp-24、玻璃化转变温度40℃。

·无机填充材料1:平均粒径100nm的二氧化硅粉末、tokuyamacorporation制、产品编号ssp-01m。

·无机填充材料2:平均粒径0.7μm的氧化铝粉末、admatechscompanylimited制、产品编号ae2050-sml。

·硅烷偶联剂:聚合物型偶联剂、信越化学工业公司制、产品编号x-12-1050。

·热自由基聚合引发剂:过氧化二异丙苯、日油公司制、品名percumyld。

·助熔剂:癸二酸。

·氮氧化合物:2,2,6,6-四甲基-1-哌啶氧自由基、东京化成工业公司制。

2.评价试验

对密封用丙烯酸类组合物进行如下的评价试验。这些评价试验的结果示于表1。

需要说明的是,即使想要由比较例4的密封用丙烯酸类组合物制作片材,也保持液态的状态而无法成为片状,因此不能对比较例4进行评价。

(1)拉伸模量评价

准备聚对苯二甲酸乙二醇酯制膜作为支撑片。使用棒涂机,以湿润膜厚成为100μm的方式在该支撑片上将密封用丙烯酸类组合物成膜,在80℃、30分钟的条件下加热。由此,在支撑片上制作厚度50μm的片材。将多张片材层叠,利用真空层压机进行压缩成形,接下来进行裁切,由此制作俯视观察8mm×50mm、厚度800mm的尺寸的样品(未固化:b阶)。

使用seikoinstrumentsinc.制的型号dms6100,在拉伸力98mn、频率10hz、温度程序25℃~150℃、5℃/分钟的条件下测定该样品的拉伸模量。

(2)热膨胀系数评价及玻璃化转变温度评价

准备聚对苯二甲酸乙二醇酯制膜作为支撑片。使用棒涂机,以湿润膜厚成为100μm的方式在该支撑片上将密封用丙烯酸类组合物成膜,在80℃、30分钟的条件下加热。由此,在支撑片上制作厚度50μm的片材。将多张片材层叠,利用真空层压机进行压缩成形,在烘箱中在150℃、2小时的条件下加热,由此使其固化,接下来进行裁切,由此制作俯视观察4mm×40mm、厚度800mm的尺寸的样品。

使用seikoinstrumentsinc.制的tma(热机械分析)装置(型号ss7100),在拉伸力49mn、温度程序30℃~300℃、5℃/分钟的条件下测定该样品的热膨胀系数及玻璃化转变温度。需要说明的是,热膨胀系数α1为根据30℃~60℃的范围内的测定结果算出的值,热膨胀系数α2为根据190℃~220℃的范围内的测定结果算出的值。

(3)切割性评价

准备聚对苯二甲酸乙二醇酯制膜作为支撑片。使用棒涂机,以湿润膜厚成为100μm的方式在该支撑片上将密封用丙烯酸类组合物成膜,在80℃、30分钟的条件下进行加热。由此,在支撑片上制作厚度50μm的片材。在厚度100μm的硅晶片上重叠该片材,然后固定于切割框,使用discoinc.制切割锯(制品名:dfd6341),将片材连同硅晶片一起切断,由此进行切割,切出俯视观察7.3mm×7.3mm的样品。对样品进行清洗后使水分挥散。用显微镜观察该样品。其结果,将未观察到裂纹的情况评价为“a”,将观察到裂纹的情况评价为“c”。

(4)成膜性评价

准备聚对苯二甲酸乙二醇酯制膜作为支撑片。使用棒涂机,以湿润膜厚成为100μm的方式在该支撑片上将密封用丙烯酸类组合物成膜,在80℃、30分钟的条件下进行加热。由此,在支撑片上制作厚度50μm的片材。

其结果,将可成膜的情况评价为“a”,将可成膜但通过显微镜观察确认到裂纹的情况评价为“b”,将不能成膜而残留有流动性的情况评价为“c”。

(5)安装后裂纹评价

使用密封用丙烯酸类组合物,如下地制作半导体装置1。

准备walts公司制的waltstegip80(10mm×10mm×300μm)作为基材。

准备walts公司制的waltstegcc80(7.3mm×7.3mm×100μm)作为半导体晶片。需要说明的是,半导体晶片具备1048个分别具有高度30μm的cu柱和其上的高度15μm的焊料凸块的凸块电极,相邻的焊料凸块间的间距为80μm。

另外,准备聚对苯二甲酸乙二醇酯制膜作为支撑片。使用棒涂机,以湿润膜厚成为100μm的方式在该支撑片上将密封用丙烯酸类组合物成膜,在80℃、30分钟的条件下进行加热。由此,在支撑片上制作厚度45~55μm的片材。

在半导体晶片上重叠片材,然后固定于切割框,使用discoinc.制切割锯(制品名:dfd6341),将片材连同硅晶片一起切断,由此切出具备半导体芯片和单片的7.3mm×7.3mm×100μm的尺寸的芯片部件。

作为倒装芯片接合机,使用torayengineeringco.,ltd.制的型号fc3000s,在将该倒装芯片接合机的载物台加热至150℃的范围的状态下,将基材固定于该载物台上。使芯片部件保持在倒装芯片接合机的接合头,在将接合头加热至100℃的状态下使接合头靠近载物台,一边使半导体芯片的凸块电极与基材的导体布线对准位置,一边在基材上重叠芯片部件的单片。在该状态下,一边对半导体芯片施加100n的载荷,一边将半导体芯片按压于基材2秒钟。接下来,用1.0秒钟使接合头的温度从接合头上升至260℃的最高到达温度。接下来,将接合头的温度保持为最高到达温度2秒钟,然后解除基于接合头的半导体芯片的保持,使接合头与载物台分离。将使半导体芯片配置于基材上后使接合头与载物台分离为止的时间设为约4秒。

由此,得到试验用的半导体装置。用ir(红外,infrared)显微镜确认该半导体装置的密封材料的裂纹的有无。其结果,将未观察到裂纹的情况评价为“a”,将观察到裂纹的情况评价为“c”。

[表1]

产业上的可利用性

本发明的密封用丙烯酸类组合物、片材、层叠片、固化物、半导体装置可以用于各种电子器件。

附图标记说明

1半导体装置

2基材

21导体布线

3半导体芯片

31凸块电极

32半导体晶片

4密封材料

41片材

42单片

7部件(芯片部件)

8支撑片

9层叠片

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1